
Linked, Interactive Views of Linked Data

Elizabeth Whalen

August 20, 2006

1 Overview

1.1 Goals and Definitions

The iSNetwork package lets users perform exploratory data analysis by creating linked, inter-
active views of linked data sets. In addition to providing the functionality to create linked,
interactive views of linked data, one of the goals of this package was to create a design that is
extensible so that users can make additions based on the needs of their data. These goals are
discussed in more detail in the following paragraphs.

First definitions of linked views, interactive views and linked data sets are given in the following
paragraphs. Linked views mean that if a component that represents data (such as a point on
a plot or a row in a spreadsheet) changes its appearance on one view, then the corresponding
component on a second view also changes its appearance. For components on different views
to be corresponding, the data displayed in those components must come from the same entity
in a model. As an example, suppose that the model consists of the gene expression levels from
four samples. If the same one hundred genes are studied in the four samples, then the model
could be represented as a matrix of four columns by one hundred rows with four columns
for the four samples and one hundred rows for the one hundred genes. In this model, the
entities are the genes. If two scatter plots are created as views of this model, where the first
plot displays sample one versus sample two and the second plot displays sample three versus
sample four, then the points on each plot that referred to the same gene are corresponding
components. Linked views, which have a long history in statistics, are now considered a
standard feature of interactive data visualization software Swayne et al. (2003). Linked views
have been implemented in several pieces of statistical software, such as XLisp-Stat Tierney
(1990) and GGobi Swayne et al. (2002). Implementing linked views is based on the model-
view-controller (MVC) design Gamma et al. (1995), which is a widely used and well understood
paradigm.

Having interactive views means that when the user interacts with a view, a response occurs. As
an example of interactivity, suppose that when the user clicked on a point in a view, the point
was colored red. The interactivity is richer and more flexible if multiple events can be noticed
(such as a mouse click, a mouse movement, or a key press event) and if the response to those

1

events can be modified. To provide this interactivity, the iSNetwork package requires the RGtk
and gtkDevice packages, which let the users interact with Gtk functions from the R interface.
Gtk is an open-source X Window toolkit for creating user interfaces. More information about
these packages is given in Section 1.2.

Linked data sets mean that the data have more than one conceptual grouping, but there is a
relationship between these different conceptual groupings. Linked data sets are an idea that is
familiar to users of relational databases. Data in a relational database are typically stored in
many linked tables with rows in different tables linked to each other through a unique identifier
called a key. In this example, each table is considered a data set and they are linked through
the keys. Another situation where linked data sets occur is when there are experimental or
study data that are linked to meta-data. An example of this situation is microarray data, as
the experimental data, that is linked to meta-data, such as the Gene Ontology (GO) graph
that gives the molecular functions of the genes studied in the microarray experiment. In the
iSNetwork package, we are most interested in experimental data that is linked to meta-data
so the linking is modeled as a parent-child relationship. Thus, in the example given here, the
microarray data is the parent data set and the GO graph is the child data set because the GO
graph is determined by the genes that are in the microarray data.

Creating linked, interactive views of data is flexible for exploring multivariate data because
many different views can be created, such as scatter plots, spreadsheets, and heatmaps, and
these views are linked because they are based on the same underlying data. Thus, users can
decide which views best visually represent their data. Also, since the views are interactive,
users can change the views while looking at them to make the views more informative about
the underlying structure in the data. This flexibility in linked, interactive views gives users
a powerful tool for visually exploring their data. However, linked views can not solve all
problems. Clearly, only a few linked views can be viewed simultaneously by the user because
only a certain number of views can be shown on a computer screen. Thus, there is a limit to
the number of dimensions that can be represented by linked views.

Finally, an extensible design is imperative so that future users can make additions based on their
needs. The design for creating linked, interactive views is based on the model-view-controller
paradigm. The MVCClass package, which is required by the iSNetwork package, defines classes
and generic functions that implement the model-view-controller (MVC) paradigm. The MVC
paradigm is a design that consists of three types of objects: the controller, which defines what
actions occur in response to user input; the view, which consists of displays of the data; and
the model, which manages the data. The power of the MVC design is that it decouples the
views of the model from the model by creating a subscribe/notify procedure between them. In
other words, the views subscribe to a particular model and the model must notify the views
when a change occurs so that the views are updated. By separating the model from its views,
only one copy of the model needs to be stored. Please see the vignette for the MVCClass
package for more information about the classes that are defined in that package. The use of
these classes allows an extensible design because the inheritance structure of the classes lets
users create new model and view classes that inherit from already implemented classes.

Besides using the MVC paradigm, several other aspects of the iSNetwork have been carefully

2

designed for extensibility. These include letting the user add menus to the graphical user inter-
face (GUI), letting the user change the response to an interaction with a view, and letting the
user create new methods for generating and linking data sets. A full discussion of extensibility
in the iSNetwork package is given in Section 14.

One important thing to notice about the extensibility of the iSNetwork package is that any
additions the user may want to make can all be performed in the R language. If the user
wants to define new model or view classes, this is done in R and similarly if the user wants
to add new menus, this also is done in the R language. Thus, even though the iSNetwork
package requires other packages that use other languages, such as C, making additions to the
iSNetwork package only requires that the user can program in R. More information about the
extensibility of the iSNetwork package can be found in Section 14.

1.2 Required Packages

The required packages for iSNetwork are graph, Rgraphviz , RGtk , gtkDevice, MVCClass,
BioMVCClass, and Biobase. A short description of why these packages are needed by iS-
Network is given here. One of the data structures that users can study is a graph and thus, the
graph package is required to create instances of a graph and the Rgraphviz package is necessary
to create views of these graph ojects. Another data structure that users may want to study
is the ExpressionSet and thus, the Biobase package is required. The RGtk package is used
to create a GUI through which the user can load, view, plot and interact with the data. The
gtkDevice package creates a device of type Gtk that looks like a X11 device, but a Gtk device
can respond to events, such as a button press or a mouse over event. By generating a function
call in response to an event, interactive views can be created. Finally, the MVCClass and the
BioMVCClass packages define the classes and generic functions that are used in the iSNetwork
package.

1.3 GUI versus Command Line Functions

The functionality that is implemented in the iSNetwork package can be accessed either through
the GUI or through command line functions. Both methods for accessing the functionality are
explained in this vignette.

2 Getting Started

> library(iSNetwork)

After loading the library, the iSNetwork functionality can be accessed through either the
command line functions or the GUI. To learn how to open the GUI, continue with Section
2.1.

3

2.1 Opening the GUI

After loading the library, the first command is to open the control window, using createCon-
trolWindow, if the user intends to use the GUI. Data can be loaded, viewed and plotted by
selecting menu items on the control window.

> createControlWindow()

The control window looks as shown in Figure 1.

Figure 1: Control Window

3 Loading Data

Currently, this package can load and create views of a data frame (or a matrix), an Expres-
sionSet, a graph, or a gene set enrichment model. For information on the gene set enrichment
model please see the BioMVCClass Vignette and for information on gene set enrichment anal-
ysis, please see Subramanian et al. (2005). Support for other data classes can be added later.

Before creating views of the data, it first must be loaded through the GUI or through the
command line functions. The user can continue to load as many data sets as needed through
the GUI or through the command line functions, but only one data set is considered the active
data set. This concept of an active MVC is discussed in Section 4.

When a data set is loaded, an object of class MVC is created that stores the data set and all
views of that data. The MVC class is defined in the MVCClass package and it is used to tie the
model, view, and controller objects together into one object that revolves around one model
(one loaded data set). Since there is a one-to-one relationship between the model and the MVC
object, they both are referred to by the same name and when the active data set is discussed,
this also refers to the active MVC object.

4

3.1 Loading Data Through the GUI

To load data through the GUI choose the Load Model menu item under the File menu or
alternatively, press Ctrl-L to activate the Load Model menu item. Users can choose which
type of data they want to load by setting the ‘Type of Model’ drop down box. The three
options for type of model are data.frame, ExpressionSet, and graph. Notice that the gene set
enrichment model is not available through this interface. At this time the gene set enrichment
model can only be loaded by creating a child model, which is discussed in Section 5. Once the
user has chosen the type of model, the names of all data sets of that class that are loaded in
R’s global environment are shown in the ‘Potential Models’ list. Thus, it is expected that any
data to be loaded are already available in R’s global environment. Next highlight the name of
a data set to load from the ‘Potential Models’ list. Then type in the name of the model in the
text box (this can be any name that has not already been used for a loaded model) and click
on the ‘Set Model’ button. Now the new model is loaded.

To make the control window look as it is shown in Figure 2, complete the following steps. First
load the USArrests data set into R’s global environment by typing data(USArrests) at the R
prompt. Then choose the Load Model menu item under the File menu. Set ‘Type of Model’
to data.frame, highlight USArrests in the ‘Potential Models’ list, and type in the name of the
model.

Figure 2: Loading Data

The last step is to click the ‘Set Model’ button. Now the USArrests data set has been loaded
and interactive views of the data can be created. The frame around the control window now
contains the text, USArrests, which shows that the active data set (and active MVC object) is
the USArrests data set.

3.2 Loading Data Through the Command Line

The user can load any data that are of class data.frame (or matrix), graph, or ExpressionSet.
The loadData function loads data that are already available in R’s global environment. Note
that loading data means that a MVC object is instantiated that contains the data, which then
lets the user create linked, interactive views of that data. To load data into a MVC object, the

5

data must initially be loaded in R’s global environment. The example code below loads a data
frame data set, an ExpressionSet data set and a graph data set. Please see the man page for
the loadData function for more information.

> loadData(USArrests, "USArrests", "data.frame")

> library(CLL)

> data(sCLLex)

> loadData(sCLLex, "CLL", "ExpressionSet")

> set.seed(123)

> V <- letters[1:10]

> M <- 1:4

> g1 <- randomGraph(V, M, 0.2)

> loadData(g1, "testGraph", "graph")

3.3 Loading Model Variables

After a model has been loaded, it is possible to add extra variables to the model by loading
model variables. As an example, suppose that the user has loaded ExpressionSet data and
now wants to add row t-test statistics for each gene to the model. This can be done by adding
a model variable to the model. Model variables are extra information about the model data.
Extra data that the user may want to show in views of the model should be stored as a model
variable. Continuing the previous example, the user may want to show the t-test statistics as
tooltips in the views.

In our example in Sections 3.3.1 and 3.3.2, we load model variables that are booleans that
indicate whether genes in the CLL model have passed a filter. These data are stored in the CLL
package. The nsFilter boolean variable tells whether the genes in the sCLLex ExpressionSet
passed the nonspecific filter and the sFiltertBH boolean variable indicates whether the genes
in the sCLLex ExpressionSet passed the specific filter. Please see the man page for these
variables for more information.

> data(nsFilter)

> data(sFiltertBH)

3.3.1 Loading Model Variables Through the GUI

To load a model variable through the GUI, choose the Load Model Variables menu item under
the File menu or alternatively, press Ctrl-A to activate the Load Model Variables menu item.
Then choose which loaded MVC (model) this model variable will be attached to. In our
example, we will attach our variables to the CLL model that was loaded in Section 3.2. Next
give the name of the new model variable by typing in the Model Variable Name text box. This
name is used to refer to the model variable whenever you want to use it. Finally fill in the

6

Model Variable text box. This is the name of the variable in R’s global environment. Note
that these two text boxes do not have to be the same, but they can be.

In our example, where we are adding two boolean variables to the CLL model, we start by
adding the nonspecific filter boolean variable. The values put in the text boxes are shown in
Figure 3. The model variable name is ‘nsFilter’ and the model variable is ‘nsFilter’.

Figure 3: Loading Model Variables

Finish by clicking the Load button. A new window will appear that says ‘nsFilter was loaded
as a model variable.’

Next add the specific filter boolean variable to the CLL model by giving a model variable name
of ‘sFiltertBH’ and a model variable of ‘sFiltertBH’. Again click the Load button and a window
appears that says ’sFiltertBH was loaded as a model variable.’

3.3.2 Loading Model Variables Through the Command Line

To load model variables through the command line, you use the loadModelVar function. In
the code below, the nonspecific filter and specific filter boolean variables are added as model
variables to the CLL model.

> loadModelVar("CLL", "nsFilter", nsFilter)

> loadModelVar("CLL", "sFiltertBH", sFiltertBH)

4 Setting the Active MVC

As mentioned in Section 3, whenever a data set is loaded a MVC object is created that binds
the data and its views into one unit. There is a one-to-one relationship between the MVC object
and its data set so they are referred to by the same name. In the iSNetwork package, the
MVC object is considered the unit we work with. Though multiple MVC objects can be created
(because multiple data sets can be loaded), only one MVC object can be active at a time.

7

The first MVC object that is created when the first data set is loaded automatically becomes the
active MVC object. Thus, if the user initially loaded the USArrests data set, then the MVC object
called USArrests is the active MVC object. Any other data sets loaded after this first data set
are not the active MVC object. The user can tell what the active MVC object is by looking at
the name shown in the frame around the control window, underneath the main menu, or by
calling the function, getActiveMVC.

Being the active MVC object means that all of the menu items or the command line functions
refer to operations performed on this MVC object. Thus, if the user loads a second data set
after loading USArrests, USArrests is the active MVC object and the user is able to create views
of the USArrests data set. If the user instead wants to create views of the second data set,
then the user has to set the second MVC to be the active MVC. Setting the active MVC can be
performed through the Set Active MVC menu item under the Edit menu or by calling the
function, setActiveMVC.

Once the interesting MVC object is the active MVC, the user can create views of the data. Note
that different types of views can be created depending on the class of the data. For example, if
the data are of class data.frame, then spreadsheets and scatter plots can be created. Creating
views of data.frame objects are discussed in Section 7, views of graph objects are discussed
in Section 8, and views of ExpressionSet objects are discussed in Section 9.

4.1 Setting the Active MVC Through the GUI

Suppose that the user has loaded three data sets: USArrests, which is of class data.frame,
testGraph, which is of class graph, and CLL, which is of class ExpressionSet. These are the
three data sets that have been loaded so far in this vignette using the command line function,
loadData. Now to set testGraph as the active MVC through the GUI, highlight the Edit menu
and select the Set Active MVC menu item. Similarly, the user can press Ctrl-V to activate
the Set Active MVC menu item. A new window appears with radio buttons to allow the user
to choose which of the MVC objects is the active MVC. This new window appears as shown in
Figure 4.

Figure 4: Set the Active MVC

Now if testGraph is the MVC object that the user is interested in, choose the testGraph radio
button and click the Set button. Now the active MVC is testGraph.

8

4.2 Setting the Active MVC Through the Command Line

To set the active MVC object through the command line, call the function, setActiveMVC, with
the name of the MVC object, which will become active. The example code below sets the CLL
MVC as the active MVC. Please see the man page for this function for more information.

To see the names of all loaded MVC objects, call the function, getModelNames.

> getModelNames()

> setActiveMVC("CLL")

5 Creating a Child MVC Object

Recall from Section 3 that when a data set is loaded, a MVC object is created that holds the
data and any views of the data. Once a MVC object has been created by loading data, the user
can create a new MVC object that is a child of the loaded MVC object. To create a child MVC, a
function is called that creates a new model (and thus, a new MVC object) by performing some
type of operation on the original MVC’s model data. Thus, users can create a new MVC object
in two ways: they can load data stored in R’s global environment, which was discussed in
Section 3, or they can create a new model that is derived from an existing MVC’s model data,
which is discussed in this section. As a simple example, consider that the original model data
is a data frame and the function that creates a child MVC creates a subset of the data frame.
This subset of the data frame is the model data for the new child MVC. These two data sets are
clearly linked since the child data set is just a subset of the parent data set. With the simple
example given here, the parent MVC contains the full data frame and the child MVC contains a
subset of the data frame. More examples of creating child MVC objects are given throughout
this section.

Clearly, the functions to create a child model depend on the class of the original model. For
example, it may be appropriate to create a subset of the original data with some types of data,
but not others. Thus, we will look at the methods of creating child MVC objects by the class of
the parent model data. When the model contains a data frame, the implemented methods for
creating a child model are to create a subset model, and to perform multidimensional scaling
(MDS). When the model contains an ExpressionSet, the implemented methods for creating a
child model are to create a Gene Ontology (GO) graph, to perform gene set enrichment using
KEGG pathways as the categories, and to perform gene set enrichment using chromosome
location as the categories. Currently, there are no methods to create a child model when the
active MVC contains a graph or a gene set enrichment (GSE) model. The hope is that these
implemented functions to create a child model (and thus, a child MVC) are only a starting point
and that users will extend these options. More information on implementing new methods to
create a child MVC is given in Section 14.

For an extended example, please see Sections 5.2.1 and 10.1.3 where the original MVC contains
an ExpressionSet model. A GO graph child MVC is created from the original ExpressionSet

9

model. Then by interacting with a node on a plot of the GO graph in Section 10.1.3, a new
ExpressionSet model is created that contains only the genes that are annotated at that GO
term. Thus, this extended example starts with a MVC that contains an ExpressionSet, then
makes a child MVC for the GO graph, and finally makes a grandchild MVC that contains an
ExpressionSet with only the genes annotated at a particular node from the GO graph.

5.1 The Active MVC Contains a Data Frame

There are two options for creating a child model from a parent model that contains a data
frame and these options are to create a subset model, and to perform MDS. Each of these
options for creating a child MVC is discussed individually.

These methods (creating a subset or performing MDS) to create child MVCs all result in a
child model that is also a data frame model and the row names in the child model will be a
subset of the row names that are in the parent model. Thus, the child model has a one-to-one
relationship with its parent model. The linking functions to relate elements in a child model
to elements in a parent model and vice versa, just match row names since the row name in the
child model will match the row name in the parent model. Thus, if the row for ‘Minnesota’
is highlighted in the child model, then the row for ‘Minnesota’ can also be highlighted in the
parent model. This linking of views of different models is performed by the linking functions
and is discussed in more detail in Whalen and Gentleman (2006a) and Whalen and Gentleman
(2006b). Interacting with views to select data elements is discussed in Section 10.

5.1.1 Create a Subset

Creating a subset from a MVC object that contains a data frame is probably the simplest example
of creating a child MVC. All that is done to create this child MVC is determine which rows from
the parent MVC’s model are included in the child model. This subsetting can be performed by
any type of boolean statement. For example, the subsetting can be performed by looking for
particular values of one of the variables (column names) stored in the data frame. With the
USArrests MVC, the user may want to create a new MVC that contains only rows with values of
Assault that are greater than 200.

Using the GUI

First set the active MVC to USArrests using the Edit menu (see Section 4). Then go to File
menu and choose the Create Child Model menu item or type Ctrl-C. For method to create
child model, choose Create Subset Model and for name of the new child model, type USAsub.
Finally, click the Create Child Model button. A new window appears asking the user how to
subset the data frame model. I will choose Assault as the Variable and greater than as the
Relationship and type 200 as the Value. Then click the Done button. Now the USAsub MVC
has been loaded. To set this new MVC as the active MVC go to the Edit menu and choose Set
Active MVC.

Using the Command Line

10

To create a subset MVC using the command line, first set USArrests as the active MVC. Then
call the function getMethodsToCreateChild to see that creating a subset is an available method
to create a child MVC. Finally, call the function createSubset to create the new child MVC. The
createSubset function has two parameters: newModelName, which is the name of the new
MVC, and rowNames, which are the row names that are included in the new model. For more
information on these functions, please see their man pages. The code to create a subset MVC is
shown below.

> setActiveMVC("USArrests")

> getMethodsToCreateChild()

> createSubset("USAsub", rowNames = rownames(USArrests)[USArrests$Assault >

+ 200])

> setActiveMVC("USAsub")

5.1.2 Perform Multidimensional Scaling (MDS)

Performing multidimensional scaling (MDS) on a MVC object that contains a data frame model
creates a new child MVC object that contains a data frame model. MDS is performed using the
cmdscale function on the parent model’s data. The user is encouraged to see the man page for
cmdscale for more information on MDS. The only information that is needed to perform MDS
on the data frame model is the number of dimensions to include in the new child model and
the dimensions can be any number between 1 and n (where n is the number of dimensions of
the parent model).

Using the GUI

To perform MDS through the GUI, first set the active MVC to USArrests (see Section 4) using
the Edit menu. Then go to the File menu and choose Create Child Model or type Ctrl-C. For
method to create child model, choose Perform Multidimensional Scaling (MDS) and for name
of the new child model, type USAMDS. Then click on the Create Child Model button. A
new window appears asking the user how many dimensions to include in the child model. The
default value is 2, which is what I will use. Then click the Done button. Now the USAMDS
MVC object has been loaded. The user can then set USAMDS as the active MVC to create views
of the child model.

Using the Command Line

To perform MDS using the command line, first set USArrests as the active MVC. Then call the
function getMethodsToCreateChild to see that performing MDS is an available method to create
a child MVC. Finally, call the function performMDS to perform MDS and create a child MVC.
The performMDS has three parameters: newModelName, which is the name of the new model,
k, which is the number of dimensions, and transpose, which is whether the matrix should be
transposed before performing MDS. Currently, the default for transpose is FALSE and this
parameter is actually not used in the function definition because it makes linking the child
MVC to the parent MVC too difficult if the matrix is transposed (here linking is performed by

11

matching row names). For more information on these functions, please see their man pages.
The code to perform MDS and create a child MVC is shown below.

> setActiveMVC("USArrests")

> getMethodsToCreateChild()

> performMDS("USAMDS", k = 2)

> setActiveMVC("USAMDS")

5.2 The Active MVC Contains an ExpressionSet

There are currently three options for creating a child model from a parent model that contains
an ExpressionSet and these options are to create a GO graph, perform gene set enrichment
using chromosome locations as the categories, and to perform gene set enrichment using KEGG
pathways as categories. Each of these options for creating a child MVC is discussed individually.

The linking functions that relate elements in the parent model to elements in the child model
are more complex now because the child models of an ExpressionSet model have a one-to-
many or a many-to-many relationship. For example, the genes in the ExpressionSet model
can be annotated at several GO terms and each GO term can have many genes annotated at
that term. Thus, when the parent MVC contains an ExpressionSet and the child MVC contains
a GO graph, then the elements in two models have a many-to-many relationship and deciding
how these models should be properly linked requires some thought. A full discussion of these
ideas can be found in Whalen and Gentleman (2006a) and Whalen and Gentleman (2006b).
As each method for creating a child model is discussed in the following paragraphs, we will also
describe how the linking functions work for this particular child model to the ExpressionSet
parent model.

5.2.1 Create a GO Graph

Creating a GO graph from a parent model requires that the parent model contain genetic data,
particularly Affymetrix microarray data. This requirement is filled by a parent model that
contains an ExpressionSet. With an ExpressionSet model the Affymetrix identifiers used
to create the GO graph are taken from the row names of the exprs slot of the ExpressionSet
(this information can also be obtained using the geneNames function).

When a GO graph is created from an ExpressionSet model, the two linking functions are
defined: one that converts information from the parent to the child and one that converts
information from the child to the parent. The toParent function takes a GO term that was just
updated from the child model and converts it into the genes that are annotated at that term.
The update information is the sent to the parent model with the genes that could be updated.
Depending on what the update method is, the genes in the parent may also be updated. For
instance, if the update in the child model colors or highlights a GO term, then the linked genes
in the parent model are also colored or highlighted. However, if the update in the child model

12

was to hide a GO term, then the linked genes will only be hidden if all the GO terms these
genes are annotated at are also hidden.

The fromParent function takes a gene that was just updated from the parent model and converts
it into the GO terms that this gene is annotated at. The update information is sent to the
child model with the GO terms that could be updated. Again, the message sent to the child
depends on the update method that just occurred. If the update in the parent model is to
color or highlight a gene, then the linked GO terms in the child model are also colored or
highlighted. However, if the update in the parent model was to hide a gene, then the linked
GO terms are only hidden if all genes that are annotated at them are also hidden.

More information on how to update the data through views is given in Section 10.

Using the GUI

First set the CLL MVC to be the active MVC using the Edit menu (see Section 4). Now go to
the File menu and choose the Create Child Model menu item or type Ctrl-C. Choose Create
GO Graph as the method to create child model and type CLLgo as the name of the new child
model. If the annotation slot is an empty string in the ExpressionSet, then a new window
appears asking what the Affymetrix Chip Type is. Now several libraries are loaded that are
necessary to convert Affymetrix identifiers into GO terms. Finally a window opens that asks
the user to choose the Affymetrix identifiers that will be used to create the GO graph. I will use
all the Affymetrix identifiers that passed the specific filter so in the Subset by Model Variable
drop down box, I will choose sFiltertBH. Then I will use the Select All button to select all
the Affymetrix identifiers (these are the Affymetrix identifiers that passed the specific filter -
there are 78 of them). I will leave the Ontology Type drop down box as MF, indicating that
I want the molecular function GO graph. Finally I’ll click the Done button. Creating the GO
graph may take a while, but the window with the selected Affy Ids disappears when the new
GO graph model has been created.

Now the user can set the CLLgo MVC as the active MVC to create views of the GO graph. The
user may also want to create the model graph (described in Section 11.2) to see how the new
MVC object is related to other loaded MVCs.

Using the Command Line

The code to create a GO graph MVC from a parent MVC that contains an ExpressionSet
model is shown below. The function getMethodsToCreateChild lets the user see which methods
exist to create a child MVC from the active MVC. Next to create the GO graph from the CLL
MVC, the function createGoGraph is called. The createGoGraph function has five parameters:
newModelName, annotationSlot, ontology, affyids, and mVar. Please see the man pages for
these functions for more information.

> setActiveMVC("CLL")

> getMethodsToCreateChild()

> createGoGraph("CLLgo", annotationSlot = "hgu95av2", ontology = "MF",

+ mVar = "sFiltertBH")

13

> setActiveMVC("CLLgo")

5.2.2 Perform Gene Set Enrichment Using Chromosome Location as Categories

Creating a gene set enrichment (GSE) model involves using gene test statistics and genes in
categories information (what we call the incidence matrix) to calculate gene set statistics. Here
we use chromosome locations to create the gene sets. For a more detailed explanation of gene
set enrichment and how it is used in the iSNetwork package, please see Whalen and Gentleman
(2006b). The chromosome locations are determined using the chrCats and users are referred
to the man page for that function for full information on how the chromosome locations are
determined.

Here, we have a many-to-many relationship between the elements in the parent MVC (the genes
in the ExpressionSet model) and the elements in the child MVC (the gene sets in the GSE
model). A gene can be on many locations (for example, the gene can be at the following
locations: 17, 17p, 17p1, and 17p13) and each location can have more than one gene. Thus,
the linking functions, toParent and fromParent, must determine how to relate these models
when an update occurs.

The toParent function takes a gene set that was just updated from the child model and converts
it into the genes that belong to that gene set. The update information is the sent to the parent
model with the genes that could be updated. Depending on what the update method is, the
genes in the parent may also be updated. For instance, if the update in the child model colors or
highlights a gene set, then the linked genes in the parent model are also colored or highlighted.
However, if the update in the child model was to hide a gene set, then the linked genes will
only be hidden if all the gene sets these genes are annotated at are also hidden.

The fromParent function takes a gene that was just updated from the parent model and converts
it into the gene sets that this gene belongs to. The update information is sent to the child
model with the gene sets that could be updated. Again, the message sent to the child depends
on the update method that just occurred. If the update in the parent model is to color or
highlight a gene, then the linked gene sets in the child model are also colored or highlighted.
However, if the update in the parent model was to hide a gene, then the linked gene sets are
only hidden if all genes that belong to them are also hidden.

More information on how to update the data through views is given in Section 10.

Using the GUI

First set the CLL MVC to be the active MVC using the Edit menu (see Section 4). Now go
to the File menu and choose the Create Child Model menu item or type Ctrl-C. Choose
Perform Gene Set Enrichment using Chromosome as the method to create child model and
type CLLgseChr as the name of the new child model. If the annotation slot is an empty string
in the ExpressionSet, then a new window appears asking what the Affymetrix Chip Type is.
Now several libraries are loaded that are necessary to calculate which genes belong to which
gene sets. Finally a window opens that asks the user to choose the Affymetrix identifiers that

14

will be used to create the gene set enrichment model. I will use all the Affymetrix identifiers
that passed the nonspecific filter so in the Subset by Model Variable drop down box, I will
choose nsFilter. Then I will use the Select All button to select all the Affymetrix identifiers
(these are the Affymetrix identifiers that passed the nonspecific filter - there are 6313 of them).
I will use Disease as the Factor for t-test (the t-test statistic is used as the gene test statistic;
please see Whalen and Gentleman (2006b) for more information), and I will require that a
gene set have at least 5 genes (set to 5 in the Number of Genes in Gene Set text box). Finally
I’ll click the Done button. Creating the gene set enrichment model may take a while, but the
window with the selected Affy Ids disappears when the new gene set enrichment model has
been created.

Now the user can set the CLLgseChr MVC as the active MVC to create views of the gene set
enrichment model. The user may also want to create the model graph (described in Section
11.2) to see how the new MVC object is related to other loaded MVCs.

Using the Command Line

The code to create a gene set enrichment model (using chromosome location as the categories)
MVC from a parent MVC that contains an ExpressionSet model is shown below. The function
getMethodsToCreateChild lets the user see which methods exist to create a child MVC from
the active MVC. Next to create the gene set enrichment model from the CLL MVC, the function
createChrLocGSE is called. The createChrLocGSE function has six parameters: newModelName,
fac, annot, affyids, mVar, and noGenes. Please see the man pages for these functions for more
information.

> setActiveMVC("CLL")

> getMethodsToCreateChild()

> createChrLocGSE(newModelName = "CLLgseChr", fac = "Disease",

+ mVar = "nsFilter")

> setActiveMVC("CLLgseChr")

5.2.3 Perform Gene Set Enrichment Using KEGG Pathways as Categories

Now we use KEGG Pathways as categories to create the gene set test statistics. Please see
Whalen and Gentleman (2006b) for more information on gene set enrichment analysis and how
it is implemented in this package. Again, we have a many-to-many relationship between the
elements in the parent MVC (the genes in the ExpressionSet model) and the elements in the
child MVC (the gene sets in the GSE model). A gene can be in many pathways and a pathway
can contain many genes. Please see Section 5.2.2 for more information on the linking functions
that are used to connect genes to gene sets.

Using the GUI

First set the CLL MVC to be the active MVC using the Edit menu (see Section 4). Now go
to the File menu and choose the Create Child Model menu item or type Ctrl-C. Choose
Perform Gene Set Enrichment using KEGG as the method to create child model and type

15

CLLgseKEGG as the name of the new child model. If the annotation slot is an empty string
in the ExpressionSet, then a new window appears asking what the Affymetrix Chip Type is.
Now several libraries are loaded that are necessary to calculate which genes belong to which
gene sets. Finally a window opens that asks the user to choose the Affymetrix identifiers that
will be used to create the gene set enrichment model. I will use all the Affymetrix identifiers
that passed the nonspecific filter so in the Subset by Model Variable drop down box, I will
choose nsFilter. Then I will use the Select All button to select all the Affymetrix identifiers
(these are the Affymetrix identifiers that passed the nonspecific filter - there are 6313 of them).
I will use Disease as the Factor for t-test (the t-test statistic is used as the gene test statistic;
please see Whalen and Gentleman (2006b) for more information), and I will require that a
gene set have at least 5 genes (set to 5 in the Number of Genes in Gene Set text box). Finally
I’ll click the Done button. Creating the gene set enrichment model may take a while, but the
window with the selected Affy Ids disappears when the new gene set enrichment model has
been created.

Now the user can set the CLLgseKEGG MVC as the active MVC to create views of the gene set
enrichment model. The user may also want to create the model graph (described in Section
11.2) to see how the new MVC object is related to other loaded MVCs.

Using the Command Line

The code to create a gene set enrichment model (using KEGG pathways as the categories)
MVC from a parent MVC that contains an ExpressionSet model is shown below. The function
getMethodsToCreateChild lets the user see which methods exist to create a child MVC from the
active MVC. Next to create the gene set enrichment model from the CLL MVC, the function
createKEGGGSE is called. The createKEGGGSE function has six parameters: newModelName,
fac, annot, affyids, mVar, and noGenes. Please see the man pages for these functions for more
information.

> setActiveMVC("CLL")

> getMethodsToCreateChild()

> createKEGGGSE(newModelName = "CLLgseKEGG", fac = "Disease", mVar = "nsFilter")

> setActiveMVC("CLLgseKEGG")

5.3 The Active MVC Contains a Graph

When the active MVC contains a graph model, then there are currently no methods implemented
to create a child MVC. This can be seen by calling the function, getMethodsToCreatChild, when
the active MVC contains a graph. This can also be seen by clicking on the Create Child Model
menu item under the File menu on the control window and the control window is a blank
screen, indicating that there are no currently implemented methods to create a child MVC.

One obvious possibility to create a child MVC from a graph MVC is to create a subgraph child
model. To implement new methods to create child MVCs, please see Section 14.

16

5.4 The Active MVC Contains a GSE

When the active MVC contains a gene set enrichment (GSE) model, then there are currently
no methods implemented to create a child MVC. This can be seen by calling the function,
getMethodsToCreatChild, when the active MVC contains a GSE. This can also be seen by clicking
on the Create Child Model menu item under the File menu on the control window and the
control window is a blank screen, indicating that there are no currently implemented methods
to create a child MVC.

One possibility to create a child MVC from a GSE MVC is to create an ExpressionSet model that
contains only the genes that are located in one gene set (for example all genes in the apoptosis
biological process). To implement new methods to create child MVCs, please see Section 14.

6 Creating Views

The views that have been currently implemented include scatter plots, spreadsheets, graph
plots, heatmaps, and qq-plots. If the active MVC has a model of type data.frame, then the
available views are scatter plots and spreadsheets. If the active MVC has a model of type
graph, then the available views are graph plots and spreadsheets (the spreadsheet displays
node information). If the active MVC has a model of type ExpressionSet, then the only
available view is a heatmap. Finally, if the active MVC has a model of type GSE for a gene
set enrichment model, then the available views are qq-plots and spreadsheets. More details of
these views for each type of model is given in the following sections. All of these views are
interactive, which is discussed in Section 10.

Currently, the spreadsheet view is available for several types of models. The spreadsheet view
presents an Excel-type format to display two-dimensional data. This view can be resorted
by clicking on the column header buttons. If a column header is clicked on by the user,
the spreadsheet is rearranged so that the column is sorted alphabetically. Note that sorting
alphabetically will give unexpected results if the values stored in that column are numeric. A
future goal is to change the sorting function based on the values stored in the column.

7 Views of Data Frames

If the active MVC object has a model of class data.frame, then the user can currently create
two types of views of this data and these views are spreadsheets and scatter plots. The Display
menu on the control window has two menu items, View Data and Plot Data, when the active
MVC has a model of class data.frame.

17

7.1 Creating Spreadsheets

After loading data using the methods described in Section 3, the data can be viewed in an
Excel-type format if the active MVC contains a data.frame, a graph, or a GSE (which represents
gene set enrichment) model. Currently, a data.frame model can be viewed in only one window.
For example, if the USArrests data frame is being shown in a window, it can not be shown in
a different window.

Even though each model can be shown in only one window, there is no limit on how many
data sets can be shown in separate windows. That means you can have one window showing
USArrests and another window showing a different data.frame data set, and so on. Recall
that views can only be created of the active MVC so to create a view of a different data set, the
active MVC must be reset. This operation was discussed in Section 4.

A few things to note about the spreadsheet view. The data can not be changed through the view
data windows. However, the spreadsheet is sortable. If the user wants to sort the spreadsheet
based on one of the columns, the user can click on the column header and the spreadsheet will
be alphabetically sorted based on that column. Be aware that sorting alphabetically will not
always be what users want, particularly when the column contains numbers, but currently the
sorting function cannot be changed.

7.1.1 Creating a Spreadsheet Through the GUI

To view the data, highlight the Display menu and select the View Data menu item. Alterna-
tively, typing Ctrl-D activates the View Data menu item. The control window now appears as
shown in Figure 5 after selecting the View Data menu item.

Figure 5: View the Data

Now click the Show USArrests button. Another window appears that shows the data frame
data. The new window showing the USArrests data frame is shown in Figure 6.

18

Figure 6: View USArrests Data

7.1.2 Creating a Spreadsheet Through the Command Line

To create a spreadsheet of the active MVC’s data set through the command line, call the
function, createSpreadsheet. Currently, spreadsheet views can be created if the active MVC has
a model of class data.frame, graph, and GSE, where GSE represents a gene set enrichment data
set. Views of graphs and GSEs are discussed in Section 8 and 9.2, respectively.

Example code using this function is shown below. It takes no parameters since it only creates
a spreadsheet view of the active MVC’s data. Please see the man page for this function for
more information.

> setActiveMVC("USArrests")

> createSpreadsheet()

7.2 Creating Scatter Plots

Once a model is loaded, the user can create scatter plots of data.frame data through the
GUI or through the command line function, createSPlot. Remember that only the active MVC
object’s data can be plotted.

Unlike viewing the data where each data set can only appear in one spreadsheet window, users
can create as many scatter plots of each data.frame data set as they like. Each new scatter
plot is presented in a new window.

Recall from Section 3 that each MVC object contains one model and all views of this model.
Thus, plots that are based on the same data are stored in the same MVC object and they are
linked. This idea is discussed further in Section 10.

19

7.2.1 Creating a Scatter Plot Through the GUI

To plot a data frame, highlight the Display menu and select the Plot Data menu item. Alter-
natively, the user can press Ctrl-P to activate the Plot Data menu item.

After activating the Plot Data menu item, the control window shows a frame called Data
Variables, which contains toggle buttons to set the X and Y variables for the scatter plot using
the column names from the active MVC object’s data set. The control window now appears as
shown in Figure 7.

Figure 7: Plot a Data Frame

The variables available for plotting USArrests data are Murder, Assault, UrbanPop, and Rape.
To learn more about these variables , the user can type help (“USArrests”) at the R prompt.
As an example, click the X button for Murder and click the Y button for Assault, and then
click the Plot button. A scatter plot of Assault vs. Murder appears in a new window, as shown
in Figure 8.

Only one X button and Y button can be highlighted at a time because only two-way scatter
plots can be made at this time.

To create another plot of USArrests data, click the X button for UrbanPop and the Y button
for Rape, and then click the Plot button. Now there are two plots of USArrests data. One of
Assault vs. Murder and one of Rape vs. UrbanPop.

7.2.2 Creating a Scatter Plot Through the Command Line

To create a scatter plot of the active MVC object’s data set through the command line, call the
function, createSPlot. The example code below creates a scatter plot with Murder as the X
variable and Rape as the Y variable. Murder and Rape are the names of columns from the
USArrests data. Please see the man page for this function for more information.

> setActiveMVC("USArrests")

> createSPlot(varx = "Murder", vary = "Rape")

20

Figure 8: Scatter Plot of Assault vs. Murder for USArrests

8 Views of Graphs

Currently, two views of graphs can be created: a graph plot and a spreadsheet view of node
data. When the active MVC object has a model of class graph, then the Display menu on the
control window has two menu items named Plot Graph and View Node Data.

8.1 Plotting a Graph

Once a graph data set is loaded, the user can create plots of graph data through the GUI
or through the command line function, createGraphPlot. Multiple plots of graph objects can
be created if the user wants to view the graph with different layout types or node shapes.
Remember that only the active MVC object’s data can be plotted.

8.1.1 Plotting a Graph Through the GUI

To plot a graph, first make sure that the active MVC contains a graph data set. Set the active
MVC to be CLLgo, which was created in Section 5.2.1. Then highlight the Display menu and
select the Plot Graph menu item. Alternatively, the user can press Ctrl-P to activate the Plot
Graph menu item. The control window now appears as shown in Figure 9 after selecting the
Plot Graph menu item.

For plotting the graph the user can choose the Layout Method and the Node Shape, as shown
in Figure 9. The options for the Layout Method are ‘dot’, ‘neato’, and ‘twopi’. The different

21

Figure 9: Plot a Graph

layout methods are algorithms based on optimizing a particular aspect of the layout Gansner
and North (2000), such as minimizing edge length or minimizing edge crossings. Please see the
help for layoutType for more information. The options for the Node Shape are ‘circle’, ‘ellipse’,
and ’rectangle’. As an example, choose a Layout Method of ‘dot’ and a Node Shape of ‘circle’
and click the Plot CLLgo button. A plot of the graph appears in a new window, as shown in
Figure 10.

Figure 10: Plot of CLLgo

Other plots of this graph can be created if the user wants to look at the graph with different
layouts or node shapes.

22

8.1.2 Plotting a Graph Through the Command Line

To create a graph plot of the active MVC object’s data set through the command line, call the
function, createGraphPlot. The example code below creates a plot of the CLLgo model with a
layout of “twopi” and a node shape of “ellipse”. Please see the man page for createGraphPlot
for more information on this function.

> setActiveMVC("CLLgo")

> createGraphPlot(layout = "dot", nodeShape = "circle")

8.2 Viewing Node Data

The other view for a graph model is to show the node attributes in a spreadsheet. On the control
window, this option is available under the Display menu as the View Node Data menu item. To
create the node attribute spreadsheet through the GUI, the user can call the createSpreadsheet
function. Note that if the graph does not have node attributes, then the spreadsheet view
cannot be created. For more information on the spreadsheet view, please see Section 7.1.

9 Views of ExprSets

Currently, the only view that can be created of a ExpressionSet data set is a heatmap. When
the active MVC object has a model of class ExpressionSet, then the Display menu on the
control window has one menu item named Plot Heatmap.

9.1 Creating a Heatmap

Once a data set is loaded, the user can create plots of ExpressionSet data through the GUI
or through the command line function, createHeatmap.

9.1.1 Creating a Heatmap Through the GUI

Set the active MVC to be CLL, which was loaded in Section 3.2. Then highlight the Display
menu and select the Plot Heatmap menu item. Alternatively, the user can press Ctrl-P to
activate the Plot Heatmap menu item. The control window now appears as shown in Figure
11 after selecting the Plot Heatmap menu item.

The user can decide to plot the whole model or can subset the model by using one of the model
variables. This requires that the model variable be a boolean variable that indicates how the
model should be subset for the heatmap view. In our example, we will subset the model using
the sFiltertBH model variable, which was loaded in Section 3.3. The full CLL model has 12,625
genes, which would make a very large heatmap. By using the sFiltertBH variable to subset the

23

Figure 11: Create a Heatmap

CLL model, only 78 genes will be plotted on the heatmap. Now click the Plot CLL button. A
new window appears that shows the heatmap plot, which is shown in Figure 12.

Figure 12: Heatmap Plot of CLL

9.1.2 Creating a Heatmap Through the Command Line

To create a heatmap plot of the active MVC object’s data set through the command line, call
the function, createHeatmap. The only parameter for this function is mVar, which lets the user
subset the model using a model variable. This model variable must be a boolean to indicate
how the genes in the model should be subset. The example code below creates a heatmap of
a subset of the CLL model. Please see the man page for createHeatmap for more information
on this function.

24

> setActiveMVC("CLL")

> createHeatmap(mVar = "sFiltertBH")

9.2 Views of Gene Set Enrichment (GSE) Models

Currently, there are two possible views for a gene set enrichment model: a qq-plot and a
spreadsheet view. Gene set enrichment models can only be created by creating a child model
from an ExpressionSet model, which was discussed in Section 5. We will show the views for a
gene set enrichment model that was created from the CLL model here. This gene set enrichment
model used the genes from the CLL model that passed the nonspecific filter (nsFilter model
variable), used KEGG pathways as the categories, only included pathways that had at least 5
genes, and used Disease as the phenotype factor for the t-test. Please see Section 5 for more
information on creating this model, called CLLgseKEGG.

When the active MVC object has a model of class GSE, then the Display menu on the control
window has two menu items, Create QQ Plot and View Data.

9.3 Creating a QQ Plot

Once the GSE model has been created from an existing ExpressionSet model and set as the
active MVC, then the user can create qq-plots of the gene set test statistics through the GUI or
through the command line function, createQQplot.

9.3.1 Creating a QQ Plot Through the GUI

Set the active MVC to be CLLgseKEGG, which is created in Section 5. Then highlight the
Display menu and select the Create QQ Plot menu item. Alternatively, the user can press
Ctrl-P to activate the Create QQ Plot menu item. The control window now appears as shown
in Figure 13 after selecting the Create QQ Plot menu item.

Figure 13: Create a QQ-Plot

25

Now click the Create QQ-Plot button. A new window appears that shows the qq-plot, which
is shown in Figure 14.

Figure 14: QQ-Plot of the CLLgseKEGG model.

9.3.2 Creating a QQ Plot Through the Command Line

To create a qq-plot of the active MVC object’s data set through the command line, call the func-
tion, createQQplot. This function has no parameters. Please see the man page for createQQplot
for more information on this function.

> setActiveMVC("CLLgseKEGG")

> createQQplot()

9.4 Viewing the GSE Data

The other view for a GSE model is to show the gene set attributes in a spreadsheet. On
the control window, this option is available under the Display menu as the View Data menu
item. To create the gene set attribute spreadsheet through the GUI, the user can call the
createSpreadsheet function. For more information on the spreadsheet view, please see Section
7.1.

26

10 Setting Callback Functions to Events

Having interactive views was one of the goals discussed in Section 1.1. Creating interactive
applications requires three things: some user action or input, which is referred to as an event; a
response to that action, which is executed by a callback function; and a method that connects
the event to the callback function, which is referred to as the signal handler. These three steps
are ordered as follows: an event occurs, the event causes a signal to be emitted that is caught
by the signal handler, and then the signal handler calls the callback function, which results in
the response to the user action. A flowchart of these steps is shown below in Figure 15.

Figure 15: Flow Chart of the Response to an Event

In an example given in Section 1.1, a point was colored red when the user clicked on that
point in the view. In this example of interactivity, the event is the mouse button click and the
response, which is caused by a callback function, is to color a point red. The signal handler,
which is the method that connects the event to the callback function, is not noticed by the
user.

In the iNetwork package, another goal is to have a flexible design. Thus, we did not want the
response to an event to be fixed. We wanted to allow the user to decide what the response to
an event should be. For example, the user may initially want a point to be colored when a
mouse click occurs over that point and later the user may decide that a mouse click event over
a point should cause the point to be hidden. Recall that the response to an event is determined
by the callback function. Thus, for flexibility in the iSNetwork package, the user can set the
callback function for certain events. This lets the user decide what the response to an event is.

Currently, the four events that the user can set callback functions to are mouse over, left button
click, middle button click, and right button click. This means that the user can decide what
happens in response to any of these four events. Each event is discussed in more detail in the
following sections.

One important thing to notice is that these callback functions can only be set for views of
the active MVC object. Thus, when setting the callback function to an event through either
the GUI or through command line functions, these responses will only be set for views of the
active MVC. However, if views of different MVC’s have been created and callback functions
were previously set for these views, then when the user interacts with these views of the non-
active MVC, the previously set callback function will be called.

An example will help explain these concepts. Suppose a user had two loaded MVC objects,
one was called “USArrests” and one was called “USJudgeRatings”. Next suppose that the
active MVC object is “USArrests”, two scatter plots of this model are created, and the callback
function for the left button click event is to color a point blue. Then the user sets the active

27

MVC to be “USJudgeRatings”, creates two new scatter plots of this model (so there are now
four scatter plots: two of “USArrests” and two of “USJudgeRatings”), and sets the callback
function for the left button click event to highlight a point. If the user now clicks the left
button over a point in one of the views of “USArrests”, then this point will be colored blue
(even though this view is not depicting the active MVC). If the user clicks the left button over
a point in one of the views of “USJudgeRatings”, then this point will be highlighted (recall this
is a view of the active MVC).

Also, the potential responses to an event depend on the class of the active MVC’s model. Recall
from Sections 7, 8, 9, and 9.2, that for different types of models, only certain views make sense
to display the data. For a data frame model, the user can create a spreadsheet or a scatter
plot view, for a graph model, the user can create a plot of the graph or a spreadsheet, for
an ExpressionSet model, the user can create a heatmap, and for a GSE model, the user can
create a qq-plot or a spreadsheet. In this section, we are talking about setting the response to
user interaction with a view. Thus, it makes sense to have different potential responses to an
event depending on what type of view is shown. For example, if the active MVC object contains
a data frame, then one potential response to a left button click on a scatter plot is to color
a point whereas if the active MVC object contains a graph, then a potential response to a left
button click on a plot is to color a node.

10.1 Setting the Left Button Click

The potential responses to a left button click depend on the class of the active MVC’s model.
Thus, if the active MVC’s model is of class dfModel (which means the model contains a data
frame), then the potential responses to a left button click are color a point, hide a point,
highlight a point, or no action. If the active MVC’s model is of class graphModel (which means
the model contains a graph), then the potential responses to a left button click are color a
node, hide a node, highlight a node, create a heatmap, or no action. If the active MVC’s
model is of class exprModel (which means the model contains an ExpressionSet), then the
potential responses to a left button click are highlight a gene, color a gene, hide a gene, or no
action. If the active MVC’s model is of class GSE (which means the model contains gene set
enrichment data), then the potential responses to a left button click are color a point, hide a
point, highlight a point, or no action.

10.1.1 Left Button Click Event for a Data Frame

As mentioned previously, the currently available responses for a left button click event when
the active MVC object’s model is a data frame are color a point, hide a point, highlight a point,
or no action.

Using the GUI

To see the callback functions that can be set to the left button click event when the active
MVC contains a data frame, first set the active MVC to USArrests and then highlight the Event

28

menu and select the Set Left Button Click menu item. Alternatively, the user can press Ctrl-B
to activate the Set Left Button Click menu item. The control window now looks as shown in
Figure 16.

Figure 16: Setting the Left Button Click Event for a Data Frame

Using the Command Line

To see the callback functions that can be set to the left button click event, call the function,
getDescForEvent, with a parameter of “leftButtonClick”. This function returns the descriptions
of all possible callback functions for a certain event. It is this character string (the description)
that is used as the shortName parameter in the setCallFunc function.

> setActiveMVC("USArrests")

> getDescForEvent("leftButtonClick")

Coloring a Point

We will look at each callback function one at a time. First, let’s set the left button click event
to color a point.

Using the GUI

To do this using the GUI, choose the “color a point” radio button and click the Set button
(after choosing the Set Left Button Click menu item under the Event menu). A new window
appears that has a color browser to allow the user to choose a color that is used to color the
points. Pick a color on the color wheel and click the Ok button. The window with the color
wheel is shown in Figure 17.

Using the Command Line

To set the left button click event to color a point using the command line, call the function,
setCallFunc, with “leftButtonClick” as the first parameter and “color a point” as the second
parameter. The default value for the color is black. If the user wants a different color, then
call the function, setColor. To see the current color, call the function, getColor.

29

Figure 17: Color Browser

> setActiveMVC("USArrests")

> setCallFunc("leftButtonClick", "color a point")

> setColor("blue")

Coloring a Point

Now click with the left button on a point in the scatter plot of Assault vs. Murder. Note that
this plot was created in Section 7.2. The point that was just clicked is filled in with the new
color (I have used blue as shown in Figure 18). Also, a point on the scatter plot of Rape vs.
UrbanPop is also filled in with the new color because these two points are from the same row
of the data frame. This can be seen by viewing the “USArrests” data in a spreadsheet as was
shown in Section 7.1. If the spreadsheet window for “USArrests” is open, one row is selected
that corresponds with the point that was just clicked with the left button. Selecting a row in a
spreadsheet view is considered the same as clicking a point with the left button over a scatter
plot. Please see Section 10.1.2 for more information about selecting a row in a spreadsheet.

Figure 18: Coloring Points in the Scatter Plot

30

This behavior shows how the scatter plots are linked. Even though a point on the Assault vs.
Murder plot was clicked, all plots that are based on the “USArrests” data frame are updated.
All points that correspond to that row in the data frame now have the new color. To keep the
plots synchronized, some plotting information is stored with the data.

Now, if the user clicks on a point in the scatter plot of Rape vs. UrbanPop, both plots show
two blue points each. To choose a different color using the GUI, the user needs to again choose
the “color a point” radio button and click the Set button, which causes the window with the
color wheel to reappear. To choose a different color using the command line, call the function,
setColor.

Hiding a Point

Next, let’s set the left button click event to hide a point.

Using the GUI

To do this choose the “hide a point” radio button and click the Set button on the control
window (after choosing the Set Left Button Click menu item under the Event menu).

Using the Command Line

To set the left button click event to hide a point using the command line, call the function,
setCallFunc, with “leftButtonClick” as the first parameter and “hide a point” as the second
parameter.

Hiding a Point

Now click with the left button on a point in the scatter plot of Assault vs. Murder. The point
that was just clicked will disappear. A point on the scatter plot of Rape vs. UrbanPop also
disappears because these two points are from the same row of the data frame. If a spreadsheet
of the“USArrests”data is open, then the row corresponding to the point that was just hidden is
selected. To make the point reappear, unselect that row in the spreadsheet. The hidden point
now reappears on the scatter plots. Thus, hiding a point is a property that can be toggled on
and off. The user can also click with the left button over the spot where the point used to be
and the point will reappear.

Another way to show hidden values is to use the Show Hidden Values menu item under the
Edit menu (or type Ctrl-H). A new window appears that allows the user to select which hidden
values should be shown. With one point hidden, the new window looks as shown in Figure 19.
This menu item is also discussed in Section 11.3.

Now select Nevada and click the Done button. Now this point will reappear on the scatter
plots.

Highlighting a Point

Next, let’s set the left button click event to highlight a point.

Using the GUI

31

Figure 19: Showing Hidden Values.

To do this choose the “highlight a point” radio button and click the Set button on the control
window (after choosing the Set Left Button Click menu item under the Event menu).

Using the Command Line

To set the left button click event to highlight a point using the command line, call the function,
setCallFunc, with “leftButtonClick” as the first parameter and “highlight a point” as the second
parameter.

Highlighting a Point

Now click with the left button on a point in the scatter plot of Assault vs. Murder. The point
that was just clicked is highlighted (i.e. a red circle appears around that point on the scatter
plot). Also, a point on the scatter plot of Rape vs. UrbanPop is highlighted because these two
points are from the same row of the data frame. If a spreadsheet of the “USArrests” data is
open, then the row corresponding to the point that was just highlighted is selected. To turn
off the highlighting, unselect that row in the spreadsheet or click with the left button again
over that point. Now the highlighting disappears. Thus, highlighting a point is also a property
that can be toggled on and off.

Figure 20 shows a point that has been highlighted on the scatter plots.

No Action

32

Figure 20: Highlighting Points in the Scatter Plot

The last option and the default is to have no response to a left button click event. When the
first view of the active data set is created, there is no response to a left button click event. If
the user decides to color a point, hide a point, or highlight a point in response to a left button
click, the user can always reset the response to be nothing when a left button click happens.

Notice also that when there is no response to a left button click this means that there is also
no response to selecting or unselecting a row in the spreadsheet view.

Using the GUI

To do this choose the “no action” radio button and click the Set button on the control window
(after choosing the Set Left Button Click menu item under the Event menu).

Using the Command Line

To set the left button click event to have no response using the command line, call the function,
setCallFunc, with “leftButtonClick” as the first parameter and “” as the second parameter.

10.1.2 Selecting a Row in a Spreadsheet

In the previous section it has been mentioned that selecting a row in a spreadsheet view is
equivalent to the left button click event over a point in a scatter plot. Thus, if the user wants
something to happen in response to selecting a row in a spreadsheet, then the user needs to
set a callback function for the left button click event.

For coloring a point, selecting a row colors all points that correspond to that row’s data while
unselecting a row does not make any changes to the color of those points. Thus, coloring a point

33

is a property that cannot be toggled on and off. In contrast, highlighting and hiding points
are both properties that can be toggled. Thus, if the response to the left button click is to
highlight a point, then selecting a row highlights all points that correspond to that row’s data
and unselecting a row un-highlights all points that correspond to that row’s data. Similarly,
if the response to the left button click is to hide a point, then selecting a row hides all points
that correspond to that row’s data and unselecting a row makes those points reappear.

10.1.3 Left Button Click Event for a Graph

As mentioned previously, the currently available responses for a left button click event when
the active MVC object’s model is a graph are color a node, hide a node, highlight a node, create
a heatmap, or no action.

Using the GUI

To see the callback functions that can be set to the left button click event when the active MVC
contains a graph, first set the active MVC to CLLgo and then highlight the Event menu and
select the Set Left Button Click menu item. Alternatively, the user can press Ctrl-B to activate
the Set Left Button Click menu item. The control window now looks as shown in Figure 21.

Figure 21: Setting the Left Button Click Event For a Graph

Using the Command Line

To see the callback functions that can be set to the left button click event, call the function,
getDescForEvent, with a parameter of “leftButtonClick”. This function returns the descriptions
of all possible callback functions for a certain event. It is this character string (the description)
that is used as the shortName parameter in the setCallFunc function.

> setActiveMVC("CLLgo")

> getDescForEvent("leftButtonClick")

Coloring a Node

34

We will look at each callback function one at a time. First, let’s set the left button click event
to color a node.

Using the GUI

To do this using the GUI, choose the “color a node” radio button and click the Set button
(after choosing the Set Left Button Click menu item under the Event menu). A new window
appears that has a color browser to allow the user to choose a color that is used to color the
nodes. Pick a color on the color wheel and click the Ok button. The window with the color
wheel is shown in Figure 17.

Using the Command Line

To set the left button click event to color a node using the command line, call the function,
setCallFunc, with “leftButtonClick” as the first parameter and “color a node” as the second
parameter. The default value for the color is black. If the user wants a different color, then
call the function, setColor. To see the current color, call the function, getColor.

> setActiveMVC("CLLgo")

> setCallFunc("leftButtonClick", "color a node")

> setColor("green")

Coloring a Node

Now click with the left button on a node in a plot of CLLgo. Note that this plot was created
in Section 8.1. The node that was just clicked is filled in with the new color (I have used green
as shown in Figure 22).

If two plots of the graph have been created, then a node in each plot is colored green, indicating
that these are the same node. To keep the plots synchronized, some plotting information is
stored with the data.

To choose a different color using the GUI, the user needs to again choose the“color a node”radio
button and click the Set button, which causes the window with the color wheel to reappear.
To choose a different color using the command line, call the function, setColor.

If a spreadsheet view of the node attributes is open, then the row in the spreadsheet that
corresponds with the node that was just colored will be selected. You can also color a node
by selecting a row in the spreadsheet. Please see Section 10.1.2 for how selecting a row in the
spreadsheet is linked to clicking the left button over a plot.

Hiding a Node

Next, let’s set the left button click event to hide a node.

Using the GUI

To do this choose the“hide a node”radio button and click the Set button on the control window
(after choosing the Set Left Button Click menu item under the Event menu).

35

Figure 22: Coloring Nodes in a Graph Plot

Using the Command Line

To set the left button click event to hide a node using the command line, call the function,
setCallFunc, with “leftButtonClick” as the first parameter and “hide a node” as the second
parameter.

Hiding a Node

Now click with the left button on a node in the plot of CLLgo. The node that was just clicked
disappears. To make the node reappear, click with the left button over the spot where the
node used to be and the node reappears. Thus, hiding a node is a property that can be toggled
on and off.

Again, if a spreadsheet view of the node attributes is open, then the row in the spreadsheet
that corresponds with the node that was just hidden will be selected. You can also hide a
node by selecting a row in the spreadsheet. By unselecting a row in the spreadsheet, that node
will reappear. Please see Section 10.1.2 for how selecting a row in the spreadsheet is linked to
clicking the left button over a plot.

To make hidden values reappear, users can also use the Show Hidden Values menu item under
the Edit menu. This is discussed in Section 10.1.1 and shown in Figure 19.

Highlighting a Node

Next, let’s set the left button click event to highlight a node.

Using the GUI

36

To do this choose the “highlight a node” radio button and click the Set button on the control
window (after choosing the Set Left Button Click menu item under the Event menu).

Using the Command Line

To set the left button click event to highlight a node using the command line, call the function,
setCallFunc, with “leftButtonClick” as the first parameter and “highlight a node” as the second
parameter.

Highlighting a Node

Now click with the left button on a node in the plot of CLLgo. The node that was just clicked
is highlighted (i.e. the node boundary is colored red). If there is more than one plot of CLLgo,
then all plots show a node that is highlighted, indicating that these nodes are the same. Similar
to hiding, highlighting a node is a property that can be toggled on and off. To turn off the
highlighting, just click with the left button over the same node.

Figure 23 shows a node that has been highlighted on the plot of CLLgo.

Again, if a spreadsheet view of the node attributes is open, then the row in the spreadsheet that
corresponds with the node that was just highlighted will be selected. You can also highlight a
node by selecting a row in the spreadsheet. By unselecting a row in the spreadsheet, that node
will be un-highlighted. Please see Section 10.1.2 for how selecting a row in the spreadsheet is
linked to clicking the left button over a plot.

Creating a Heatmap

Using the GUI

To do this choose the “create a heatmap” radio button and click the Set button on the control
window (after choosing the Set Left Button Click menu item under the Event menu).

Using the Command Line

To set the left button click event to create a heatmap using the command line, call the function,
setCallFunc, with “leftButtonClick”as the first parameter and“create a heatmap”as the second
parameter.

Creating a Heatmap

This is the most complex response to a left button click event. In this response, a new Ex-
pressionSet model is created (that is a child of the current model) and a heatmap view of that
data is created. By clicking the left button over a node, all genes that are annotated at that
node will be included in the new child ExpressionSet model, which will contain the expression
levels of these genes. Thus, an ancestor model of the graph must contain gene expression level
data (i.e. an ExpressionSet model). Here, the CLLgo graph was created from the CLL model,
which contains gene expression levels from CLL patients. Thus, this response is valid for the
CLLgo model (however, it is not a valid response for the testGraph model, which is not derived
from gene expression data).

37

Figure 23: Highlighting Nodes in the Plot of a Graph. The top right node is highlighted (has
a red boundary).

Now click with the left button on a node in the plot of CLLgo. Any genes that are annotated
at that node will be included in the child model and their gene expression levels will be shown
in the new heatmap. Since you are creating a new model (and MVC), you must give a name to
this new MVC. If the control window is open, a new window will appear asking for the name of
the new model. This window is shown in Figure 24. As you can see, I named the new model,
‘CLLsub’.

Figure 24: Naming the new child model.

38

If the control window is not open, then the user must give the name of the new model through
the command line, using the function, setModelName. Before the user clicks with the left
button over a node, the user must always call the setModelName function to set the name of
the new child model. If this is not done, then a new child model and new heatmap view cannot
be created. Calling the setModelName function must be done prior to each time the user clicks
the left button over a node to create a new heatmap because each time a new model is created
and it must be given a new name.

After clicking the left button over a node, a new window with a heatmap view appears. Re-
call that the gene expression levels shown in this heatmap correspond to the genes that are
annotated at the node that was just clicked. In my example, the new heatmap view for node,
signal transducer activity, is shown in Figure 25. This node (signal transducer activity) has 8
genes annotated at it and thus, the new heatmap view shows the expression levels for these 8
genes.

Figure 25: A heatmap view of the new child model, CLLsub.

Again, if a spreadsheet view of the node attributes is open, then the row in the spreadsheet
that corresponds with the node that was just clicked by the left button will be selected. You
can also create a heatmap by selecting a row in the spreadsheet. Please see Section 10.1.2 for

39

how selecting a row in the spreadsheet is linked to clicking the left button over a plot.

No Action

The last option and the default is to have no response to a left button click event. When the
first view of the active data set is created, there is no response to a left button click event. If
the user decides to color a node, hide a node, highlight a node, or create a heatmap in response
to a left button click, the user can always reset the response to be nothing when a left button
click happens.

Using the GUI

To do this choose the “no action” radio button and click the Set button on the control window
(after choosing the Set Left Button Click menu item under the Event menu).

Using the Command Line

To set the left button click event to have no response using the command line, call the function,
setCallFunc, with “leftButtonClick” as the first parameter and “” as the second parameter.

10.1.4 Left Button Click Event for an ExprSet

The currently available responses for a left button click event when the active MVC object’s
model is an ExpressionSet are color a gene, hide a gene, highlight a gene, or no action.

Using the GUI

To see the callback functions that can be set to the left button click event when the active
MVC contains an ExpressionSet, first set the active MVC to CLL and then highlight the Event
menu and select the Set Left Button Click menu item. Alternatively, the user can press Ctrl-B
to activate the Set Left Button Click menu item. The control window now looks as shown in
Figure 26.

Figure 26: Setting the Left Button Click Event for an ExpressionSet

Using the Command Line

40

To see the callback functions that can be set to the left button click event, call the function,
getDescForEvent, with a parameter of “leftButtonClick”. This function returns the descriptions
of all possible callback functions for a certain event. It is this character string (the description)
that is used as the shortName parameter in the setCallFunc function.

> setActiveMVC("CLL")

> getDescForEvent("leftButtonClick")

Coloring a Gene

We will look at each callback function one at a time. First, let’s set the left button click event
to color a gene.

Using the GUI

To do this using the GUI, choose the “color a gene” radio button and click the Set button
(after choosing the Set Left Button Click menu item under the Event menu). A new window
appears that has a color browser to allow the user to choose a color that is used to color the
points. Pick a color on the color wheel and click the Ok button. The window with the color
wheel is shown in Figure 17.

Using the Command Line

To set the left button click event to color a gene using the command line, call the function,
setCallFunc, with “leftButtonClick” as the first parameter and “color a gene” as the second
parameter. The default value for the color is black. If the user wants a different color, then
call the function, setColor. To see the current color, call the function, getColor.

> setActiveMVC("CLL")

> setCallFunc("leftButtonClick", "color a gene")

> setColor("blue")

Coloring a Gene

Now click with the left button on a row in the heatmap of CLL. Note that this plot was created
in Section 9.1.2. The row that was just clicked will now have a label that is colored blue. Also,
users can click with the left button over the row dendrogram and all genes that are in that
part of the dendrogram will have their labels colored blue. Figure 27 shows gene, TAGLN2,
with a blue label.

Hiding a Gene

Next, let’s set the left button click event to hide a gene.

Using the GUI

To do this choose the“hide a gene” radio button and click the Set button on the control window
(after choosing the Set Left Button Click menu item under the Event menu).

41

Figure 27: Coloring Genes in a Heatmap

Using the Command Line

To set the left button click event to hide a point using the command line, call the function,
setCallFunc, with “leftButtonClick” as the first parameter and “hide a gene” as the second
parameter.

Hiding a Gene

Now click with the left button on a row in the heatmap of CLL, which was created in Section
9.1.2. This will cause the entire heatmap to be redrawn so that this row is removed (also the
row dendrogram will be recalculated since one gene is now missing). Thus, the response to
hiding a gene is a bit slower because of the redraw rather than just updating a part of the plot.

The only way to reshow the hidden genes is through the Show Hidden Values menu item under
the Edit menu. This option was discussed in Section 10.1.1 under the hiding a point section
and is also discussed in Section 11.3. When the hidden genes are shown, the heatmap will
again be completely redrawn and the row dendrogram will be recalculated.

42

Highlighting a Gene

Next, let’s set the left button click event to highlight a gene.

Using the GUI

To do this choose the “highlight a gene” radio button and click the Set button on the control
window (after choosing the Set Left Button Click menu item under the Event menu).

Using the Command Line

To set the left button click event to highlight a gene using the command line, call the function,
setCallFunc, with “leftButtonClick” as the first parameter and “highlight a gene” as the second
parameter.

Highlighting a Gene

Now click with the left button on a row in the CLL heatmap (or click with the left button
over the row dendrogram). The row (representing a gene) that was just clicked is highlighted
(i.e. a bold, italicized label with the gene name will appear next to the row). To turn off the
highlighting, click on the highlighted row in the heatmap. Now the highlighting disappears.
Thus, highlighting a gene is a property that can be toggled on and off.

Figure 28 shows a gene, AK2, that has been highlighted on the heatmap.

No Action

The last option and the default is to have no response to a left button click event. When the
first view of the active data set is created, there is no response to a left button click event. If
the user decides to color a gene, hide a gene, or highlight a gene in response to a left button
click, the user can always reset the response to be nothing when a left button click happens.

Using the GUI

To do this choose the “no action” radio button and click the Set button on the control window
(after choosing the Set Left Button Click menu item under the Event menu).

Using the Command Line

To set the left button click event to have no response using the command line, call the function,
setCallFunc, with “leftButtonClick” as the first parameter and “” as the second parameter.

10.1.5 Left Button Click Event for a GSE (Gene Set Enrichment) Model

The currently available responses for a left button click event when the active MVC object’s
model is a GSE are color a point, hide a point, highlight a point, or no action. These responses
are identical to the responses for the left button click event when the active MVC object’s model
is a data frame. Thus, please see Sections 10.1.1 and 10.1.2

43

Figure 28: Highlighting Genes in a Heatmap

10.2 Setting the Middle Button Click

The potential responses to a middle button click depend on the class of the active MVC’s model.
Thus, if the active MVC’s model is of class dfModel (which means the model contains a data
frame), then the potential responses to a middle button click are color a point, hide a point,
highlight a point, or no action. If the active MVC’s model is of class graphModel (which means
the model contains a graph), then the potential responses to a middle button click are color a
node, hide a node, highlight a node, create a heatmap, or no action. If the active MVC’s model
is of class exprModel (which means the model contains an ExpressionSet), then the potential
responses to a middle button click are color a gene, hide a gene, highlight a gene, or no action.
If the active MVC’s model is of class gseModel (which means the model contains a GSE), then
the potential responses to a middle button click are color a point, hide a point, highlight a
point, or no action.

44

10.2.1 Middle Button Click Event for a Data Frame

As with the left button click event, the user currently has four options for the callback function
for a middle button click event. These four options are color a point, hide a point, highlight a
point, or no action. Thus, when the user clicks the middle button on a top of a point, the point
can either be colored, hidden, highlighted, or nothing happens. The default is for nothing to
happen. These callback functions have been described in Section 10.1.1 so please reference
that section for more information on the callback functions.

The major difference between the left button click event and the middle button click event is
the response to selecting or unselecting a row in a spreadsheet view. For the middle button
click event, when a point is colored, hidden, or highlighted, the corresponding row in the
spreadsheet view is selected. However, if a user directly selects a row in the spreadsheet, the
callback function for a middle button click event does not occur. A user selecting a row in a
spreadsheet always causes the left button click event to occur. When the user colors, highlights,
or hides a point using the middle button click event, the corresponding row in the spreadsheet
is selected only to keep the views synchronized. Similarly, unselecting a row does not cause
the callback function for a middle button click event to be called. However, if a user removes
the highlighting or hiding of a point through the middle button click event over a scatter plot,
the corresponding row on the spreadsheet is unselected.

Note that the response to a right button click event behaves the same as the response to the
middle button click event. Thus, if the user selects or unselects a row in a spreadsheet, the
callback function for a right button click event does not occur.

Using the GUI

To find out what callback functions can be set to the middle button click event, highlight the
Event menu and select the Set Middle Button Click menu item. Alternatively, the user can
press Ctrl-M to activate the Set Middle Button Click menu item.

Using the Command Line

To see the callback functions that can be set to the middle button click event, call the func-
tion, getDescForEvent, with a parameter of “middleButtonClick”. This function returns the
descriptions of all possible callback functions for a certain event. It is this character string (the
description) that is used as the shortName parameter in the setCallFunc function.

10.2.2 Middle Button Click Event for a Graph

As with the left button click event, the user currently has four options for the callback function
for a middle button click event. These four options are color a node, hide a node, highlight
a node, or no action. Thus, when the user clicks the middle button on a top of a node, the
node can either be colored, hidden, highlighted, or nothing happens. The default is for nothing
to happen. These callback functions have been described in Section 10.1.3 so please reference
that section for more information on the callback functions. Also, please see Section 10.2.1

45

for information about how the node attribute spreadsheet responds to the middle button click
event.

Using the GUI

To find out what callback functions can be set to the middle button click event, highlight the
Event menu and select the Set Middle Button Click menu item. Alternatively, the user can
press Ctrl-M to activate the Set Middle Button Click menu item.

Using the Command Line

To see the callback functions that can be set to the middle button click event, call the func-
tion, getDescForEvent, with a parameter of “middleButtonClick”. This function returns the
descriptions of all possible callback functions for a certain event. It is this character string (the
description) that is used as the shortName parameter in the setCallFunc function.

10.2.3 Middle Button Click Event for an ExprSet

As with the left button click event, the user currently has four options for the callback function
for a middle button click event. These four options are color a gene, hide a gene, highlight a
gene, or no action. Thus, when the user clicks the middle button on a top of a row (representing
a gene), the row can either be colored, hidden, highlighted, or nothing happens. The default
is for nothing to happen. These callback functions have been described in Section 10.1.4 so
please reference that section for more information on the callback functions.

Using the GUI

To find out what callback functions can be set to the middle button click event, highlight the
Event menu and select the Set Middle Button Click menu item. Alternatively, the user can
press Ctrl-M to activate the Set Middle Button Click menu item.

Using the Command Line

To see the callback functions that can be set to the middle button click event, call the func-
tion, getDescForEvent, with a parameter of “middleButtonClick”. This function returns the
descriptions of all possible callback functions for a certain event. It is this character string (the
description) that is used as the shortName parameter in the setCallFunc function.

10.2.4 Middle Button Click Event for a GSE (Gene Set Enrichment) Model

As with the left button click event, the user currently has four options for the callback function
for a middle button click event. These four options are color a point, hide a point, highlight a
point, or no action. Thus, when the user clicks the middle button on a top of a point, the point
can either be colored, hidden, highlighted, or nothing happens. The default is for nothing to
happen. These callback functions have been described in Section 10.1.1 so please reference
that section for more information on the callback functions. Also, please see Section 10.2.1 for

46

information about how the gene set spreadsheet responds to the middle button click event.

Using the GUI

To find out what callback functions can be set to the middle button click event, highlight the
Event menu and select the Set Middle Button Click menu item. Alternatively, the user can
press Ctrl-M to activate the Set Middle Button Click menu item.

Using the Command Line

To see the callback functions that can be set to the middle button click event, call the func-
tion, getDescForEvent, with a parameter of “middleButtonClick”. This function returns the
descriptions of all possible callback functions for a certain event. It is this character string (the
description) that is used as the shortName parameter in the setCallFunc function.

10.3 Setting the Right Button Click

The potential responses to a right button click depend on the class of the active MVC’s model.
Thus, if the active MVC’s model is of class dfModel (which means the model contains a data
frame), then the potential responses to a right button click are color a point, hide a point,
highlight a point, or no action. If the active MVC’s model is of class graphModel (which means
the model contains a graph), then the potential responses to a right button click are color a
node, hide a node, highlight a node, create a heatmp, or no action. If the active MVC’s model
is of class exprModel (which means the model contains an ExpressionSet), then the potential
responses to a right button click are color a gene, hide a gene, highlight a gene, or no action.
Finally, if the active MVC’s model is of class GSE (for gene set enrichment data), then the
potential responses to a right button click are color a point, hide a point, highlight a point, or
no action. For more information on these potential responses to a right button click, please
see Sections 10.1 and 10.2.

10.4 Setting the Mouse Over Event

As with all the other events discussed in this section, the potential responses to a mouse over
event depend on the class of the active MVC’s model. Thus, if the active MVC’s model is of class
dfModel (which means the model contains a data frame), then the potential responses to a
mouse over event are show tooltips over points, highlight points as cursor moves over them, or
no action. If the active MVC’s model is of class graphModel (which means the model contains a
graph), then the potential responses to a mouse over event are show tooltips over nodes or no
action. If the active MVC’s model is of class exprModel (which means the model contains an
ExpressionSet), then there are currently no available responses to a mouse over event. If the
active MVC’s model is of class GSE (for gene set enrichment data), then the potential responses
to a mouse over event are show tooltips over points, highlight points as cursor moves over
them, or no action.

47

10.4.1 Mouse Over Event for a Data Frame

The currently available responses for a mouse over event when the active MVC object’s model
is a data frame are show tooltips over points, highlight points as cursor moves over them, or
no action. The default is for nothing to happen.

Using the GUI

To see the callback functions that can be set to the mouse over event when the active MVC
contains a data frame, first set the active MVC to USArrests and then highlight the Event menu
and select the Set Mouse Over menu item. Alternatively, the user can press Ctrl-S to activate
the Set Mouse Over menu item. The control window now looks as shown in Figure 29.

Figure 29: Setting the Mouse Over Event for a Data Frame

Using the Command Line

To see the callback functions that can be set to the mouse over event, call the function,
getDescForEvent, with a parameter of “mouseOver”. This function returns the descriptions of
all possible callback functions for a certain event. It is this character string (the description)
that is used as the shortName parameter in the setCallFunc function.

> setActiveMVC("USArrests")

> getDescForEvent("mouseOver")

Showing Tooltips over Points

We will look at each callback function one at a time. First, let’s set the mouse over event to
cause tooltips to appear over a point.

Using the GUI

To do this choose the “show tooltips over points” radio button and click the Set button (after
choosing the Set Mouse Over menu item from the Event menu). A new window appears that
allows the user to choose what tooltips appear over the points. The user is able to choose either
the row names or any of the variables (column names) from the data frame as the tooltips.
The window that appears for the “USArrests” data frame is shown in Figure 30.

48

Figure 30: Tooltip Options

For now, choose the “Row Names” radio button and click the Set Tooltips button.

Using the Command Line

To set the mouse over event to show tooltips using the command line, call the function,
setCallFunc, with “mouseOver” as the first parameter and “show tooltips over points” as the
second parameter. The default value for the tooltips is to show the row names of the data frame.
If the user wants to use different values for the tooltips, then call the function, setTooltips. To
see the current values for the tooltips, call the function, getTooltips.

> setActiveMVC("USArrests")

> setCallFunc("mouseOver", "show tooltips over points")

> setTooltips("rowNames")

Showing Tooltips

Now go to one of the scatter plots and move the cursor over the points (make sure the device
is active by clicking on the plot first). A tooltip appears with the row name of that point in
the tooltip window. Note that this is the one callback function where the views are not linked.
Tooltips appear over the points in the active plot, but nothing happens in the other plots. To
see linked plots with the mouse over event, please see the information on highlighting points
as the cursor moves over them.

Figure 31 shows a tooltip (for row “Arizona”) over a point on the scatter plot.

Highlighting Points as the Cursor Moves Over Them

Next, let’s set the mouse over event to highlight a point.

Using the GUI

To do this choose the “highlight points as cursor moves over them” radio button and click the
Set button on the control window (after choosing the Set Mouse Over menu item from the
Event menu).

Using the Command Line

To set the mouse over event to highlight a point using the command line, call the function,
setCallFunc, with “mouseOver” as the first parameter and “highlight points as cursor moves
over them” as the second parameter.

49

Figure 31: Showing Tooltips Over Points

Highlighting Points

Now move the cursor over the points in a scatter plot. As the cursor lingers over a point, that
point is highlighted and then when the cursor moves off the point, that point is un-highlighted.
Unlike the tooltips option for the mouse over event, all plots are linked so any corresponding
points (i.e. points that show data from the same row in the data frame) are also highlighted
in other plots. Also if the spreadsheet view is open, when a point is highlighted, then the
corresponding row in the spreadsheet is selected and when the point is un-highlighted, the
corresponding row in the spreadsheet is unselected.

No Action

The last option and the default is to have no response to a mouse over event. When the first
view of the active data set is created, no response occurs when the cursor moves over the plot.
If the user decides to show tooltips or highlighting over points in response to a mouse over
event, the user can always reset the response to be nothing for the mouse over event.

Using the GUI

To do this choose the “no action” radio button and click the Set button on the control window
(after choosing the Set Mouse Over menu item under the Event menu).

Using the Command Line

50

To set the mouse over event to have no response using the command line, call the function,
setCallFunc, with “mouseOver” as the first parameter and “” as the second parameter.

10.4.2 Mouse Over Event for a Graph

The currently available responses for a mouse over event when the active MVC object’s model
is a graph are show tooltips over nodes, or no action. The default is for nothing to happen.

Using the GUI

To see the callback functions that can be set to the mouse over event when the active MVC
contains a graph, first set the active MVC to CLLgo and then highlight the Event menu and
select the Set Mouse Over menu item. Alternatively, the user can press Ctrl-S to activate the
Set Mouse Over menu item. The control window now looks as shown in Figure 32.

Figure 32: Setting the Mouse Over Event for a Graph

Using the Command Line

To see the callback functions that can be set to the mouse over event, call the function,
getDescForEvent, with a parameter of “mouseOver”. This function returns the descriptions of
all possible callback functions for a certain event. It is this character string (the description)
that is used as the shortName parameter in the setCallFunc function.

> setActiveMVC("CLLgo")

> getDescForEvent("mouseOver")

Showing Tooltips over Nodes

We will look at each callback function one at a time. First, let’s set the mouse over event to
cause tooltips to appear over a node.

Using the GUI

51

To do this choose the “show tooltips over nodes” radio button and click the Set button (after
choosing the Set Mouse Over menu item from the Event menu). A new window appears that
allows the user to choose what tooltips appear over the points. Currently, the user can choose
the node names or any of the node attributes as the tooltips (if a graph has no node attributes,
then the user can only choose the node names). The window that appears for CLLgo is shown
in Figure 33.

Figure 33: Tooltip Options for a Graph

Choose the “Node Names” radio button and click the Set Tooltips button.

Using the Command Line

To set the mouse over event to show tooltips using the command line, call the function,
setCallFunc, with “mouseOver” as the first parameter and “show tooltips over nodes” as the
second parameter. The default value for the tooltips is to show the node names of the graph.
If the user wants to use different values for the tooltips (to a node attribute for example),
then call the function, setTooltips. To see the possible node attribute names, please call the
function, getNodeAttr. To see the current values for the tooltips, call the function, getTooltips.

> setActiveMVC("CLLgo")

> setCallFunc("mouseOver", "show tooltips over nodes")

> getTooltips()

Showing Tooltips

Now go to a plot of CLLgo and move the cursor over the nodes (make sure the device is active
by clicking on the plot first). A tooltip appears with the node name of that node in the tooltip
window. Note that this is the one callback function where the views are not linked. Tooltips
appear over the nodes in the active plot, but nothing happens in the other plots.

Figure 34 shows a tooltip (for node “GO:0045028”) over a node on the plot of CLLgo. In this
instance, using ‘Term’ as the tooltips will be more helpful than the node names because the
GO terms are more descriptive than the GO Ids (which are the node names).

No Action

The last option and the default is to have no response to a mouse over event. When the first
view of the active data set is created, no response occurs when the cursor moves over the plot.
If the user decides to show tooltips in response to a mouse over event, the user can always
reset the response to be nothing for the mouse over event.

52

Figure 34: Showing Tooltips Over Nodes

Using the GUI

To do this choose the “no action” radio button and click the Set button on the control window
(after choosing the Set Mouse Over menu item under the Event menu).

Using the Command Line

To set the mouse over event to have no response using the command line, call the function,
setCallFunc, with “mouseOver” as the first parameter and “” as the second parameter.

10.4.3 Mouse Over Event for an ExprSet

If the active MVC object’s model contains an ExpressionSet, then there are no options for the
response to a mouse over event. At this time, no callback functions have been created for this
event.

Using the GUI

To see that there are no potential callback functions for the mouse over event when the active
MVC contains an ExpressionSet, first set the active MVC to CLL and then highlight the Event
menu and select the Set Mouse Over menu item. Alternatively, the user can press Ctrl-S to
activate the Set Mouse Over menu item. The control window now looks as shown in Figure
35.

53

Figure 35: Setting the Mouse Over Event For an ExprSet

Using the Command Line

To see the callback functions that can be set to the mouse over event, call the function,
getDescForEvent, with a parameter of “mouseOver”. This function returns the descriptions of
all possible callback functions for a certain event. It is this character string (the description)
that is used as the shortName parameter in the setCallFunc function.

> setActiveMVC("CLL")

> getDescForEvent("mouseOver")

10.4.4 Mouse Over Event for a GSE (Gene Set Enrichment) Model

The currently available responses for a mouse over event when the active MVC object’s model
is a GSE (gene set enrichment data) are show tooltips over points, highlight points as cursor
moves over them, or no action. The default is for nothing to happen.

All of these responses to a mouse over event have been described in Section 10.4.1 so please
look at that section for more information on these responses. The only difference for a GSE
is that the available tooltips are now the ‘Gene Set Names’, the ‘gene set test statistics’, and
any model variables that have been created. The default tooltip values are to show the ‘Gene
Set Names’.

11 Editing Data

11.1 Deleting a MVC Object

If the user decides that one of the loaded MVC objects is no longer of interest, then the user has
the option of deleting this MVC object. Only MVC objects that are not active can be deleted.
Thus, if the user wants to delete a MVC object that is currently active, the user needs to set

54

another MVC object to be active first. Setting the active MVC object was discussed in Section
4.

If only one MVC object is loaded, then no MVC objects can be deleted. When there is only one
MVC object that means the one MVC object must be the active MVC object and the active MVC
object cannot be deleted.

Deleting a MVC object removes all aspects of the MVC object. In other words, the data are
removed, all views of this data set are closed, and any information pertaining to this MVC
object is deleted. This is not reversible. Note that if the user wants to delete all MVC objects,
then the user should quit the program. See Section 12 for more information on quitting.

Linked data sets were mentioned in Section 1.1 and how they are created was discussed in
Section 5. They are mentioned here because by deleting a MVC object, the user may affect data
sets that are linked. The example given in Section 1.1 was microarray data that is linked to
meta-data, such as a Gene Ontology (GO) graph. This linking shows a parent-child relationship
between the two data sets. The parent data set is the microarray data and the child data set
is the GO graph because the terms included in the GO graph are determined from the data in
the microarray. Since there is a one-to-one relationship between a data set and a MVC object
(as discussed in Section 4), that means there is a parent MVC and a child MVC. The parent MVC
object contains the microarray data in its model and the child MVC object contains the GO
graph in its model. Thus, if the MVC object containing the microarray data is deleted, then
the MVC object containing the GO graph no longer has a parent MVC object. Users must be
careful when deleting a MVC object that they are not deleting a relationship they are interested
in studying.

Using the GUI

Select the Delete MVC menu item under the Edit menu or press Ctrl-E. If there is more than
one MVC object loaded, then a new window appears with the names of the non-active MVC
objects. Users can then choose one of the non-active MVC objects to delete by selecting the
radio button next to the MVC object that they want to delete and clicking the Delete button.

Using the Command Line

To delete a non-active MVC object from the command line, call the function, deleteMVC. The
only parameter that is required by this function is the name of the MVC object to delete. If the
user is not aware of the names of the loaded MVC objects, the user can call getModelNames to
see the names of the loaded MVC objects. If the user wants to see the active MVC object’s name,
the user can call getActiveMVC. Recall that the active MVC object cannot be deleted.

> loadData(USJudgeRatings, "USJudges", "data.frame")

> getModelNames()

> getActiveMVC()

> deleteMVC("USJudges")

> getModelNames()

55

11.2 Creating the Model Graph

To help the user quickly see the relationships between the loaded MVC objects, the user can
create a graph of the loaded MVC objects. In this graph, the nodes represent loaded MVC objects
and edges indicate linking between the models stored in the MVC objects. Any MVC objects that
are related are linked by a directed edge with the edge starting at the node of the parent MVC
object and ending at the node of the child MVC object. If there is no linking between any of
the loaded MVC objects, then the graph has no edges. Creating linked MVC objects is discussed
in Section 5.

When this graph is plotted, the node that represents the active MVC object is colored red so
that the user can quickly see which MVC is active. If the user changes the active MVC while the
plot is open, the plot is updated to reflect the new active MVC. Also, if new MVC objects are
loaded, the plot is updated with a new node to represent the new MVC object.

Currently, three MVC objects have been loaded in the code in Section 3 and five MVC objects
have been created as child MVCs in the code in Section 5. Thus, there is linking between these
objects as five of the MVCs are children of the three loaded MVCs.

Using the GUI

Select the Create Model Graph menu item under the Edit menu or press Ctrl-G. A new window
opens that contains a plot of the model graph. The active MVC object is represented as a red
colored node. This plot, which is shown in Figure 36, is not interactive.

Figure 36: The Model Graph

Using the Command Line

56

To create the model graph from the command line, there are two functions the user can call:
createModelGraph and plotModelGraph. createModelGraph returns the model graph object, but
does not plot the graph. plotModelGraph creates a plot of the model graph. Neither function
requires any parameters. The only reason a user may want to call createModelGraph is if
the user wants direct access to the graph object (for example, to use a different layout when
plotting the graph).

> setActiveMVC("USArrests")

> x <- createModelGraph()

> plotModelGraph()

> setActiveMVC("testGraph")

11.3 Showing Hidden Values

If the user has hidden values for the active MVC, then these values can be reshown using the
Show Hidden Values menu item under the Edit menu (or alternatively by typing Ctrl-H) or by
using the showHiddenValues function. If the active MVC contains a data frame, then the hidden
values will be row names; if the active MVC contains a graph, then the hidden values will be
nodes; if the active MVC contains an ExpressionSet, then the hidden values will be genes; and
if the active MVC contains a GSE, then the hidden values will be gene sets.

Using the Show Hidden Values menu item or the showHiddenValues function is particularly
useful when the active MVC contains an ExpressionSet and it has hidden genes. The only way
to reshow these hidden genes is through this functionality. Please see Section 10.1.4 for more
information on hiding a gene.

Using the GUI

Select the Show Hidden Values menu item under the Edit menu or press Ctrl-H. If the active
MVC has hidden values in its model, then a new window will appear that allows the user to
select which hidden values to show. This new window was shown in Figure 19. If the active
MVC has no hidden values, then nothing will happen when the Show Hidden Values menu item
is selected.

Using the Command Line

To show hidden values from the command line, call the function, showHiddenValues. To see
which values are hidden for the active MVC, call the function, getHiddenValues. Please see the
man pages for these functions for more information.

> setActiveMVC("CLL")

> hidVal <- getHiddenValues()

> showHiddenValues(hidVal)

57

12 Quitting

Using the GUI

When the user is ready to quit, select the Quit menu item under the File menu or press Ctrl-Q.
A message box appears that asks if the user really wants to quit, as shown in Figure 37. By
clicking the Yes button, all windows such as plots as well as the control window are closed.
Also all data sets that have been loaded are removed so there are no loaded MVCs once the user
has quit.

Figure 37: Quitting iSNetwork

Using the Command Line

To quit using the command line, call the function, quitiSNetwork. The quitiSNetwork function
closes all views and removes all loaded data. This action is not reversible. Please see the man
page for quitiSNetwork for more information.

13 Command Line Functions

Most of the command line functions have been described in the previous sections according to
their functionality, but a quick review is given here. All of the operations that can be performed
through the GUI can also be performed using the R command line. To find more information
about any of the command line functions, please see their man pages.

The load data function is loadData. Please see Section 3.2 for more information.

If an ExpressionSet data set is loaded with an empty annotation slot, then the setChipType
function sets this information, which is needed if the user wants to see gene symbols (rather
than Affymetrix identifiers) on the heatmap view of the data.

To load model variables to an already loaded model, call the function, loadModelVar. To see
the loaded model variables, call the function, getModelVar. Please see Section 3.3 for more
information.

To see what the active MVC object is, the user can call getActiveMVC and to set the active MVC
object, the user can call setActiveMVC. Please see Section 4.2 for more information.

To create views of the active MVC’s model, there are many functions depending on the model
in the active MVC. If the active MVC contains a data frame model, then there are two functions:
createSpreadsheet, which creates a spreadsheet, and createSPlot, which creates a scatter plot.

58

Please see Sections 7.1.2 and 7.2.2 for more information. If the active MVC contains a graph
model, then there are two functions: createGraphPlot, which creates a plot of the graph, and
createSpreadsheet, which creates a spreadsheet of the node attributes. Please see Section 8.1.2
for more information. If the active MVC contains an ExpressionSet model, then there is one
function to create a view: createHeatmap, which creates a heatmap of the expression data.
Please see Section 9.1.2 for more information. If the active MVC contains a GSE model, then
there are two functions to create views: createQQplot, which creates a qq-plot for the gene set
statistics (using the qqnorm function), and createSpreadsheet, which creates a spreadsheet view
of information on the gene sets.

There are several functions to help a user link a callback function to an event. The getEvents
function returns the names of the events that can have callback functions linked to them (cur-
rently the events are leftButtonClick, middleButtonClick, rightButtonClick, and mouseOver).
The getDescForEvent function returns all possible callback functions for an event (note that
this function does not return the “no action” option, though that is an option). Finally, the
setCallFunc actually links a callback function to an event. The setCallFunc function provides
the same functionality as all of the menu items under the Event menu. Please see Section 10
for more information.

Note that a few callback functions require some extra information. These callback functions
are color a point, color a node, color a gene and show tooltips. For coloring a point, coloring
a node and coloring a gene, the users must say which color should be used and for showing
tooltips, users must say what the tooltips should show (for example, row names, values from a
column in the data, node names, node attributes, or model variables). To allow users to input
this information, there are two command line functions: setColor and setTooltips. Also, if users
want to know what these values are set to, they can call getColor or getTooltips. For a graph,
the tooltips can be either the node names or a node attribute. To see the names of the node
attributes, call the function, getNodeAttr. For more information on these callback functions,
see Section 10.1.1 for coloring a point, see Section 10.1.3 for coloring a node, Section 10.1.4 for
color a gene, and see Sections 10.4.1 and 10.4.2 for showing tooltips.

To delete a MVC object, call the function, deleteMVC. Please see Section 11.1 for more informa-
tion.

To see how the loaded MVC objects are related, call the functions createModelGraph and plot-
ModelGraph. The createModelGraph function creates a graph object where the nodes are the
loaded MVC objects and the edges represent relationships between the MVCs. The edges start
at the parent MVC and end at the child MVC. To see this graph object plotted, call the function
plotModelGraph. Please see Section 11.2 for more information.

To see which values are hidden, call the function, getHiddenValues, and to show these hidden
values, call the function, showHiddenValues. Please see Section 11.3 for more information.

To create linked MVC objects, there are several functions that let the user create child MVCs
from already loaded MVCs. If the active MVC object contains a data frame model, then the
functions to create a child MVC are createSubset and performMDS. Please see Section 5.1 for
more information. If the active MVC contains an ExpressionSet model, then the functions

59

to create a child MVC are createGoGraph, createChrLocGSE, and createKEGGGSE. Please see
Section 5.2 for more information. If the active MVC contains a graph model or a GSE model,
there are currently no methods implemented to create a child MVC. To see what the available
functions are to create a child MVC call the function, getMethodsToCreateChild, which returns
the function names that can create a child MVC for the currently active MVC.

Another method to create a child model is to set the response to a click event on a graph to
create a heatmap (see Section 10.1.3). This response creates a new child model and a heatmap
view of this child model. This new child model must have a name that is unique from all the
other loaded model names. If the user performs this interaction while using the GUI, then an
interface will appear each time the user interacts with a node asking for the name of the new
model. However, if the user is performing this interaction (to create a heatmap from a graph
node) while using the command line, the user must set the model name before each interaction
with a node, using the setModelName function.

To quit the program, call the function, quitiSNetwork. Please see Section 12 for more informa-
tion.

To see the names of the loaded data sets (and thus, the names of the MVC objects), the user
can call the function, getModelNames. This returns all the names of the currently loaded MVC
objects.

To see all of the information about the loaded MVC objects (i.e. the model information, the
view information, and the controller information), the user can call the function, getMVCList.
This function returns a list of all the MVC objects that are currently loaded.

To see the model data for a particular MVC, the user can call the function getData.

To return the MVC object that corresponds with a view, the user can call the function, get-
MVCFromWinNum. This function is available for developers that want to create new callback
functions for an event. In Section 14.2.2, getMVCFromWinNum is called within the new callback
function, changePch. The getMVCFromWinNum function is needed by new callback functions
because a user may interact with a view that is not from the active MVC object. Please see
10 for more information on how a user can interact with views that are not from the active
MVC.

In Section 14 a few more command line functions, which let the user extend the iSNetwork
package’s functionality, are discussed. These functions include addCBFunction to add a callback
function, addMenuItem to add a new menu item to the main menu, addSubMenuItem to add
a new sub menu item, and addNewChildMethod to store a new method to create a child MVC
object.

Also, there are a few functions that pertain to the GUI and these functions are createControl-
Window, which creates the GUI, and resetWinSize, which resets the GUI to its default size.

For information on the accelerator keys that are currently in use, please call the function getKey-
Vals. To remove or add accelerator keys, the user has access to the functions, removeKeyVals
and addToKeyVals, respectively.

60

A couple of functions are exported so that they are available to users of different software.
The function, heatmapNI, is identical to the heatmap function, except now the row and column
side images can be a matrix rather than a vector. The function, chrCats, explains how the
chromosome categories in the MAP environment are converted into a list of categories. For
example, the chromosome location ‘14q22’ would be converted into the locations: 14, 14q,
14q2, and 14q22. Please see the man pages for these functions for more information.

A few functions are not meant to be called by the user. These include loadModel, setToggleX
and setToggleY.

14 Extensibility in the iSNetwork Package

Having an extensible design was one of the goals for the iSNetwork package discussed in Section
1.1. Thus, there are several places where users can make additions based on the needs of their
data. Some of the additions can be done directly at the R command line, such as adding new
menus and menu items to the GUI, and adding potential callback functions for an event, while
other additions are more complicated and require extending the code in the iSNetwork and/or
the MVCClass package. Additions that require extending code in a package include creating
new model or view classes and adding new events that views respond to. All of these possible
ways of extending the functionality of the iSNetwork package are discussed in the following
sections. All extensions of the iSNetwork package only require the user to program in R.

14.1 Adding New Model or View Classes

Currently in the iSNetwork package, the user has access to four types of models: data frame
(or matrix), graph, ExpressionSet and GSE (gene set enrichment). For the data frame model,
the user can create a spreadsheet view and a scatter plot view. For the graph model, the user
can create a plot of the graph with different layout methods or node shapes and a spreadsheet
of the node attributes. For the ExpressionSet model, the user can create a heatmap view. For
the GSE model, the user can create a qq-plot for the gene set statistics or a spreadsheet view of
gene set information. If the user wants additional model and view classes to be available, the
user should start by reading the MVCClass and BioMVCClass Vignettes to see which model
and view classes are currently defined in those packages. The MVCClass and BioMVCClass
Vignettes also show the inheritance structure for the classes.

14.1.1 Adding a New Model Class

To add a new model class that the iSNetwork package could use, the user needs to create a
new class definition and potentially generic function definitions that extend the classes in the
MVCClass or the BioMVCClass package. After the new model class is defined, the user needs
to make several extensions to the iSNetwork package. These extensions to the iSNetwork
package include creating definitions for the initialize and the updateModel methods for the

61

new model class. Also, two pieces of code in the iSNetwork package need to be changed: the
loadModel function needs to include the new model type and the GUI for the Load Model menu
item needs to change to include this new type of model (this is set in the setLoadModelView
function).

14.1.2 Adding a New View Class

Similarly to adding a new model class, adding a new view class requires the user to create a
new class definition and potentially generic function definitions that extend the MVCClass and
BioMVCClass packages. For example, if the user wants to create a view class for a histogram,
then the user needs to create a class, which could be called hPlotView, and this new class
inherits from the plotView class. See the MVCClass Vignette for more information on these
view classes.

After the new view class is defined, the user needs to make several extensions to the iSNet-
work package. The user needs to create definitions for the initialize, the updateView, and the
redrawView methods. Depending on the events this new view class should respond to, the user
may also need to create definitions for methods that respond to events, such as a clickEvent or
a motionEvent method. The user also needs to add a menu item to the Display menu using the
setDisplayMenu function, which is currently not exported from the iSNetwork package. The
new Display menu item creates this new view when the menu item is activated. The necessary
steps for adding a histogram view for the data frame model to the iSNetwork package are
detailed in the Use Case below.

Use Case for Adding a Histogram

Primary Actor: Programmer
Scope: iSNetwork and MVCClass Package
Level: Summary
Stakeholders and Interests: Users of iSNetwork
Precondition: Programmer has access to the iSNetwork and MVCClass code
Success Guarantee: A new histogram view, which is an interactive and linked view, is
available to for a data frame model.
Main Success Scenario:

1. Programmer adds a new submenu item to the Display menu on the control window by
adding to the setDisplayMenu function in the iSNetwork package. This submenu item
allows a user to create a histogram view when the active MVC contains a data frame
model.

2. Programmer creates a function that is called when the submenu item (created in step
one) is activated. This function allows the user to choose which variable to plot and
then creates the histogram with the appropriate data from the active model.

3. Programmer creates a new view class that represents a histogram view that extends
the classes in the MVCClass package. This new view class stores information, such as
the column and rows that were used to create the histogram.

62

4. Programmer must define methods for the new histogram view class and these methods
must include an initialize and an updateView method. The initialize method properly
sets up the view, creates the view instance, and makes sure that the view can respond
to certain events, such as key press, delete, focus in, and button clicks (see the next
step). The updateView method updates the view when the model has changed. This
method takes two parameters: object, which is the view object, and vData, which is a
list of the following four elements: row name, column name, old value and new value.
This information passed in the parameters allows the programmer to update the view
so it is synchronized with the model.

5. For the histogram view to be interactive, the view needs to respond to the following
events: key press event, delete event, focus in event, the mouse button press event, and
potentially the mouse over event. The key press event adds accelerators to the view,
the delete event ensures that the view list is current, and the focus in event ensures that
the device is active when the histogram has the focus. The mouse button press event
(to implement, need to create a clickEvent method) and the mouse over event (need to
create a motionEvent method) allow the user to change plot information for the data
(such as the color of a histogram bin) by interacting with the view. Similarly, the motion
notify event, if the programmer wants to respond to it, would let the user interact with
the view by moving the cursor over the view. Responding to these events is set up in
the initialize method for this new view class, which is defined by the programmer.

6. Programmer creates a function that creates the histogram view and is meant to be
called from the command line. This is necessary because users should be able to create
views from both the GUI and the command line.

Extensions:

1. Other events besides those listed in step four may need to be noticed depending on
what interactivity the programmer wants to support.

2. A controller, such as a slider, can be added to the histogram view to control the
histogram bandwidth.

14.2 Adding Events and Callback Functions

14.2.1 Adding a New Event

Currently, callback functions can be linked to four events in the iSNetwork package. These
events are the left button click event, the middle button click event, the right button click event,
and the mouse over event. Other events are being responded to in the iSNetwork package, but
the user is currently not allowed to change the callback function linked to these events. These
events include the delete event, the focus in event, and the key press event. The key press
event is slightly different in that by adding a menu item to the GUI, a new key press event is
added. This is discussed in Section 14.3.

63

If users want to add a new event (like brushing) to this list, they need to perform the following
steps.

1. Add this event to the possEvents variable in the environment, mvcEnv. This variable,
possEvents, is used so that functions in the iSNetwork package know which events
they must potentially respond to. This variable is defined in the setGlobalEnvVariables
function. For example, if the new event was brushing, then “brushing” is added to
the possEvents variable, which already has the values “mouseOver”, “leftButtonClick”,
“middleButtonClick”, and “rightButtonClick”.

2. Add a new variable with the name of the event to the controller of each MVC object.
For example, each controller has a mouseOver variable that stores information on the
mouse over event for that MVC. If the new event is brushing, then the new variable in
the controller is called brushing. This step is done by adding the new variable to the
setControllerDefaults function.

3. Add a new menu item to the Event menu. When this menu item is activated, it calls
the setCallFunEvent function with the name of the event.

4. Depending on the event, the user may need to add a new signal handler to catch this
event in the initialize method of the views that respond to this event. Currently, all
views have a signal handler to catch the button click events and the mouse over event.

5. The user also has to add a new method for this event. For example, the signal handler
for the mouse over event on the scatter plot view calls the motionEvent method for the
scatter plot view. A similar method needs to be defined for all views that respond to
this new event. Note that by adding a new method, a new generic function must also
be defined.

14.2.2 Adding a new callback function

To add a callback function for an event that is currently available, the user can call the func-
tion, addCBFunction, from the command line. The addCBFunction function can add potential
callback functions for the following events: mouseOver, leftButtonClick, middleButtonClick,
and rightButtonClick.

The addCBFunction function has five parameters, which are callFunction, shortName, prepro-
cessingFun, eventLists, and typeModel. The callFunction parameter is the name of the callback
function, the shortName parameter is a short description of what the callback function does,
the preprocessingFun parameter is a vector of function names that must be called before the
callback function, the eventLists parameter is a vector of event names that this callback func-
tion can be linked to, and the typeModel parameter is the types of models that this callback
function can work with (for now the options are“graphModel”, “dfModel”, “exprModel”, and/or
“gseModel” because views of these models are interactive).

The callback function that is given in the callFunction parameter must take only one argument.
That one argument must be one of the following: type character to represent a row name from

64

the data frame if the callback function acts on a MVC that contains a dfModel, type character
to represent a node name from the graph if the callback function acts on a MVC that contains
a graphModel, type character to represent a gene name from the ExpressionSet if the callback
function acts on a MVC that contains an exprModel, or type character to represent a gene set
name from the GSE if the callback function acts on a MVC that contains a gseModel. In other
words, the one parameter of the callback function must be of a type that makes sense for the
data stored in the model. The callback function must create and handle a gUpdateDataMessage
so that the data is updated.

Not all callback functions need preprocessing functions so the preprocessingFun parameter can
be set to NULL. If the callback function needs some information besides its one parameter,
then the callback function must have one or more preprocessing functions. For example, when
the callback function is to color a point, there must be a preprocessing function that has users
set the color they want to use.

Currently, the eventLists parameter can be a vector containing one or more of the following
events: “mouseOver”, “leftButtonClick”, “middleButtonClick”, and “rightButtonClick”. These
are the events in the iSNetwork package that the user can change the response to.

Note that certain callback functions only make sense with views of certain types of models.
For example, if the callback function colors a node, then the only type of model this works
with is a graph so the typeModel parameter is set to “graphModel”.

The following code adds a callback function that lets the user change the plotting character of
a point. The new callback function, which is called changePch, is first defined and then a call
to the addCBFunction function is made. In the call to addCBFunction, the callback function
is “changePch”, the description is “change the plotting character”, the preprocessing functions
are set to NULL, the events this callback function can be linked to are any of the button
click events (“leftButtonClick”, “middleButtonClick”, and “rightButtonClick”), and the type of
model is “dfModel”. In this callback function example, the new plotting character has been
set to a triangle by hard coding the new pch value in the code: newPchValue<-2. Most likely
a preprocessing function should instead be used to let the user decide what the new plotting
character is.

> changePch <- function(rowName) {

+ curMVC <- getMVCFromWinNum()

+ virtualData <- virtualData(model(curMVC))

+ colName <- "pch"

+ colIndex <- match(colName, colnames(virtualData))

+ rowIndex <- match(rowName, rownames(virtualData))

+ newPchValue <- 2

+ mData <- as.list(newPchValue)

+ names(mData) <- rowName

+ dfMessage <- new("gUpdateDataMessage", type = colName, mData = mData,

+ dataName = modelName(model(curMVC)), from = "")

+ handleMessage(dfMessage)

65

+ }

> addCBFunction(changePch, "change the plotting character", NULL,

+ c("leftButtonClick", "middleButtonClick", "rightButtonClick"),

+ typeModel = "dfModel")

> setActiveMVC("USArrests")

> getDescForEvent("leftButtonClick")

Now this callback function can be linked to the left button click event, for example, by using
the Set Left Button Click menu item under the Event menu on the GUI or by calling the
function, setCallFunc. Once the changePch function has been linked to the left button click
event, then the user can left click on a point in a scatter plot and the point is redrawn as a
triangle.

14.3 Adding Menu Items

If the user wants to add menu items to the main menu on the control window from the R
command line, then the following two R functions allow the user to do that: addMenuItem and
addSubMenuItem.

14.3.1 Adding Menu Items

The function addMenuItem adds a menu item to the menu bar on the control window. Thus,
the new menu item appears after Window on the menu bar (the menu items on the menu bar
are File, Edit, Display, Event, and Window).

To add an accelerator to this menu item, place an underscore before the letter that you want
to be the accelerator. In the following code example, the accelerator is ‘N’ because there is an
underscore placed before the ‘N’ in New.

The default modifier type for adding a menu item (parameter modType) is the Alt button.
Thus, for the new menu item that the following code creates, the accelerator is Alt-N. See the
man page for addMenuItem for descriptions of the function’s parameters.

> addMenuItem(menuName = "new", labelText = "_New")

After performing the above code, the control window looks as shown in Figure 38.

14.3.2 Adding Sub Menu Items

If instead the user wants to add a sub menu item to an already existing menu, then the user
should call the function addSubMenuItem. Examples of sub menu items that are already in the
main menu are Load Model, Create Child Model, and Quit under the File menu.

66

Figure 38: Adding a Menu Item

Again, to add an accelerator to the sub menu item, place an underscore before the letter that
you want to be the accelerator. In the following code example, the accelerator is ‘N’ because
the underscore appears before the letter ‘N’ in Different.

The default modifier type for adding a sub menu item (parameter modType) is the Ctrl button.
Thus, for the new sub menu item that the following code creates, the accelerator is Ctrl-N. See
the man page for addSubMenuItem for descriptions of the function’s parameters.

Also, the user must give a character string for action (the third parameter) that corresponds
to the name of a function that is called when this sub menu item is activated. This function
may have parameters. In the code below, action is set to “testfun”, the name of the function
that is defined in the following code chunk.

In the following example, the sub menu item, Different, is added to the menu item, New.

> testfun <- function() {

+ w <- gtkWindow(show = FALSE)

+ lab <- gtkLabel("It works!")

+ w$Add(lab)

+ w$Show()

+ }

> addSubMenuItem(menuName = "new", labelText = "Differe_nt Ctrl+N",

+ action = "testfun")

If the user now chooses the Different menu item from the New menu, then a new window opens
that says “It works!”.

67

14.4 Adding Methods to Create Child MVCs

Adding a new method to create a child MVC means that at least three functions must be created.
The first function creates the new child MVC object and the other two functions must link this
new MVC object to its parent. Two functions are needed for linking because one function must
link parent MVC to the child MVC and the second function must link child MVC to the parent
MVC. More details on each of these three functions are given in the following sections. Then an
example is given at the end.

14.4.1 Creating the Function to Create a New MVC

The first function, which creates a new MVC, starts with the active MVC and performs some type
of action to create a new model from the active model (examples include creating a subset,
performing MDS, etc.). Then with this new model, this first function creates and handles a
gAddChildMessage object to create the new MVC object. Information about objects of class
gAddChildMessage can be found in the MVCClass Vignette. The gAddChildMessage class
has three slots: dataName, which is the name of the new MVC; mData, which is a list that
contains the model data and virtual data to fill slots in the model; and type, which is the type
of model (currently, the options are ‘ExpressionSet”, “graph”, “data.frame”, or “GSE”). When
a gAddChildMessage object is initialized, these three slots must be filled. To actually create
the new MVC object, the gAddChildMessage object must be handled. This is performed by
calling the handleMessage method with four parameters. The signature for the handleMessage
method actually only expects one parameter: the gAddChildMessage object, but three more
parameters are needed to correctly initialize the new MVC object. These three parameters are
toParent, fromParent, and subsetParentData. toParent is the function that links from child
MVC to parent MVC, fromParent is the function that links from parent MVC to child MVC, and
subsetParentData tells which values from the parent model were used to create the child
model. These parameters to the handleMessage method must be named toParent, fromParent,
and subsetParentData. Please see the code in Section 14.4.4 for an example of a call to
the handleMessage method. The next few sections give more information on the toParent,
fromParent, and subsetParentData parameters.

14.4.2 Creating a Function to Link Child to Parent MVC

The toParent function takes an object of class gSendParentMessage as its one parameter.
The gSendParentMessage object contains the update data message that was used on the child
MVC’s model. The purpose of the toParent function is to convert this update data message from
the child into an update data message that works for the parent MVC. Thus, the toParent function
decides which elements of the parent model correspond to the elements in the child model that
just changed. Then the toParent function creates a gUpdateDataMessage object that tells the
parent MVC how it should be updated. It is the newly created gUpdateDataMessage for the
parent MVC that is the return value from the toParent function. In the example code in Section
14.4.4 the toParent function is linkToParentByNodeName.

68

14.4.3 Creating a Function to Link Parent to Child MVC

The fromParent function takes an object of class gSendChildMessage as its one parameter. The
gSendChildMessage object has two slots: the parentUpdateDataMessage slot, which contains
the update data message that was used on the parent MVC, and the childName slot, which
contains the name of the child MVC object that needs to be updated. The childName slot is
needed because a MVC object can have more than one child MVC.

The purpose of the fromParent function is to convert this update data message from the par-
ent into an update data message for the child MVC object that is named in the childName slot.
Thus, the fromParent function must decide which elements in the child model correspond to the
elements in the parent model that just changed. Also recall that a child model may have been
created without using all of the data from the parent model. Thus, this function also needs
to take into account if the element that just changed in the parent was actually used in the
creation of the child. If for example, node ”a” changed in the parent, but node ”a”was not used
to create the child, then there is no need to create an update data message for the child. That
is why one of the parameters to the handleMessage method for gAddChildMessage must be sub-
setParentData, as mentioned in Section 14.4.1. Thus, the fromParent function first determines
if the element that changed in the parent was used to create the child and if it was, then the
fromParent function must convert the parent element into the corresponding child element that
should be updated. Finally, the fromParent function creates a gUpdateDataMessage object
that tells the child MVC how it should be updated and it is the gUpdateDataMessage that is the
return value from the fromParent function. If the element that changed in the parent model
was not used in the creation of the child model, then the fromParent function returns NULL.
In the example code in Section 14.4.4 the fromParent function is linkToChildByNodeName.

14.4.4 Example of Creating a Method to Create a Child MVC

The following is a method to create a subgraph child MVC from a graph parent MVC. First the
two link functions are defined (these are called linkToParentByNodeName and linkToChildByN-
odeName). Then the function that actually creates the child MVC is defined and it is called
createSubGraph.

Note that this method to create a child can only be used at the command line. The code
shown below does not force this method to appear on the GUI. To have the function show on
the GUI, the user has to change the variable, createChild, that is stored in the controller slot
of the graph MVCs and the user needs to define a function that lets the user decide the node
names for the subgraph through the GUI.

The function, addNewChildMethod, stores this new method to create a child MVC and ensures
that it is an option that appears when the user calls getMethodsToCreateChild from the com-
mand line.

> linkToParentByNodeName <- function(updateParentMessage) {

+ curchildUpdateDataMessage <- childUpdateDataMessage(updateParentMessage)

69

+ childName <- dataName(curchildUpdateDataMessage)

+ allMVCs <- getMVCList()

+ allMVCNames <- unlist(lapply(allMVCs, function(x) {

+ x@model@modelName

+ }))

+ mvcIndex <- match(childName, allMVCNames)

+ childMVC <- allMVCs[[mvcIndex]]

+ parentName <- parentMVC(childMVC)

+ curtype <- type(curchildUpdateDataMessage)

+ data <- mData(curchildUpdateDataMessage)

+ parentMessage <- new("gUpdateDataMessage", type = curtype,

+ mData = data, dataName = parentName, from = childName)

+ return(parentMessage)

+ }

> linkToChildByNodeName <- function(updateChildMessage) {

+ curparentUpdateDataMessage <- parentUpdateDataMessage(updateChildMessage)

+ parentName <- dataName(curparentUpdateDataMessage)

+ curChildName <- childName(updateChildMessage)

+ allMVCs <- getMVCList()

+ allMVCNames <- unlist(lapply(allMVCs, function(x) {

+ x@model@modelName

+ }))

+ mvcIndex <- match(curChildName, allMVCNames)

+ curChildMVC <- allMVCs[[mvcIndex]]

+ childModelData <- modelData(model(curChildMVC))

+ childNodeNames <- nodes(childModelData)

+ curtype <- type(curparentUpdateDataMessage)

+ data <- mData(curparentUpdateDataMessage)

+ changeNodes <- names(data)

+ if (any(changeNodes %in% childNodeNames)) {

+ if (all(changeNodes %in% childNodeNames))

+ childMessage <- new("gUpdateDataMessage", type = curtype,

+ mData = data, dataName = curChildName, from = parentName)

+ else {

+ curIndex <- which(changeNodes %in% childNodeNames)

+ childMessage <- new("gUpdateDataMessage", type = curtype,

+ mData = data[curIndex], dataName = curChildName,

+ from = parentName)

+ }

+ return(childMessage)

+ }

+ else return(NULL)

+ }

> createSubGraph <- function(newModelName, nodeNames) {

+ aMVC <- getActiveMVC()

70

+ if (aMVC != "") {

+ allMVCs <- getMVCList()

+ allMVCNames <- unlist(lapply(allMVCs, function(x) {

+ x@model@modelName

+ }))

+ mvcIndex <- match(aMVC, allMVCNames)

+ curMVC <- allMVCs[[mvcIndex]]

+ controlEnv <- controller(curMVC)

+ curModelData <- modelData(model(curMVC))

+ if (is(curModelData, "graph")) {

+ curData <- getData(aMVC)

+ if (any(nodeNames %in% nodes(curData))) {

+ curIndex <- match(nodeNames, nodes(curData))

+ curIndex <- curIndex[!is.na(curIndex)]

+ nodesToUse <- nodeNames[nodeNames %in% nodes(curData)]

+ subData <- subGraph(nodesToUse, curData)

+ subVirData <- virtualData(model(curMVC))[curIndex,

+]

+ newAddChildMessage <- new("gAddChildMessage",

+ dataName = newModelName, type = "graph", data = list(data = subData,

+ virtualData = subVirData))

+ handleMessage(newAddChildMessage, toParent = linkToParentByNodeName,

+ fromParent = linkToChildByNodeName, subsetParentData = nodeNames)

+ assign("childName", "", controlEnv)

+ print(paste(newModelName, "data set has been loaded."))

+ }

+ }

+ }

+ }

> addNewChildMethod("createSubGraph", "Create Sub Graph", "graphModel")

> setActiveMVC("testGraph")

> getMethodsToCreateChild()

> createSubGraph("testGrSub", nodeNames = c("a", "b", "c", "e",

+ "g", "i"))

> setActiveMVC("testGrSub")

References

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, Boston, 1995.

Emden Gansner and Stephen North. An Open Graph Visualization System and its Applications
to Software Engineering. Software: Practice and Experience, 30(11):1203–1233, 2000.

Aravind Subramanian, Pablo Tamayo, Vamsi K. Mootha, and et al. Gene set enrichment anal-

71

ysis: A knowledge-based approach for interpreting genome-wide expression profiles. Pro-
ceedings of the National Academy of Sciences, 102:15545–15550, 2005.

Deborah Swayne, Di Cook, Andreas Buja, and Duncan Temple Lang. GGobi Manual, February
2002.

Deborah Swayne, Andreas Buja, and Duncan Temple Lang. Exploratory Visual Analysis of
Graphs in GGobi. In Proceedings of the 3rd International Workshop on Distributed Statistical
Computing (DSC 2003), Vienna, Austria, 2003.

Luke Tierney. LISP-STAT: An Object-Oriented Environment for Statistical Computing and
Dynamic Graphics. Wiley-Interscience, 1990.

Elizabeth Whalen and Robert Gentleman. Generalizing the Model View Controller Paradigm.
PhD thesis, Harvard University, 2006a.

Elizabeth Whalen and Robert Gentleman. Interactive Analysis and Visualization of Microarray
Data. PhD thesis, Harvard University, 2006b.

72

	Overview
	Goals and Definitions
	Required Packages
	GUI versus Command Line Functions

	Getting Started
	Opening the GUI

	Loading Data
	Loading Data Through the GUI
	Loading Data Through the Command Line
	Loading Model Variables
	Loading Model Variables Through the GUI
	Loading Model Variables Through the Command Line

	Setting the Active MVC
	Setting the Active MVC Through the GUI
	Setting the Active MVC Through the Command Line

	Creating a Child MVC Object
	The Active MVC Contains a Data Frame
	Create a Subset
	Perform Multidimensional Scaling (MDS)

	The Active MVC Contains an ExpressionSet
	Create a GO Graph
	Perform Gene Set Enrichment Using Chromosome Location as Categories
	Perform Gene Set Enrichment Using KEGG Pathways as Categories

	The Active MVC Contains a Graph
	The Active MVC Contains a GSE

	Creating Views
	Views of Data Frames
	Creating Spreadsheets
	Creating a Spreadsheet Through the GUI
	Creating a Spreadsheet Through the Command Line

	Creating Scatter Plots
	Creating a Scatter Plot Through the GUI
	Creating a Scatter Plot Through the Command Line

	Views of Graphs
	Plotting a Graph
	Plotting a Graph Through the GUI
	Plotting a Graph Through the Command Line

	Viewing Node Data

	Views of ExprSets
	Creating a Heatmap
	Creating a Heatmap Through the GUI
	Creating a Heatmap Through the Command Line

	Views of Gene Set Enrichment (GSE) Models
	Creating a QQ Plot
	Creating a QQ Plot Through the GUI
	Creating a QQ Plot Through the Command Line

	Viewing the GSE Data

	Setting Callback Functions to Events
	Setting the Left Button Click
	Left Button Click Event for a Data Frame
	Selecting a Row in a Spreadsheet
	Left Button Click Event for a Graph
	Left Button Click Event for an ExprSet
	Left Button Click Event for a GSE (Gene Set Enrichment) Model

	Setting the Middle Button Click
	Middle Button Click Event for a Data Frame
	Middle Button Click Event for a Graph
	Middle Button Click Event for an ExprSet
	Middle Button Click Event for a GSE (Gene Set Enrichment) Model

	Setting the Right Button Click
	Setting the Mouse Over Event
	Mouse Over Event for a Data Frame
	Mouse Over Event for a Graph
	Mouse Over Event for an ExprSet
	Mouse Over Event for a GSE (Gene Set Enrichment) Model

	Editing Data
	Deleting a MVC Object
	Creating the Model Graph
	Showing Hidden Values

	Quitting
	Command Line Functions
	Extensibility in the iSNetwork Package
	Adding New Model or View Classes
	Adding a New Model Class
	Adding a New View Class

	Adding Events and Callback Functions
	Adding a New Event
	Adding a new callback function

	Adding Menu Items
	Adding Menu Items
	Adding Sub Menu Items

	Adding Methods to Create Child MVCs
	Creating the Function to Create a New MVC
	Creating a Function to Link Child to Parent MVC
	Creating a Function to Link Parent to Child MVC
	Example of Creating a Method to Create a Child MVC

