Segmentation demo

Wolfgang Huber, Joern Toedling

April 15, 2007

Contents
1 Introduction 1
2 Normalization of the data 2
3 Segmentation 2
3.1 Prerequisites: Avoid oversampling Lo 2
3.2 Call the segmentation algorithm 2
3.3 Calculate confidence intervals L. 4
3.4 Model selection. 5
3.5 Size of the confidence intervals as a functionof S 6
3.6 Computing the segmentation for both strands on 7 chromosomes 6
4 Visualizing segmentations with plotAlongChrom 8
5 Version information 12
1 Introduction

This vignette demonstrates how to run tilingArray’s segmentation function on the david T'l-
ing data.

First we load the package tilingArray, which contains the algorithms, and the package

davidTiling, which contains the data and the array annotation.

> library("tilingArray")
> library("davidTiling")
> data("davidTiling")

> data("probeAnno")

2 Normalization of the data

For an explanation of the following code, please see the vignette
Assessing signal/noise ratio before and after normalization (assessNorm.Rnw).

isRNA = davidTiling$nucleicAcid 7inj, c("poly(A) RNA","total RNA")

isDNA = davidTiling$nucleicAcid 7inj, "genomic DNA"

stopifnot (sum(isRNA)==5, sum(isDNA)==3)

xn = normalizeByReference(davidTiling[,isRNA], davidTiling[,isDNAJ,
pm=PMindex (probeAnno), background=BGindex (probeAnno))

pData(xn) [, 2, drop=FALSE]

V + Vv Vv Vv VvV

nucleicAcid
05_04_27_2xpolyA_NAP3.cel poly(A) RNA
05_04_26_2xpolyA_NAP2.cel poly(A) RNA
05_04_20_2xpolyA_NAP_2tol.cel poly(A) RNA
050409_totcDNA_14ug_nob2.cel total RNA
030505_totcDNA_15ug_affy.cel total RNA

3 Segmentation

3.1 Prerequisites: Avoid oversampling

The spacing between probe-matched positions is not completely regular, as Figure 1 exem-
plarily shows for the probes mapped to the Watson strand of chromosome 1. In particular,
repetitive regions are highly oversampled. To have these repetitive, rather uninformative
regions not dominate the segmentation algorithm, the probe positions are subsampled in
the segmentation function to have a regular spacing. The result of this subsampling is
shown in the comparison between Figures 1b and lc.

> chrilp.probeStarts = sort(probeAnno$"1.+.start")

> sampled.probeStarts = chrip.probeStarts[sampleStep(chrip.probeStarts, 7)]
> par (mfrow=c(3,1))

> hist(chrlp.probeStarts, col="mistyrose", 100, main="(a)")

> barplot(table(diff (chrlp.probeStarts)), col="sienna", main="(b)")

> barplot(table(diff (sampled.probeStarts)), col="palegreen", main="(c)")

3.2 Call the segmentation algorithm

The segmentation algorithm needs two parameters. maxk is the maximum length of any
individual segment. nrBasesPerSegment is used to calculate maxseg, the maximum num-
ber of segments that the algorithm is going to consider by dividing the length of the region

@

Frequency
2000 4000 6000 8000

0

T T T T 1
0 50000 100000 150000 200000

chrlp.probeStarts

(b)

o 1 2 3 4 5 6 7

8 9 10 12 14 15 16 17 22 23 24 25 33 38 39 40

15000

0 5000

©

15000 25000

0 5000

Figure 1: (a): Histogram of probe midpoints along the “+” strand of chromosome 1. There
are some probe dense regions in particular around 160,000. The sequence of that region is
repeated multiple times in the genome, and due to the way the chip was designed, there
are also a lot of probes (more than necessary) for that region. (b): histogram of differences
between probe start points (chrip.probeStarts). The intention of the chip design was
to have a regular spacing of 8 bases. In some cases, the spacing is wider, probably due to
updates in the genome sequence between when the chip was designed and when probes were
re-aligned. In many cases, it is tighter with multiple probes for the same target sequence, or
only 1 or 2 bases offset. This occurs in the regions of duplicated sequence. (c): histogram
of differences between probe midpoints after subsampling (sampled.probeStarts)

to be segmented (in the current case, a chromosome) by nrBasesPerSegment. The nrBas-
esPerSegment does not enforce a minimum length restriction for individual segments.

We choose nrBasesPerSegment to be quite low, an average length per segment of 750
bases, such that it corresponds to a quite high number of segments, maxseg . The algorithm
will calculate all optimal segmentations with 1,2,..., maxseg segments, and we can still
later choose our preferred one. Note that maxk is measured in number of data points, not
in genomic coordinates. Our choice of the parameter maxk corresponds to a maximum
segment length of about 7.5 x 3,000 = 22,500 bases.

To demonstrate the algorithm, we run the segmentation on the Watson strand of chro-
mosome 1.

> segEnv = segChrom(xn[,xn$nucleicAcid=="poly(A) RNA"],
+ probeAnno=probeAnno, chr="1", strands="+",
+ nrBasesPerSegment = 750)

The function segChrom already contains code similar to that shown in Section 3.1 to pre-
vent oversampling, see the function argument step. The resulting object segEnv is an
environment holding the segmentation results for each chromosome and strand as individ-
ual objects of class segmentation.

> 1s(segEnv)
[1] "y, 4"

> segChrlp <- get("1.+", env=segEnv)
> segChrip

Object of class ’segmentation’:

Data matrix: 27585 x 3

Change point estimates for number of segments S = 1:307
Selected S = 307

3.3 Calculate confidence intervals

We can compute confidence intervals for each segment boundary. This is simply a call to
the confint method for the segmentation class.

nseg = round(max(get("1.+.end",env=probeAnno))/1500)
confintLevel = 0.95

segChrlp = confint (segChrlp, parm=nseg, level=confintLevel)
segChrip

vV Vv Vv Vv

Object of class ’segmentation’:

Data matrix: 27585 x 3

Change point estimates for number of segments S = 1:307
Confidence intervals for 1 fits from S = 153 to 153
Selected S = 153

Now we are ready to have a look at the result via the plot method of the segmentation class.
The plot in Figure 2 shows a small section of the probe levels mapped to the Watson strand
of chromosome 1, the fitted segment borders. The confidence interval for each border is
indicated by the parentheses around it on the bottom side.

> plot(segChrlp, nseg, pch=16, cex=0.2, xlim=c (30000, 40000))

0
\vj

I I I I
30000 32000 34000 36000 38000 40000

Figure 2: Segmentation with confidence intervals, shown by little brackets at the bottom.

3.4 Model selection.
The log-likelihood is

logL:—g (log27r+1+logm>, (1)
n

5

where r; the i-th residual and n the number of data points. AIC and BIC are defined as

AIC = —2logL +2p (2)
BIC = —2logL+plogn (3)

where p is the number of parameters of the model. In our case, p = 25, since for a
segmentation with S segments, we estimate S — 1 changepoints, S mean values, and 1
standard deviation. We can also consider the penalized likelihoods

log Laic = logL —p (4)
log Lgic = logL—glogn (5)

We plot them as functions of S, see Figure 3(a).

> par(mai=c(1,1,0.1,0.01))

> plotPenLL(segChrip,

+ extrabar =c("black"=round(segChrip@x[length(segChrip@x)]/1500)),
+ type="1", 1wd=2)

3.5 Size of the confidence intervals as a function of S

segMultiCI = confint (segChrlp,
parm = c(112L, 153L, 194L, 235L, 276L),
level = confintLevel)
nBp = which(segMultiCI@hasConfint)
confintwidths = lapply(segMultiCI@breakpoints[nBp], function(m) (m[,3]-m[,1]))

vV VvV + + V

par (mai=c(0.9,0.9,0.8,0.01))

maxx = 20

colors = brewer.pal(length(nBp), "Setl")

multiecdf (confintwidths, xlim=c(0, maxx),
main=’distribution of lengths of confidence intervals’,
verticals=TRUE, lwd=2, col=colors)

legend (x=0.6#*maxx, y=0.5, legend=paste("S =", nBp),
col=colors, lty=1, lwd=2)

+ Vv + + v VvV vV

The result is shown in Figure 3(b).

3.6 Computing the segmentation for both strands on 7 chromosomes

Since the data in the davidTiling package are strand-specific, we can do the segmentation
for the “-” strand of chromosome 1 as well and produce the along-chromosome plot shown
in Figure 4. For Figures 5 and 6, we also call it on six other chromosomes.

o
o
$ —— logL \ distribution of lengths of confidence intervals
—— log Lac !
| |7 log Lec : S |
‘8 [}
o
£ g -
29 o
(=2
o | ©
g g °
X
2 o =
£ g £,
g 81 S
- N
g
8
o _| o
$ ‘ ‘ S T T T T T
0 50 100 150 200 250 300 o 5 10 15 20
S X
(a) (b)

Figure 3: (a) Model selection: log-likelihood and two versions of penalized log-likelihood
(AIC and BIC) as a function of the number of segments S. Vertical dashed green bar
corresponds to optimal log Lyic, vertical dashed grey bar to our “subjective” choice of
average segment length 1,500 bases. (b) Size of the confidence intervals as a function of
S. Cumulative distribution functions (CDFs) for the distributions of confidence interval
widths for S =112, 153, 194, 235, 276. For larger S, the confidence intervals are wider.

This computation will take a couple of hours (about 18h on mine). Note that it could
easily be parallelized if needed, since the computations for different chromosome strands
are independent of each other.

> segEnv = segChrom(xn[,xn$nucleicAcid=="poly(A) RNA"],
+ probeAnno = probeAnno,

+ chr = c(1, 2, 5, 9, 13, 14, 15),

+ strands = c("+","-"),

+ nrBasesPerSegment = 1500)

segEnv is an environment holding the 14 individual segmentation results.

4 Visualizing segmentations with piotalongChrom

> data("gff")
> myGff = gff[gff$Name!="tR(UCU)E",]
> ylim = quantile(exprs(xn)[,1:3], probs=c(0.001, 0.999), na.rm=TRUE)

The function plotAlongChrom accepts an environment as its first argument, which is
expected to contain objects of class segmentation with names given by paste(chr, c("+",
"-"), sep="."), where chr is the chromosome identifier. The output of segChrom, the
function we called above, is such an environment.

Chr1

7w VAW
==== RT: Pskx wn
rrrrr

nnnnnnnnnnnnnnnnnnnnnnnnnnnn

@% ﬁ%l °Hl BI- -I-IIII H V‘“ﬁﬂ?'ll

Figure 4: Along-chromosome plot similar to Figure 1 of [1].

In the following, the code to generate Figure 1 of [1].

> grid.newpage ()
> plotAlongChrom(segObj=segEnv, chr=1, coord = c(30, 130)*1e3, ylim=ylim,

-2
-4
-6

552000 553000

YMRE4IW-A

551000

(e

2
4
-6

b Chr5

YELOO§W

c . Chr 15

wer7

139000 140000 141000 785000 786000 787000 788000 789000 790000

viLIssiv NL152

343000 344000 345000 346000 347000

[vea] b

e Chr5

gDDO 323000 324000 325000 326000

f Chr 2

361000 362000 363000 364000 365000

ORC2

g Chr9

221000 222000 223000 224000 225000 226000

e S

(o] [som |

[cos
["] cDS dubious
UuORF
[IncRNA
TF binding site
. Watson strand probe
. Crick strand probe
Non-unique probe
| Segment boundary

Along-chromosome plots similar to Figure 2 of [1].

a

Chr13

YMRIL4IW-A [res:

551000

552000

553000

ABP140 MET7
785000 786000 787000 788000 789000 790000

c Chr9

221000 222000 223000 224000 225000 226000

[Jeos
I:l CDS dubious

TF binding site
® Watson strand probe
@ Crick strand probe

Non-unique probe

SPO22

]

[Tseraz | ||

Segment boundary

Figure 6: Along-chromosome plots similar to Figure 2 of [2].

+ gff=myGff, showConfidencelntervals=FALSE,
+ featureNoLabel = c("uORF", "binding_site", "TT;binding_site”),
+ doLegend=FALSE, main="")

The folowing code was used to generate Figure 2 of [1].

myPlot = function(row, col, ...) {
pushViewport (viewport (layout.pos.row=row, layout.pos.col=col))
grid.rect(x=-0.1, width=1.15, y=0.0, height=1.02, just=c("left", "bottom"),
default.units="npc", gp=gpar(1lwd=0.2))
plotAlongChrom(. .., segObj=segEnv, ylim=ylim,
gff=myGff,
featureNoLabel = c("binding_site", "TF_binding_site"),
doLegend=FALSE)
popViewport ()
}
myLegend = function(row, col, what) {
fc = tilingArray:::featureColors(1)
fc = switch(what,
fc[c("CDS", "CDS_dubious", "uORF", "ncRNA", "TF_binding site"),],
fclc("CDS", "CDS_dubious", "TF_binding_site"),])

>

+

+

+

+

+

+

+

+

+

>

+

+

+

+

+

+ pc c("Watson strand probe"="#00441b", "Crick strand probe"="#081d58",
+ "Non-unique probe'="grey")
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

sc = c("Segment boundary"="#777777")

pushViewport (dataViewport (xscale=c(0,1), yscale=c(-7,nrow(fc)+1),
layout.pos.col=col, layout.pos.row=row))

nrow(fc) :1

0:(1-length(pc))

-length(pc)

hi
h2
h3

174 = 0.2
grid.rect(x=0, width=w, y=hl, height = unit(1, "native")- unit(2, "mm"),
just = c("left", "center"), default.units="native",
gp = do.call("gpar", fc))
grid.circle(x = w/2, y=h2, r=0.2, default.units="native",
gp = gpar(col=pc, fill=pc))
grid.lines(x=w/2, y=h3+c(-.3,+.3), default.units="native", gp=gpar(col=sc))
grid.text(label = c(gsub("_", " ", rownames(fc)), names(pc), names(sc)),
x =wxl.1, y = c(h1,h2,h3),
just = c("left", "center"), default.units="native",

10

gp=gpar (cex=.7))

popViewport ()
}
dx = 0.20
dy = 0.05

grid.newpage ()
pushViewport (viewport (x=0.02, width=0.96, height=0.96, just=c("left", "center"),
layout=grid.layout (3, 8,
height=c(1, dy, 1),
width =c(dx, 1, dx, 1, dx, 1, dx, 1))))
A) 13:550k splicing RPS16A, RPL13B
myPlot (1, 2, chr=13, coord = c(550044, 553360), main="a")
B) GCN4
myPlot (1, 4, chr=5, coord = c(138660, 141880), main="b")
C) MET7, novel architecture
myPlot(1, 6, chr=15, coord = c(784700, 790000), main="c")
D) overlapping transcripts
myPlot(1, 8, chr=14, coord = c(342200, 347545), main="d")
E) SER3
myPlot (3, 2, chr=5, coord = c(321900, 326100), main="e")
F) 2:360.5-366.5: novel isolated
myPlot (3, 4, chr=2, coord = c(360500, 365970), main="f")
G) 9:221-227: novel antisense SP022
myPlot (3, 6, chr=9, coord = c(221000, 226500), main="g")
myLegend (3, 8, 1)
popViewport ()

VVVVVVVVVVVVVVVV+ + + VVVV + + +

In the following, the code to generate Figure 2 of [2].

grid.newpage ()
pushViewport (viewport (x=0.02, width=0.96, height=0.96, just=c("left", "center"),
layout=grid.layout (1, 8,
height=c(1),
width =c(0.05, 1, 0.15, 1, 0.15, 1, 0.15, 0.5))))
13:550k splicing RPS16A, RPL13B
myPlot (1, 2, chr=13, coord = c(550044, 553360), main="a")
MET7, novel architecture
myPlot (1, 4, chr=15, coord = c(784700, 790000), main="b")
9:221-227: novel antisense SP022
myPlot (1, 6, chr=9, coord = c(221000, 226500), main="c")
myLegend (1, 8, 2)
popViewport ()

VVVVVVVYV + + + VYV

11

5 Version information

This vignette was generated using the following package versions:

> toLatex(sessionInfo())

e R version 2.5.0 beta (2007-04-14 r41159), x86_64-unknown-1linux-gnu

e Locale: LC_CTYPE=en_GB.UTF-8;LC_NUMERIC=C;LC_TIME=en_GB.UTF-8;LC_COLLATE=en_GB.UTF-
8;LC_MONETARY=en_GB.UTF-8;LC_MESSAGES=en_GB.UTF-8;LC_PAPER=en_GB.UTF-8;LC_NAME=C;LC_AD]
8;LC_IDENTIFICATION=C

e Base packages: base, datasets, graphics, grDevices, grid, methods, splines, stats,
tools, utils

e Other packages: affy 1.13.19, affyio 1.3.3, annotate 1.13.8, Biobase 1.13.50, davidTil-
ing 1.2.2, fortunes 1.3-2, genefilter 1.13.14, geneplotter 1.13.8, GO 1.15.13, lattice 0.15-
4, limma 2.9.17, pixmap 0.4-6, RColorBrewer 0.2-3, sandwich 2.0-2, strucchange 1.3-2,
survival 2.31, tilingArray 1.13.8, vsn 2.0.35, zoo 1.2-2

References

[1] Lior David, Wolfgang Huber, Marina Granovskaia, Joern Toedling, Curtis J. Palm,
Lee Bofkin, Ted Jones, Ronald W. Davis, and Lars M. Steinmetz A high-resolution
map of transcription in the yeast genome. PNAS, 2006. 8,9, 10

[2] Wolfgang Huber, Joern Toedling and Lars M. Steinmetz Transcript mapping with
oligonucleotide high-density tiling arrays. Bioinformatics, 2006. 9, 11

12

	Introduction
	Normalization of the data
	Segmentation
	Prerequisites: Avoid oversampling
	Call the segmentation algorithm
	Calculate confidence intervals
	Model selection.
	Size of the confidence intervals as a function of S
	Computing the segmentation for both strands on 7 chromosomes

	Visualizing segmentations with plotAlongChrom
	Version information

