
Assessing signal/noise ratio before and after normalization

Wolfgang Huber

August 28, 2007

Contents

1 Introduction 1

2 Selection of perfect match and background features 2

3 Normalization 2

4 Alternative normalization methods 3
4.1 Without dropping the worst 5% probes . 3
4.2 Background correction by MM . 3

5 Assessment 4
5.1 Visually . 4
5.2 Quantitatively . 5
5.3 Dependency of the signal on GC content before and after normalization 7

6 Version Information 10

1 Introduction

The purpose of this document is to assess the performance of the probe-response normalization by the
function normalizeByReference in the tilingArray package. We use the example data from the David et
al. [1] paper, which is provided in the davidTiling package.

> library("tilingArray")

> library("davidTiling")

> data("davidTiling")

It contains 8 arrays with 6553600 features each. Three of them were hybridized to genomic DNA, which
will use as a reference for the normalization, and five to RNA.

> dim(exprs(davidTiling))

[1] 6553600 8

> sampleNames(davidTiling)

[1] "09_11_04_S96_genDNA_16hrs_45C_noDMSO.cel"
[2] "041119_S96genDNA_re-hybe.cel"
[3] "041120_S96genDNA_re-hybe.cel"

1

[4] "05_04_27_2xpolyA_NAP3.cel"
[5] "05_04_26_2xpolyA_NAP2.cel"
[6] "05_04_20_2xpolyA_NAP_2to1.cel"
[7] "050409_totcDNA_14ug_no52.cel"
[8] "030505_totcDNA_15ug_affy.cel"

Note that some of the computations in this vignette will take a long time and require Gigabytes of RAM.

2 Selection of perfect match and background features

The design of the chip includes about 3 Mio perfect match probes, about 3 Mio mismatch probes, and
a few thousand controls. The probeAnno object contains annotations for each probe. It was obtained
by aligning the probe sequence to the genomic sequence of S. cerevisiae in August 2005. Please see its
manual page and the script makeProbeAnno.R in the davidTiling package for details.

> data("probeAnno")

We define two vectors: whPM contains indices of probes that have a unique perfect match anywhere in the
genome, whBG contains a subset of whPM with probes whose match is outside any annotated feature on
either strand. In the package davidTiling, we have already provided two functions PMindex and BGindex

that extract these index vectors from the probeAnno environment. If you would like to transfer this
analysis to another array type, you will need to compute these sets yourself, essentially by aligning the
microarray probes to the target genome and transcriptome.

> whPM = PMindex(probeAnno)

> whBG = BGindex(probeAnno)

> length(whPM)

[1] 3049103

> length(whBG)

[1] 829938

> all(whBG %in% whPM)

[1] TRUE

There are 6553600 − 3049103 = 3504497 probes that are not in whPM. We will not try to normalize
their signal, since we only have meaningful reference intensities for the perfect match probes. For the
background estimation, we will use the 829938 features for which we expect no specific signal. Some of
them will indeed have specific signal, due to new transcripts that were not yet annotated in SGD in August
2005; but this is not a concern, since we will only use statistical properties of the signal distribution that
are insensitive to a small set of outliers. Alternatively, as we show below, we could also use the signal
from the MM probes for background estimation.

3 Normalization

We select the 5 arrays that had RNA hybridized to them and the 3 arrays that had DNA hybridized to
them. We want to normalize the intensity readings from the former by using the latter as a reference.

2

> isRNA = davidTiling$nucleicAcid %in% c("poly(A) RNA","total RNA")

> isDNA = davidTiling$nucleicAcid %in% "genomic DNA"

> stopifnot(sum(isRNA)==5, sum(isDNA)==3)

> pfn = sprintf("assessNorm-normalize%d.pdf", seq(along=which(isRNA)))

> xn2 = normalizeByReference(davidTiling[,isRNA], davidTiling[,isDNA],

+ pm=whPM, background=whBG, plotFileNames=pfn)

4 Alternative normalization methods

4.1 Without dropping the worst 5% probes

For comparison, we also compare to the situation in which we do not throw out the weakest features, by
setting cutoffQuantile=0.

> xn1 = normalizeByReference(davidTiling[,isRNA], davidTiling[,isDNA],

+ pm=whPM, background=whBG, cutoffQuantile=0)

4.2 Background correction by MM

Instead of the background correction based on “similar” no-target probes that is done in normalizeByRef-

erence, we can also consider background correction by MM probes.
There is a slight complication: the set of probes that we are considering as PM in this document is

somewhat different from those that went into the design of PM/MM pairs on the array, since different
versions of the yeast genome sequence were used. We take the intersection. For this, we determine the
indices of the designed PM/MM pairs. The array has 2560 rows and 2560 columns. If we count the rows
and columns from 0 to 2559, then the linear indices of the features (e. g. in the expression matrix of the
eSet davidTiling) are given by r*2560+c. The PM features lie in rows 1, 3, . . . , 2557, their corresponding
MM features in rows 2, 4, . . . , 2558. We are going to use this information, as well as the probe sequences
that are provided in the Scerevisiaetilingprobe package.

> library("Scerevisiaetilingprobe")

> nc = as.integer(2560)

> stopifnot(nc*nc==nrow(davidTiling))

> ipm = rep(as.integer(seq(1, nc-3, by=2)), each=nc) * nc + (1:nc)

> seqPM = Scerevisiaetilingprobe$sequence[ipm]

> seqMM = Scerevisiaetilingprobe$sequence[ipm+nc]

> ispair = (!is.na(seqPM) & !is.na(seqMM) &

+ (seqPM==complementSeq(seqMM, start=13, stop=13)))

We see that out of the 3274240 probes in odd-numbered rows, listed by ipm, most do indeed have a
corresponding mismatch probe in the row below.

> length(ispair)

[1] 3274240

> table(ispair)

ispair
FALSE TRUE
129718 3144522

3

We define vectors PMind and MMind that contain the indices of PM/MM pairs,

> PMind = ipm[ispair]

> MMind = PMind + nc

and a function normalizeByReferenceWithMM that is similar to normalizeByReference in the tilingArray
package, except for that for each PM probe it uses the corresponding MM value for the background
correction rather than the background estimator that is used in normalizeByReference.

> normalizeByReferenceWithMM = function(x, reference, pm, mm, cutoffQuantile=0.05) {

+

+ refSig = 2^rowMeans(log2(exprs(reference)[pm,,drop=FALSE]))

+

+ xn = (exprs(x)[pm,] - exprs(x)[mm,]) / refSig

+ yn = exprs(vsn2(xn, lts.quantile=0.95, subsample=20000L, verbose=FALSE))

+

+ throwOut = (refSig < quantile(refSig, probs=cutoffQuantile))

+ yn[throwOut,] = NA

+

+ res = matrix(as.numeric(NA), nrow=nrow(x), ncol=ncol(yn))

+ res[pm,] = yn

+

+ return(res)

+ }

> xwmm = normalizeByReferenceWithMM(davidTiling[,isRNA], davidTiling[,isDNA],

+ PMind, MMind)

5 Assessment

5.1 Visually

We would like to visualize the data along genomic coordinates. We select the features that map to the “-”
strand of chromosome 9. The integer vectors sta and end contain the start and end coordinate of their
match, ind their indices in the array exprs(davidTiling).

> sta = probeAnno$"9.-.start"

> end = probeAnno$"9.-.end"

> ind = probeAnno$"9.-.index"

We construct a list of vectors, each containing different versions of the intensity data, in order that
corresponds to sta and ind from above.

> dat = vector(mode="list", length=5)

> dat[[1]] = log2(exprs(davidTiling)[ind, which(isDNA)[1]])

> dat[[2]] = log2(exprs(davidTiling)[ind, which(isRNA)[1]])

> dat[[3]] = dat[[2]]-dat[[1]]

> dat[[4]] = exprs(xn1)[ind, 1]

> dat[[5]] = exprs(xn2)[ind, 1]

> dat[[6]] = xwmm[ind, 1]

> for(j in 3:length(dat))

+ dat[[j]] = dat[[j]] - quantile(dat[[j]], 0.05, na.rm=TRUE)

> names(dat) = letters[seq(along=dat)]

4

We select a 10kB region around the highly expressed genes RPN2 and SER33 to fit on a plot, and set the
y-axis limits:

> sel = (sta>=216600 & end<=227000)

> ysc = sapply(dat, function(py) quantile(py, probs=c(0, 1), na.rm=TRUE))

> ysc[, 3:6] = c(-3,8)

Now we are ready to plot:

> anno = data.frame(start=c(217860, 221078),

+ end =c(220697, 222487),

+ name =I(c("RPN2", "SER33")))

> ticks = c(217, 223, 224, 225, 226)

> comparisonPlot((sta+end)[sel]/2, lapply(dat, "[", sel), yscale=ysc,

+ anno=anno, ticks=ticks, cex=0.2)

The result is shown in Figure 1. It shows scatterplots of different types of signal (y-axis) along genomic
coordinates (x-axis). Each dot corresponds to a microarray feature. Note how the signal distributions in
panels b)-f) vary both with respect to the variability within transcribed and untranscribed segments, and
in the amplitude between them. a) signal from one of the DNA hybridizations (logarithmic scale, base 2).
The y-coordinate of each dot is also encoded using a pseudo-color scheme. Dark red corresponds to features
that have a very weak response, dark blue to those with the strongest response. The same coloring is also
used in panels b)-f). b) unnormalized intensities from one of the poly(A) RNA bybridizations (logarithmic
scale, base 2). c) Divide RNA-signal by DNA-signal then take logarithm (base 2). d) Background
subtraction of the RNA-signal, divide by DNA-signal, then variance stabilizing normalization (vsn, glog
base 2). e) In addition to d), drop the 5% weakest features in the DNA hybridization. f) Similar to e),
but using the MM probes for background correction instead.

Now here’s a bit of a hack: the plot symbols are too big if the plot is produced as above, and somehow
the PDF and EPS drivers of R ignore the cex parameter. However, one can open the EPS file and replace
all occurences of the string “3.00” by “1.00”.

> writeLines(sub(" 3.00", " 1.50",

+ readLines("assessNorm-alongChromPlot.eps"), fixed=TRUE),

+ con=("assessNorm-tmp.eps"))

> system("ps2pdf assessNorm-tmp.eps assessNorm-alongChromPlot.pdf")

5.2 Quantitatively

In order to assess to quantitatively assess the results of normalization, we consider a signal/noise ratio.
Note that only looking at one or another (signal, or noise) by itself could be misleading.

We define a set of control regions, which correspond to either highly expressed transcripts (positiveCtrls)
or untranscribed intergenic regions (negativeCtrls). The assumption is that the signal within a region
should be constant, and deviations from that are“noise”, while the difference between positve and negative
controls should be large, and is counted as “signal”.

> positiveCtrls = cbind(c(217860,220697), ## RPN2

+ c(221078,222487)) ## SER33 .

> negativeCtrls = cbind(c(216800, 217700),

+ c(222800, 227000)) ## SPO22

Noise σ is calculated as the average of the differences between 97.5% and 2.5% quantiles of the data within
each of the control regions. The range between the 97.5% and 2.5% quantiles contains 95% of the data,

5

a

6

8

10

12

14

b

6

8

10

12

c

−2

0

2

4

6

8

d

−2

0

2

4

6

8

e

−2

0

2

4

6

8

f

−2

0

2

4

6

8

RPN2 SER33
217kB 223kB 224kB 225kB 226kB

Figure 1: Along-chromosome plots of the data for different normalization methods. Please see text.

6

while 5% is outside the range.

σ =
1

Q0.975
N − Q0.025

N

·

∑
r∈{pos,neg}

Q0.975
r − Q0.025

r

|{pos, neg}|
. (1)

Here, the symbol r counts over the different regions. The constant in the denominator is the differences
between 95% and 5% quantiles for the standard Normal distribution, hence σ is equal to 1 if the data
come from the standard Normal distribution.

Signal ∆µ is calculated as the difference between the averages of the means of positive and negative
control regions.

∆µ =

∑
r∈{pos}

µr

|{pos}|
−

∑
r∈{neg}

µr

|{neg}|
. (2)

I have explored many variations of this calculation, using different definitions of σ, ∆µ, and of the
control regions. The ranking (relative order) of the methods was always the same as shown in the following.

> fac = 2*qnorm(0.975)

> withinAndBetween = function(x, ...) {

+ meanAndSd = function(region, dohist=FALSE) {

+ d = x[(sta>=region[1]) & (end<=region[2]) & !is.na(x)]

+ res = c(mean(d), diff(quantile(d, c(0.025, 0.975)))/fac, length(d))

+ if(dohist) hist(d, 20, main=paste(signif(res, 3)), col="orange")

+ res

+ }

+ p = apply(positiveCtrls, 2, meanAndSd, ...)

+ n = apply(negativeCtrls, 2, meanAndSd, ...)

+ dmu = sum(p[1,]*p[3,])/sum(p[3,]) - sum(n[1,]*n[3,])/sum(n[3,])

+ sig = (sum(p[2,]*p[3,])+sum(n[2,]*n[3,])) / (sum(p[3,])+sum(n[3,]))

+ return(c("S/N"=dmu/sig, "S"=dmu, "N"=sig))

+ }

> sn = sapply(dat[2:6], withinAndBetween, dohist=TRUE)

b c d e f
S/N 3.22 3.473 4.04 4.590 4.34
S 3.67 3.109 4.35 4.331 4.44
N 1.14 0.895 1.08 0.944 1.02

5.3 Dependency of the signal on GC content before and after normalization

We calculate the GC content of each probe,

> bc=basecontent(seqPM)

> nrGC = bc[,"C"]+bc[,"G"]

> rggc = c(4,18)

> sel = (nrGC>=rggc[1] & nrGC<=rggc[2])

> nrGC = nrGC[sel]

> myPlot = function(x, tit) {

+ maxval = quantile(x, probs=0.9999, na.rm=TRUE)

+ minval = maxval-10.5

+ mycol = colorRampPalette(brewer.pal(9, "GnBu"))(diff(rggc)+1)

7

+ boxplot(x[sel]~nrGC, ylim=c(minval,maxval), main="", col=mycol, outline=FALSE)

+ text(rggc[1]-5, maxval+1, tit, pos=2, font=2, xpd=NA)

+ }

Remember that we defined seqPM=Scerevisiaetilingprobe$sequence[ipm] in Section 4.2.

> par(mfrow=c(1,2))

> dat1 = log2(exprs(davidTiling)[ipm, which(isRNA)[1]])

> dat2 = exprs(xn2)[ipm, 1] - quantile(exprs(xn2)[ipm, 1], 0.05, na.rm=TRUE)

> myPlot(dat1, "a")

> myPlot(dat2, "b")

The result is shown in Figure 2.

8

4 6 8 10 13 16

4
6

8
10

12
14

a

4 6 8 10 13 16

0
2

4
6

8

b

Figure 2: ECDF of log2 intensities (a) and normalized intensities (b) stratified by GC content.

9

6 Version Information

This vignette was generated using the following package versions:

> toLatex(sessionInfo())

• R version 2.6.0 Under development (unstable) (2007-08-26 r42657), x86_64-unknown-linux-gnu

• Locale: LC_CTYPE=en_GB.UTF-8;LC_NUMERIC=C;LC_TIME=en_GB.UTF-8;LC_COLLATE=en_GB.UTF-
8;LC_MONETARY=en_GB.UTF-8;LC_MESSAGES=en_GB.UTF-8;LC_PAPER=en_GB.UTF-8;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=en_GB.UTF-
8;LC_IDENTIFICATION=C

• Base packages: base, datasets, graphics, grDevices, grid, methods, splines, stats, tools, utils

• Other packages: affy 1.15.7, affyio 1.5.8, annotate 1.15.6, AnnotationDbi 0.1.1, Biobase 1.15.27,
davidTiling 1.2.4, DBI 0.2-3, fortunes 1.3-3, genefilter 1.15.10, geneplotter 1.15.7, GO 1.17.0, lat-
tice 0.16-3, matchprobes 1.9.10, pixmap 0.4-7, preprocessCore 0.99.12, RColorBrewer 1.0-1, RSQLite 0.5-
6, sandwich 2.0-2, Scerevisiaetilingprobe 1.1.0, strucchange 1.3-2, survival 2.32, tilingArray 1.15.3,
vsn 3.0.12, zoo 1.3-2

• Loaded via a namespace (and not attached): KernSmooth 2.22-21, limma 2.11.10

References

[1] Lior David, Wolfgang Huber, Marina Granovskaia, Joern Toedling, Curtis J. Palm, Lee Bofkin, Ted
Jones, Ronald W. Davis, and Lars M. Steinmetz A high-resolution map of transcription in the yeast
genome. PNAS, 2006. 1

10

	Introduction
	Selection of perfect match and background features
	Normalization
	Alternative normalization methods
	Without dropping the worst 5% probes
	Background correction by MM

	Assessment
	Visually
	Quantitatively
	Dependency of the signal on GC content before and after normalization

	Version Information

