
HowTo use the widgetInvoke package

Jeff Gentry

October 3, 2007

1 Overview

The widgetInvoke package, available as part of Bioconductor, is designed to allow
for the creation of user interfaces for arbitrary functions. The design involves the
use of Gtk for the actual interface and XML for data exchange, both of which
were chosen for their cross platform abilities. Package authors and maintainers
can create and customize metadata files for the functions of their packages using
tools provided by widgetInvoke (or on their own), distribute these files with the
package and then users of the package can use widgetInvoke to provide a GUI
interface to this function. With all of this, a simple and standare mechanism
can be used to quickly allow for GUI interaction with the functions of any given
package.

2 Getting Started

The widgetInvoke package requires the use of the RGtk package from www.
omegahat.org to interface with the Gtk libraries. While not explicitly required,
the RGtkHTML and RGtkDevices are recommended as it will provide a bit richer
environment (although at this time, users will not encounter any functionality
loss if they are not installed, just a lower quality interface in a couple of spots).

To load the widgetInvoke package, use the library function:

> library(widgetInvoke)

Also note that for the examples in this vignette, we shall be using a copy of
the apropos function, named testWIfun.

3 The widgetInvoke function

The widgetInvoke function is used by the end user of a package to present the
GUI for their desired function. To do this, they first must load not only the
widgetInvoke package, but make sure that the function they wish to actually
use is also loaded. At this point, the user only needs to call widgetInvoke with
the name of the function they wish to use.

1

www.omegahat.org
www.omegahat.org


> if (interactive()) {

+ widgetInvoke("testWIfun")

+ }

Please note that this and most other code chunks shall have the ’interactive’
test. This is solely for the handling of this vignette by automatic sessions without
displays, and users following along do not need to include this test (although it
will not hurt to do so).

Here we are presented with the interface window of a very simple function,
testWIfun (which of course is an exact replica of apropos). This function has
three arguments (what, where and mode) which in this case are spread across
two separate notebook panes (’main’ and ’more’). The assignment of arguments
to a particular notebook pane is done by the creator of the metadata (typically
the package author or maintainer) and is explained in the section ’Creating the
function metadata’.

The function name is presented at the top, with a button which will display
the man page for this function (using RGtkHTML if available, otherwise a less
rich text widget is used). Clicking on this button will provide a window like
this:

2



The what argument has its name surrounded by ’*’ characters (*what*). This
implies that the what function is required to have a value (default values are
okay, but this function does not provide one) before evaluation. Other arguments
are okay to leave empty if that is your desire. Here we will use "testWIfun" as
the what argument, select TRUE for the where argument (instead of using the
default value of FALSE), and in the second pane we shall stay with the default
value of "any" for the mode argument. When these are filled in, we can hit the
Evaluate button:

3



This leaves us with the output:

2
"testWIfun"

As you can see, the function was evaluated in the R session as if the user
called testWIfun themselves.

One note on the entry of values into the text entry fields. Anything entered
in there is handled in almost the same manner as entering a value into R - if the
value is quoted (e.g. "any"), it is treated as a character string. If the value is not
quoted, it is first checked to see if it represents an object in the search path and
if it is not then it is assumed to be of numeric type. The one exception to this
is a comma separated list of values, which are handled as a vector (where each
element is handled by the rules above). For complex values, it is recommended
to assign them first to a variable before calling widgetInvoke and then using
that variable in the entry field. Arguments which have limited possiblities for
values use radio buttons or drop down lists, and do not have this problem.

4 Creating the function metadata

The widgetInvoke function will not work unless the proper structure has al-
ready been put in place to support a given function in a package. This must be
done ahead of time, typically by the package author or maintainer. To do this,
a metadata file must be created for every function that is intended to work with
widgetInvoke and stored in the inst/wFun directory of the package sources.
This file is in XML format, and that format is discussed in the section ’The
widgetInvoke XML’.

There is an authoring tool in the widgetInvoke package that provides an easy
interface to generating these metadata files, the createWF function. This will

4



first attempt to figure out as much information as possible about the desired
function, either from the function itself or if a metadata file already exists in the
current directory it will use that for default values, and then display an interface
to allow the operator to modify the settings for the display.

To do this, simply call the createWF function with the name of the function
that you would like to create the metadata for:

> if (interactive()) {

+ createWF("testWIfun")

+ }

The window itself is structured in a tabular format. At the top is the name
of the function, the current name of the file to save to (using the Save button),
a Save As button to change that filename and a button to provide the man
page (which works identically to the one in the widgetInvoke function). Below
the table are five buttons: Close, Reset, Check, Preview and Save. The table
in the middle provides a row for every argument with columns marked Type,
Default, Location, WidgetType and Required.

The Close button will simply close the window without performing any
further work. The Reset button will reset the fields in the argument table to
the values that existed when this instance of createWF was started. The Check
button will attempt to check the validity of the current values in the argument
table, and alert the user to any problems that might be detected, if there are no
problems a dialog will appear detailing that there are no problems. The Preview
button will display a sample of the window that a user of the widgetInvoke
function would see - in this instance the Evaluate button of this subwindow
will simply close the window and not actually perform any call to R. Lastly the
Save button will save the values in the argument table to the XML metadata
file.

In the argument table, each row corresponds to an argument, and each col-
umn corresponds to part of the metadata required for the use of this function
with widgetInvoke. The first column, Type, details what type the value for
this argument should be, e.g. logical, character, numeric, etc. For argu-
ments that do not have a specific type requirement, the ANY value should be
used. When createWF attempts to determine an appropriate default, if there
is no default value for a particular argument it will automatically assign ANY,
so operators of createWF should double check that this is actually true. The
Type can also be a character vector, which corresponds to a structure such as
xloc=c("equispaced", "physical"). In a situation like this, the first value
of the vector is assumed to be the default, which is another situation where the
operator should double check this value.

5



The Default field will specify the default value for the argument. If one is
specified in the formal arguments for the target function, it will appear here,
but otherwise there will not. Operators of createWF can assign a new default
or remove the default altogether. The type of the default value should match
the type listed in Type, and this will be verified by the Check button.

The Location field specifies which notebook pane this argument will appear
on. These are sorted by name, and in a fresh run of createWF will all be set to
main. To create a new pane, simply create a new name for the Location field
of a particular row. There is no limit to the number of arguments that can be
in a particular pane.

The WidgetType field allows the operator to specify what sort of display
widget that widgetInvoke uses for this argument. There are currently three
options: Radio which uses radio buttons, DropDown which uses a drop down
list, and TypeIn which provides a text entry widget. The first two (Radio and
DropDown) are limited to arguments with a set of possible values - arguments
with the Type set to being logical or a vector of possible values. All other
arguments currently must use the TypeIn widget. These rules are enforced
when the Check button is used.

The Required button, if checked, indicates that this particular argument
must be filled in by the widgetInvoke user of this function before evaluation
can take place (or they can use the default value, if one is provided). In a fresh
instance of createWF for a function, these are all unchecked. Operators should
make sure that any argument that is crucial to the proper flow for this function
are marked as being required.

Once all of the fields are written to the operator’s satisfaction, the Preview
button can be used to make sure that the layout is visibly appealing as well.
The Check button should be used to make sure that there are no problems with
the defined structure, and if all is well the Save button can be used to save this
particular metadata to a file named function.xml (where function is the name
of the function) and stored in the current working directory of the operator’s R
session. For distribution, this should be put in the inst/wFun directory of the
package. At this point, users can interact with this function with widgetInvoke.

5 The widgetInvoke XML

The XML format used by the widgetInvoke package is simple and straightfor-
ward. The wFun tag defines the primary XML block that is specifying the wFun
object for a particular function. Every function has its own file, and thus a
single wFun block.

Within the wFun block are two main children nodes, funName and funAr-
gList. The former simply provides for the name of the function, while the latter
contains a series of funArg blocks - one for each argument in this function. The
funArg blocks contain the majority of the information stored in the wFun, each
one providing six fields:

argName: Name of this argument.

6



argDefault: The default value, if any, of this argument.
argType: The type of this argument (e.g. logical, numeric,

character). "ANY" is used for typeless arguments.
argLocation: The name of the notebook pane this argument will be

displayed in.
argRequired: A logical value specifying whether or not this argument

is required or not.

Each of these are then stored in the inst/wFun directory of the package
source, using the name function.xml (where ’function’ is the name of the func-
tion). When installed, these files are available in the wFun directory of the
installed package.

An example of the XML is provided for the testWIfun function.

<?xml version="1.0"?>
<wFun xmlns:bt="http://www.bioconductor.org/WINVOKE">

<funName>testWIfun</funName>
<funArgList>

<funArg>
<argName>what</argName>
<argDefault></argDefault>
<argType>ANY</argType>
<argLocation>main</argLocation>
<argWidgetType>TypeIn</argWidgetType>
<argRequired>TRUE</argRequired>

</funArg>
<funArg>

<argName>where</argName>
<argDefault>FALSE</argDefault>
<argType>logical</argType>
<argLocation>main</argLocation>
<argWidgetType>Radio</argWidgetType>
<argRequired>FALSE</argRequired>

</funArg>
<funArg>

<argName>mode</argName>
<argDefault>"any"</argDefault>
<argType>character</argType>
<argLocation>more</argLocation>
<argWidgetType>TypeIn</argWidgetType>
<argRequired>FALSE</argRequired>

</funArg>
</funArgList>

</wFun>

7


	Overview
	Getting Started
	The widgetInvoke function
	Creating the function metadata
	The widgetInvoke XML

