flowCore: data structures package for flow cytometry data

N. Le Meur F. Hahne B. Ellis P. Haaland

October 3, 2007

Abstract

Background The recent application of modern automation technologies to staining and
collecting flow cytometry (FCM) samples has led to many new challenges in data manage-
ment and analysis. We limit our attention here to the associated problems in the analysis
of the massive amounts of FCM data now being collected. From our viewpoint, see two
related but substantially different problems arising. On the one hand, there is the prob-
lem of adapting existing software to apply standard methods to the increased volume of
data. The second problem, which we intend to address here, is the absence of any research
platform which bioinformaticians, computer scientists, and statisticians can use to develop
novel methods that address both the volume and multidimensionality of the mounting tide
of data. In our opinion, such a platform should be Open Source, be focused on visualiza-
tion, support rapid prototyping, have a large existing base of users, and have demonstrated
suitability for development of new methods. We believe that the Open Source statistical
software R in conjunction with the Bioconductor Project fills all of these requirements.
Consequently we have developed a Bioconductor package that we call flowCore. The flow-
Core package is not intended to be a complete analysis package for FCM data, rather, we
see it as providing a clear object model and a collection of standard tools that enable R
as an informatics research platform for flow cytometry. One of the important issues that
we have addressed in the flowCore package is that of using a standardized representation
that will insure compatibility with existing technologies for data analysis and will support
collaboration and interoperability of new methods as they are developed. In order to do
this, we have followed the current standardized descriptions of FCM data analysis as being
developed under NTH Grant xxxx [n]. We believe that researchers will find flowCore to be
a solid foundation for future development of new methods to attack the many interesting
open research questions in FCM data analysis.

Methods We propose a variety different data structures. We have implemented the classes
and methods in the Bioconductor package flowCore. We illustrate their use with X case

studies.

Results We hope that those proposed data structures will the base for the development
of many tools for the analysis of high throughput flowcytometry.

keywords Flow cytometry, high throughtput, software, standard

1 Introduction

Traditionally, flow cytometry has been a tube-based technique limited to small-scale laboratory
and clinical studies. High throughput methods for flow cytometry have recently been developed

for drug discovery and advanced research methods (Gasparetto et al. 2004)). As an example,
the flow cytometry high content screening (FC-HCS) can process up to a thousand samples
daily at a single workstation, and the results have been equivalent or superior to traditional
manual multiparameter staining and analysis techniques.

The amount of information generated by high throughput technologies such as FC-HCS
need to be transformed into executive summaries (which are brief enough) for creative studies
by a human researcher (Brazmal 2001). Standardization is critical when developing new high
throughput technologies and their associated information services (Brazmay, [2001; Chicurel,
2002; Boguski and McIntosh, |2003). Standardization efforts have been made in clinical cell
analysis by flow cytometry (Keeney et al., 2004)), however data interpretation has not been
standardized for even low throughput FCM. It is one of the most difficult and time consuming
aspects of the entire analytical process as well as a primary source of variation in clinical tests,
and investigators have traditionally relied on intuition rather than standardized statistical in-
ference (Bagwell, 2004; Braylan, 2004; Parks, [1997; [Suni et al., 2003). In the development
of standards in high throughput FCM, few progress has been done in term of Open Source
software. In this article we propose R data structures to handle flow cytometry data through
the main steps of preprocessing: compensation, transformation, filtering.

The aim is to merge both prada and rflowcyt (LeMeur and Hahne, 2006|) into one core
package wich is compliant with the data exchange standards that are currently developed in
the community (Spidlen et al., [2006]).

Visualization as well as quality control will than be part of the utility packages that depend
on the data structures defined in the flowCore package.

2 Representing Flow Cytometry Data

flowCore’s primary task is the representation and basic manipulation of flow cytometry (or
similar) data. This is accomplished through a data model very similar to that adopted by
other Bioconductor packages using the expressionSet and AnnotatedDataFrame structures
familiar to most Bioconductor users.

2.1 The flowFrame Class

The basic unit of manipulation in flowCore is the flowFrame, which corresponds roughly with
a single “FCS” file exported from the flow cytometer’s acquisition software. At the moment we
support FCS file versions 2.0 through 3.0, and we expect to support FCS4/ACS1 as soon as
the specification has been ratified.

2.1.1 Data elements

The primary elements of the flowFrame are the exprs and parameters slots, which contain the
event-level information and column metadata respectively. The event information, stored as
a single matrix, is accessed and manipulated via the exprs() and exprs<- methods, allowing

flowFrames to be stitched together if necessary (for example, if the same tube has been collected
in two acquisition files for memory reasons).

The parameters slot is an AnnotatedDataFrame that contains information derived from an
FCS file’s “§P<n>" keywords, which describe the detector and stain information. The entire
list is available via the parameter () method, but more commonly this information is accessed
through the names, featureNames and colnames methods. The names function returns a
concatenated version of names and featureNames using a format similar to the one employed
by most flow cytometry analysis software. The colnames method returns the detector names,
often named for the fluorochrome detected, while the featureNames methods returns the
description field of the parameters, which will typically be an identifier for the antibody.

The keyword method allows access to the raw FCS keywords, which are a mix of standard
entries such as “SAMPLE ID,” vendor specific keywords and user-defined keywords that add
more information about an experiment. In the case of plate-based experiments, there are also
one or more keywords that identify the specific well on the plate.

Most vendor software also include some sort of unique identifier for the file itself. The
specialized methods identifier attempts to locate an appropriate globally unique identifier
that can be used to uniquely identify a frame. Failing that, this method will return the original
file name offering some assurance that this frame is at least unique to a particular session.

2.1.2 Reading a flowFrame

FCS files are read into the R environment via the read.FCS function using the standard
connection interface—allowing for the possibility of accessing FCS files hosted on a remote
resource as well as those that have been compressed or even retrieved as a blob from a database
interface. FCS files (version 2.0 and 3.0) and LMD (List Mode Data) extensions are currently
supported.

There are also several immediate processing options available in this function, the most
important of which is the transformation parameter, which can either “linearize” (the default)
or “scale” our data. To see how this works, first we will examine an FCS file without any
transformation at all:

> file.name <- system.file("extdata", "0877408774.B08", package = "flowCore")
> x <- read.FCS(file.name, transformation = FALSE)
> summary (x)

FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H Time

Min. 85 11.0 0.0 0.0 0.0 0.00 0.0 1.0
1st Qu. 385 141.0 233.0 277.0 90.0 0.00 210.0 122.0
Median 441 189.0 545.5 346.0 193.0 26.00 279.0 288.0
Mean 492 277.9 439.1 366.2 179.7 34.08 323.5 294.8
3rd Qu. 518 270.0 610.0 437.0 264.0 51.00 390.0 457.5
Max. 1023 1023.0 912.0 1023.0 900.0 1023.00 1022.0 626.0

As we can see, in this case the values from each parameter seem to run from 0 to 1023
(210 — 1). However, inspection of the “exponentiation” keyword ($P<n>E) reveals that some
of the parameters (3 and 4) have been stored in the format of the form a x 10*/# where a is
given by the first element of the string.

> keyword(x, c("$P1E", "$P2E", "$P3E", "$P4E"))

$°$P1E"
[1] "0,0"

$" $P2E"
[1] ||0,0n

$$P3E"
[1] ||4,0|l

$” $P4E"
[1] ||4,0n

The default “linearize” transformation option will convert these to, effectively, have a
(L$P<D>E” Of “0’077:

> summary(read.FCS(file.name))

FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H Time

Min. 85 11.0 1.000 1.00 1.000 0.00 1.000 1.0
1st Qu. 385 141.0 8.148 12.11 2.249 0.00 6.624 122.0
Median 441 189.0 135.800 22.54 5.684 26.00 12.330 288.0
Mean 492 277.9 158.700 106.60 8.488 34.08 141.300 294.8
3rd Qu. 518 270.0 242.700 51.13 10.770 51.00 33.490 457.5
Max. 1023 1023.0 3681.000 10000.00 3304.000 1023.00 9910.000 626.0

Finally, the “scale” option will both linearize values as well as ensure that output values
are contained in [0, 1], which is the proposed method of data storage for the ACS1.0/FCS4.0
specification:

> summary(read.FCS(file.name, transformation = "scale"))
FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H
Min. 0.08309 0.01075 1.009e-04 1.009e-04 1.009e-04 0.00000 1.009e-04
1st Qu. 0.37630 0.13780 1.076e-04 1.115e-04 1.020e-04 0.00000 1.061e-04
Median 0.43110 0.18480 3.397e-04 1.225e-04 1.053e-04 0.02542 1.117e-04
Mean 0.48090 0.27170 2.515e+06 7.566e+31 8.308e+04 0.03331 5.626e+30
3rd Qu. 0.50640 0.26390 8.895e-04 1.585e-04 1.102e-04 0.04985 1.352e-04
Max. 1.00000 1.00000 2.475e+10 1.261e+35 8.308e+08 1.00000 5.626e+34
Time
Min. 0.0009775
1st Qu. 0.1193000
Median 0.2815000
Mean 0.2881000
3rd Qu. 0.4472000
Max. 0.6119000

Another parameter of interest is the alter.names parameter, which will convert the pa-
rameter names into more “R friendly” equivalents, usually by replacing “-” with “.”:

> read.FCS(file.name, alter.names = TRUE)

flowFrame object with 10000 cells and 8 observables:
<FSC.H> FSC-H <SSC.H> SSC-H <FL1.H> <FL2.H> <FL3.H> <FL1.A> <FL4.H> <Time> Time (51.20 sec.)
slot 'description' has 147 elements

When only a particular subset of parameters is desired the column.pattern parameter
allows for the specification of a regular expression and only parameters that match the regular
expression will be included in the frame. For example, to include on the Height parameters:

> x <- read.FCS(file.name, column.pattern = "-H")
> X

flowFrame object with 10000 cells and 6 observables:
<FSC-H> FSC-H <SSC-H> SSC-H <FL1-H> <FL2-H> <FL3-H> <FL4-H>
slot 'description' has 147 elements

Note that column.pattern is applied after alter.names if it is used.
Finally, only a sample of lines can be read in case you need a quick overview of a large serie
of files.

> lines <- sample(100:500, 50)
> y <- read.FCS(file.name, which.lines = lines)

>y

flowFrame object with 50 cells and 8 observables:
<FSC-H> FSC-H <SSC-H> SSC-H <FL1-H> <FL2-H> <FL3-H> <FL1-A> <FL4-H> <Time> Time (51.20 sec.)
slot 'description' has 147 elements

2.1.3 Visualizing a flowFrame

Much of the more sophisticated visualization of flowFrame and flowSet objects, including an
interface to the lattice graphics system is implemented by the flowViz package, also included as
part of Bioconductor. However, flowCore does implement some basic plotting facilities using
the standard plot function. The basic plot provides a simple bivariate density plot of the first
two parameters:

> plot(x)

s | 'l
o _|
S
=
o
o —]
@
o
O —
T o
Q
0
n
o
O —
<
o
o —]
o —]
I I I I I
200 400 600 800 1000
FSC-H

To control the parameters being plotted we can supply a y value in the form of a character
vector:

> plot(x, c("FL1-H", "FL2-H"))

8000 10000
l l

FL2-H
6000
|

4000

2000

I I I I
0 1000 2000 3000

FL1-H

However, if we only supply a single parameter we instead get a univariate histogram, which
also accepts the usual histogram arguments:

> plot(x, "FL1-H", breaks = 256)

Histogram of exprs(X)][, y]

Frequency
2000 3000 4000
l

1000

'

[I I |
0 1000 2000 3000

exprs(x)[, Y]

2.2 The flowSet Class

Most experiments consist of several flowFrame objects, which are organized using a flowSet
object. This class provides a mechanism for efficiently hosting the flowFrame objects with min-
imal copying, reducing memory requirements, as well as ensuring that experimental metadata
stays properly to the appropriate flowFrame objects.

2.2.1 Creating a flowSet

To facilitate the creation of flowSet objects from a variety of sources, we provide a means to
coerce list and environment objects to a flowSet object using the usual coercion mechanisms.
For example, if we have a directory containing FCS files we can read in a list of those files and
create a flowSet out of them:

> frames <- lapply(dir(system.file("extdata", "compdata", "data",
+ package = "flowCore"), full.names = TRUE), read.FCS)
> as(frames, '"flowSet'")

A flowSet with 5 experiments.

An object of class "AnnotatedDataFrame"
rowNames: V1, V2, ..., V5 (5 total)
varLabels and varMetadata description:

name: Name

column names:
FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H

Note that the original list is unnamed and that the resulting sample names are not particu-
larly meaningful. If the list is named, the list constructed is much more meaningful. One such
approach is to employ the keyword method for flowFrame objects to extract the “SAMPLE
ID” keyword from each frame:

> names (frames) <- sapply(frames, keyword, "SAMPLE ID")
> fs <- as(frames, "flowSet")
> fs

A flowSet with 5 experiments.

An object of class "AnnotatedDataFrame"
rowNames: 7AAD, apc, ..., pe (5 total)
varLabels and varMetadata description:

name: Name

column names:
FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H

2.2.2 Working with experimental metadata

Like most Bioconductor organizational classes, the flowSet has an associated AnnotatedDataFrame
that provides metadata not contained within the flowFrame objects themselves. This data
frame is accessed and modified via the usual phenoData and phenoData<- methods. You
can also generally treat the phenotypic data as a normal data frame to add new descriptive
columns. For example, we might want to track the original filename of the frames from above

in the phenotypic data for easier access:

> phenoData(fs)$Filename <- fsApply(fs, keyword, "$FIL")
> pData(phenoData(fs))

name Filename
TAAD 7AAD 060909.005
apc apc 060909.004
fitc fitc 060909.002
NULL NULL 060909.001
pe pe 060909.003

Note that we have used the flowSet-specific iterator, £sApply, which acts much like sapply
or lapply. Additionally, we should also note that the phenoData data frame must have row
names that correspond to the original names used to create the flowSet.

2.2.3 Bringing it all together: read.flowSet

Much of the functionality described above has been packaged into the read.flowSet conve-
nience function. In it’s simplest incarnation, this function takes a path, that defaults to the
current working directory, and an optional pattern argument that allows only a subset of files
contained within the working directory to be selected. For example, to read a flowSet of the
files read in by frame above:

> read.flowSet(path = system.file("extdata", "compdata", "data",
+ package = "flowCore"))

A flowSet with 5 experiments.

An object of class "AnnotatedDataFrame"
rowNames: 060909.001, 060909.002, ..., 060909.005 (5 total)
varLabels and varMetadata description:
name: Name

column names:
FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H

read.flowSet will pass on additional arguments meant for the underlying read.FCS func-
tion, such as alter.names and column.pattern, but also supports several other interesting
arguments for conducting initial processing:

files An alternative to the pattern argument, you may also supply a vector of filenames to
read.

name.keyword Like the example in the previous section, you may specify a particular key-
word to use in place of the filename when creating the flowSet.

phenoData If this is an AnnotatedDataFrame, then this will be used in place of the data
frame that is ordinarily created. Additionally, the row names of this object will be taken
to be the filenames of the FCS files in the directory specified by path. This argument
may also be a named list made up of a combination of character and function objects
that specify a keyword to extract from the FCS file or a function to apply to each frame
that will return a result.

To recreate the flowSet that we created by hand from the last section we can use read.flowSets
advanced functionality:

> fs <- read.flowSet(path = system.file("extdata", "compdata",
+ "data", package = "flowCore"), name.keyword = "SAMPLE ID",
+ phenoData = list(name = "SAMPLE ID", Filename = "$FIL"))

10

[1] "name" "Filename"
> fs

A flowSet with 5 experiments.

An object of class "AnnotatedDataFrame"
rowNames: 7AAD, apc, ..., pe (5 total)
varLabels and varMetadata description:

name: NA
Filename: NA
additional varMetadata: labelDescription

column names:
FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H

> pData(phenoData(fs))

name Filename
TAAD 7AAD 060909.005
apc apc 060909.004
fitc fitc 060909.002
NULL 060909.001
pe pe 060909.003

2.2.4 Manipulating a flowSet

You can extract a flowFrame from a flowSet object in the usual way using the [[or $ extraction
operators. On the other hand using he [extraction operator returns a new flowSet by copying
the environment. However, simply assigning the flowFrame to a new variable will not copy
the contained frames.

The primary iterator method for a flowSet is the £sApply method, which works more-or-less
like sapply or lapply with two extra options. The first argument, simplify, which defaults
to TRUE, instructs £sApply to attempt to simplify it’s results much in the same way as sapply.
The primary difference is that if all of the return values of the iterator are flowFrame objects,
fsApply will create a new flowSet object to hold them. The second argument, use.exprs,
which defaults to FALSE instructs £sApply to pass the expression matrix of each frame rather
than the flowFrame object itself. This allows functions to operate directly on the intensity
information without first having to extract it.

As an aid to this sort of operation we also introduce the each_row and each_col conve-
nience functions that take the place of apply in the fsApply call. For example, if we wanted
the median value of each parameter of each flowFrame we might write:

> fsApply(fs, each_col, median)

FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H
TAAD 429 133 5.010744 15.029018 63.466061 0 20.970227

11

apc 441 129 4.377753 4.877217 4.790181 0 360.732067
fitc 436 128 936.811048 229.975372 33.490890 217 8.295949
NULL 423 128 4.110368 4.538282 3.656368 0 7.247948
pe 438 120 10.204639 796.655892 114.975700 0 9.326033

which is equivalent to the less readable

> fsApply(fs, function(x) apply(x, 2, median), use.exprs = TRUE)

FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H
TAAD 429 133 5.010744 15.029018 63.466061 0 20.970227
apc 441 129 4.377753 4.877217 4.790181 0 360.732067
fitc 436 128 936.811048 229.975372 33.490890 217 8.295949
NULL 423 128 4.110368 4.538282 3.656368 0 7.247948
pe 438 120 10.204639 796.655892 114.975700 0 9.326033

In this case, the use.exprs argument is not required in the first case because each_col and
each_row are methods and have been defined to work on flowFrame objects by first extracting
the intensity data.

3 Transformation

flowCore features two methods of transforming parameters within a flowFrame: inline and
out-of-line. The inline method, discussed in the next section has been developed primarily
to support filtering features and is strictly more limited than the out-of-line transformation
method, which uses R’s transform function to accomplish the filtering. Like the normal
transform function, the flowFrameis considered to be a data frame with columns named for
parameters of the FCS file. For example, if we wished to plot our first flowFrame’s first two
fluorescence parameters on the log scale we might write:

> plot(transform(fs[[1]], "FL1-H" = log(FL1-H), "FL2-H" = log('FL2-H')),
+ c("FL1-H", "FL2-H"))

12

FL2-H

FL1-H

Like the usual transform function, we can also create new parameters based on the old
parameters, without destroying the old

> plot(transform(fs[[1]], log.FL1.H = log(FL1-H"), log.FL2.H = log("FL2-H")),
+ c("log.FL1.H", "log.FL2.H"))

13

log.FL2.H
3

log.FL1.H

3.1 Standard Transforms

Though any function can be used as a transform in both the out-of-line and inline transfor-
mation techniques, flowCore provides a number of parameterized transform generators that
correspond to the transforms commonly found in flow cytometry and defined in the Transfor-
mation Markup Language (Transformation-ML). Briefly, the predefined transforms are:

a r<a
r T>a

truncateTransform y = {
scaleTransform f(z) = =2
linearTransform f(z)=a+ bx
quadraticTransform f(x) = az? + bz +c

InTransform f(x) = log (z)

logTransform f(x) = log, ()

14

biexponentialTransform f~!(z) = ae?® — ce®™ + f

logicleTransform A special form of the biexponential transform with parameters selected by
the data.

arcsinhTransform f(z) = asinh (a + bx) + ¢

To use a standard transform, first we create a transform function via the constructors
supplied by flowCore:

> aTrans <- truncateTransform('"truncate at 1", a = 1)
> aTrans

An object of class "transform"
function (x)
{

x[x < a] <- a

X

}

<environment: 0x31e8028>
Slot "transformationId":
[1] "truncate at 1"

which we can then use on the parameter of interest in the usual way

> transform(fs, "FL1-H" = aTrans('FL1-H"))
A flowSet with 5 experiments.

An object of class "AnnotatedDataFrame"

rowNames: T7AAD, apc, ..., pe (5 total)
varLabels and varMetadata description:
name: NA

Filename: NA
additional varMetadata: labelDescription

column names:
FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H

4 Filtering

The most common task in the analysis of flow cytometry data is usual some form of filtering
operation, either to obtain summary statistics about the number of events that meet a certain
criteria or to perform further analysis on a subset of the data.

15

4.1 Standard Filters

Most filtering operations are a composition of one or more common filtering operations. Like
transformations, flowCore includes a number of built-in common flow cytometry filters.

The simplest of these filters are the geometric filters, which correspond to those typically
found in interactive flow cytometry software:

rectangleGate Describes a cubic shape in one or more dimensions—a rectangle in one dimen-
sion is simply an interval gate.

polygonGate Describes an arbitrary two dimensional polygonal gate.

polytopeGate Describes a region that is the convex hull of the given points. This gate can
exist in dimensions higher than 2, unlike the polygonGate.

ellipsoidGate Describes an ellipsoidal region in two or more dimensions

These gates are all described in more or less the same manner (see man pages for more
details):

> rectGate <- rectangleGate(filterId = "Fluorescence Region", "FL1-H" = c(50,
+ 100), "FL2-H" = c(50, 100))

We also include some data-driven filters not usually found in flow cytometry software:

norm?2Filter A robust method for finding a region that most resembles a bivariate Normal
distribution.

kmeansFilter Identifies populations based on a one dimensional k-means clustering opera-
tion. Allows the specification of multiple populations.
4.2 Count Statistics

When we have constructed a filter, we can apply it in two basic ways. The first is to collect
simple summary statistics on the number and proportion of events considered to be contained
within the gate or filter. This is done using the filter method. The first step is to apply our
filter to some data

> result = filter(fs[[1]], rectGate)
> result

A filter named 'Fluorescence Region'

As we can see, we have returned a filterResult object, which is in turn a filter allowing for
reuse in, for example, subsetting operations. To obtain count and proportion statistics, we
take the summary of this filterResult, which returns a list of summary values:

> summary(result)
> summary (result)$n

16

[1] 10000

> summary (result)$true
(11 2

> summary (result)$p
[1] 2e-04

A filter which contains multiple populations, such as the kmeansFilter, can return a list of
summary lists:

> summary(filter (fs[[1]], kmeansFilter ("myKMeans", "FSC-H" = c("Low",
+ "Medium", "High"))))

Low: 2552 of 10000 (25.52%)
Medium: 5188 of 10000 (51.88%)
High: 2260 of 10000 (22.60%)

A filter may also be applied to an entire flowSet, in which case it returns a list of filterResult
objects:

> filter(fs, rectGate)

$*7AAD"
A filter named 'Fluorescence Region'

$apc
A filter named 'Fluorescence Region'

$fitc
A filter named 'Fluorescence Region'

$ NULL®
A filter named 'Fluorescence Region'

$pe
A filter named 'Fluorescence Region'

4.3 Subsetting

To subset or split a flowFrame or flowSet, we use the Subset and split methods respectively.
The first, Subset, behaves similarly to the standard R subset function, which unfortunately
could not used. For example, recall from our initial plots of this data that the morphology
parameters, Forward Scatter and Side Scatter contain a large more-or-less ellipse shaped pop-
ulation. If we wished to deal only with that population, we might use Subset along with a
norm2Filter object as follows:

17

> morphGate <- norm2Filter(filterId = "MorphologyGate", "FSC-H",

+ "SSC-H", scale = 2)
> smaller <- Subset(fs, morphGate)
> fs[[1]]

flowFrame object with 10000 cells and 7 observables:
<FSC-H> Forward Scatter <SSC-H> Side Scatter <FL1-H> <FL2-H> <FL3-H> 7AAD <FL1-A> <FL4-H>
slot 'description' has 125 elements

> smaller[[1]]

flowFrame object with 8405 cells and 7 observables:
<FSC-H> Forward Scatter <SSC-H> Side Scatter <FL1-H> <FL2-H> <FL3-H> 7AAD <FL1-A> <FL4-H>
slot 'description' has 125 elements

Notice how the smaller flowFrame objects contain fewer events. Now imagine we wanted
to use a kmeansFilter as before to split our first fluorescence parameter into three populations.
To do this we employ the split function:

> split(smaller[[1]], kmeansFilter ("myKMeans", "FSC-H" = c("Low",
+ ”Medium”, ”High”)))

$Low

flowFrame object with 2376 cells and 7 observables:

<FSC-H> Forward Scatter <SSC-H> Side Scatter <FL1-H> <FL2-H> <FL3-H> 7AAD <FL1-A> <FL4-H>
slot 'description' has 125 elements

$Medium

flowFrame object with 3657 cells and 7 observables:

<FSC-H> Forward Scatter <SSC-H> Side Scatter <FL1-H> <FL2-H> <FL3-H> 7AAD <FL1-A> <FL4-H>
slot 'description' has 125 elements

$High

flowFrame object with 2372 cells and 7 observables:

<FSC-H> Forward Scatter <SSC-H> Side Scatter <FL1-H> <FL2-H> <FL3-H> 7AAD <FL1-A> <FL4-H>
slot 'description' has 125 elements

or for an entire flowSet

> split(smaller, kmeansFilter("myKMeans", "FSC-H" = c("Low", "Medium",
+ "High")))

$*7TAAD"

$ 7AAD $ Low in 7AAD"

flowFrame object with 2376 cells and 7 observables:

<FSC-H> Forward Scatter <SSC-H> Side Scatter <FL1-H> <FL2-H> <FL3-H> 7AAD <FL1-A> <FL4-H>
slot 'description' has 125 elements

18

$°7AAD" $ Medium in 7AAD"

flowFrame object with 3657 cells and
<FSC-H> Forward Scatter <SSC-H> Side
slot 'description' has 125 elements

$>7AAD $ High in 7AAD®

flowFrame object with 2372 cells and
<FSC-H> Forward Scatter <SSC-H> Side
slot 'description' has 125 elements

$apc

apc Low in apc’

flowFrame object with 2321 cells and
<FSC-H> Forward Scatter <SSC-H> Side
slot 'description' has 129 elements

apc Medium in apc”

flowFrame object with 3601 cells and
<FSC-H> Forward Scatter <SSC-H> Side
slot 'description' has 129 elements

apc High in apc”

flowFrame object with 2324 cells and
<FSC-H> Forward Scatter <SSC-H> Side
slot 'description' has 129 elements

$fitc

$fitc$ Low in fitc”

flowFrame object with 1991 cells and
<FSC-H> Forward Scatter <SSC-H> Side
slot 'description' has 129 elements

$fitc$ Medium in fitc’

flowFrame object with 3261 cells and
<FSC-H> Forward Scatter <SSC-H> Side
slot 'description' has 129 elements

$fitc$ High in fitc®

flowFrame object with 2037 cells and
<FSC-H> Forward Scatter <SSC-H> Side
slot 'description' has 129 elements

7 observables:
Scatter <FL1-H>

7 observables:
Scatter <FL1-H>

7 observables:
Scatter <FL1-H>

7 observables:
Scatter <FL1-H>

7 observables:
Scatter <FL1-H>

7 observables:
Scatter <FL1-H>

7 observables:
Scatter <FL1-H>

7 observables:
Scatter <FL1-H>

19

<FL2-H> <FL3-H> 7AAD <FL1-A> <FL4-H>

<FL2-H> <FL3-H> 7AAD <FL1-A> <FL4-H>

<FL2-H> <FL3-H> <FL1-A> <FL4-H> APC

<FL2-H> <FL3-H> <FL1-A> <FL4-H> APC

<FL2-H> <FL3-H> <FL1-A> <FL4-H> APC

FITC <FL2-H> <FL3-H> <FL1-A> <FL4-H>

FITC <FL2-H> <FL3-H> <FL1-A> <FL4-H>

FITC <FL2-H> <FL3-H> <FL1-A> <FL4-H>

$ NULL"

$NULL $ Low in NULL"
flowFrame object with 2420
<FSC-H> FSC-Height <SSC-H>
slot 'description' has 123

$ NULL™$ Medium in NULL"

flowFrame object with 3563
<FSC-H> FSC-Height <SSC-H>
slot 'description' has 123

$ NULL"$ High in NULL®

flowFrame object with 2331
<FSC-H> FSC-Height <SSC-H>
slot 'description' has 123

$pe
pe Low in pe”
flowFrame object with 1813

cells and 7 observables:
SSC-Height <FL1-H> <FL2-H> <FL3-H> <FL1-A> <FL4-H>
elements

cells and 7 observables:
SSC-Height <FL1-H> <FL2-H> <FL3-H> <FL1-A> <FL4-H>
elements

cells and 7 observables:
SSC-Height <FL1-H> <FL2-H> <FL3-H> <FL1-A> <FL4-H>
elements

cells and 7 observables:

<FSC-H> Forward Scatter <SSC-H> Side Scatter <FL1-H> <FL2-H> PE <FL3-H> <FL1-A> <FL4-H>

slot 'description' has 129

pe Medium in pe”
flowFrame object with 2734

elements

cells and 7 observables:

<FSC-H> Forward Scatter <SSC-H> Side Scatter <FL1-H> <FL2-H> PE <FL3-H> <FL1-A> <FL4-H>

slot 'description' has 129

pe High in pe”
flowFrame object with 1626

elements

cells and 7 observables:

<FSC-H> Forward Scatter <SSC-H> Side Scatter <FL1-H> <FL2-H> PE <FL3-H> <FL1-A> <FL4-H>

slot 'description' has 129

4.4 Combining Filters

elements

Of course, most filtering operations consist of more than one gate. To combine gates and filters
we use the standard R Boolean operators: &, | and ! to construct an intersection, union and

complement respectively:

> rectGate & morphGate

A filter named 'Fluorescence Region and MorphologyGate'

> rectGate | morphGate

A filter named 'Fluorescence Region or MorphologyGate'

20

> ImorphGate
A filter named 'not MorphologyGate'

we also introduce the notion of the subset operation, denoted by either %subset% or %&%.
This combination of two gates first performs a subsetting operation on the input flowFrame
using the right-hand filter and then applies the left-hand filter. For example,

> summary(filter(smaller[[1]], rectGate /&) morphGate))

first calculates a subset based on the morphGate filter and then applies the rectGate.

4.5 Transformation Filters

Finally, it is sometimes desirable to construct a filter with respect to transformed parameters.
To allow for this in our filtering constructs we introduce a special form of the transform
method along with another filter combination operator %on%, which can be applied to both
filters and flowFrame or flowSet objects. To specify our transform filter we must first construct
a transform list using a simplified version of the transform function:

> tFilter <- transform("FL1-H" = log, "FL2-H" = log)
> tFilter

An object of class "transformList"
Slot "transforms":

([1]1]

An object of class "transformMap"
Slot "output":

(1] "FL1-H"

Slot "input":
(1] "FL1-H"

Slot "f":
function (x, base = exp(1)) .Primitive("log")

[[2]]

An object of class "transformMap"
Slot "output":

[1] "FL2-H"

Slot "input":
[1] "FL2-H"

Slot "f":
function (x, base = exp(1)) .Primitive("log")

21

Note that this version of the transform filter does not take parameters on the right-hand
side-the functions can only take a single vector that is specified by the parameter on the left-
hand side. In this case those parameters are “FL1-H” and “FL2-H.” The function also does not
take a specific flowFrame or flowSet allowing us to use this with any appropriate data. We
can then construct a filter with respect to the transform as follows:

> rect2 <- rectangleGate(filterId = "Another Rect", "FL1-H" = c(1,
+ 2), "FL2-H" = c(2, 3)) /on) tFilter
> rect2

A filter named 'Another Rect on transformed values of FL1-H,FL2-H'

Additionally, we can use this construct directly on a flowFrame or flowSet by moving the
transform to the left-hand side and placing the data on the right-hand side:

> plot(tFilter Y%on} smaller[[1]], c("FL1-H", "FL2-H"))

FL2-H

FL1-H

which has the same effect as the log transform used earlier.

22

5 filterSet: Organizing Filtering Strategies

5.1 Building Filter Sets

In addition to allowing for sequential filtering, flowCore also provides a filterSet object that
serves as an analogue to flowSets for filters. The primary use of this object is to organize and
manipulate complex gating strategies. For example, recall from the filtering section we had
two gates, a “morphologyGate” and a “Fluorescence Region” gate that we used to demonstrate
the various logical operators available for gates. To recreate this example as a filterSet, we
would do the following:

> fsetl = filterSet(rectangleGate(filterId = "Fluorescence Region",

+ "FL1-H" = c(50, 100), "FL2-H" = c(50, 100)), norm2Filter(filterId = "Morphology Gate",
+ "FSC-H", "SSC-H", scale = 2), ~“Fluorescence Region” & “Morphology Gate",

+ "“Fluorescence Region | “Morphology Gate®, Debris ~ ! Morphology Gate~,

+ ““Fluorescence Region" &/, “Morphology Gate’)

> fsetl

A set of filter objects:
Debris,Fluorescence Region,Fluorescence Region and Morphology Gate,Fluorescence Region in Mor

There are two features of note in filterSet, which can also take a single list argument
for programmatic creation of filterSet objects. The first is that there is a formula interface
for the creation of filter objects from operators. The formula interface can be used with or
without a left-hand side, which specifies an optional filter identifier. If the filter identifier is not
specified, as is the case with all but the “Debris” gate in the example above the usual default
filter identifier is constructed. Non-formula gates can also have an optional name specified
which overrides the filter identifier specified in the gate constructor. This is discouraged at
this time as it leads to confusion when creating new filters.

5.2 Manipulating Filter Sets

Manipulating a filterSet is done using the normal list element replacement methods, though we
do provide a special case where replacing the “””” element or the “NULL” element causes the
filterSet to use the “filterld” slot of the incoming filter to choose a name. Similarly, specifying
an identifier will override any “filterld” slot in the original filter.

Additionally, there are several convenience functions and methods available for manipulat-
ing a filterSet. The names function provides a list of filter identifiers in an arbitrary order. The
sort lists the filter identifiers according to a topological sort of the filter dependencies such
that parent filters are always evaluated before their children. Filters without dependencies are
provided in an arbitrary relative ordering. To obtain the adjacency matrix for this sorting, the
option “dependencies=TRUE” supplied to the sort function will attach an “AdjM” attribute
to the resulting character vector.

5.3 Using Filter Sets

Though they are not explicitly filters, meaning that they cannot play a role in the construction
of subfilters via operators, filterSet objects do define filter and split methods that allow for

23

the two most common use cases. Additionally, a filter can be selected from the filterSet using
“[[” to perform a Subset operation if desired.

For standard filtering operations, the filterSet can yield better performance than a manual
filtering operation because it ensures that each parent filter is only evaluated once per call to
filter so that if many subfilters rely on a particular, likely expensive, filtering operation they
use the original result rather than recalculating each time. The individual filterResult objects
may be later extracted for further analysis of desire, making the filterSet the logical choice
for most filtering operations. Additionally, though not presently implemented, it can allow
visualization methods to make more intelligent choices about display when rendering gating
strategies because the disposition of the entire filtering graph is known and the filter results
are already available.

Like any other filtering operation, summary methods are also available to collect the usual
sorts of count statistics for a filtering operation:

> f = filter(fs, fsetl)
> f

$°7AAD"

A filter result containing: Fluorescence Region Morphology Gate Debris Fluorescence

$apc

A filter result containing: Fluorescence Region Morphology Gate Debris Fluorescence

$fitc

A filter result containing: Fluorescence Region Morphology Gate Debris Fluorescence

$ NULL"

A filter result containing: Fluorescence Region Morphology Gate Debris Fluorescence

$pe

A filter result containing: Fluorescence Region Morphology Gate Debris Fluorescence

When splitting a flowFrame using split, we have two options. The first is to include all
of the resultant subsets in the usual way:

> split(fs[[1]], fsetl, flowSet = TRUE)

name
Fluorescence Region Fluorescence Region
Morphology Gate Morphology Gate
Debris Debris

Fluorescence Region and Morphology Gate Fluorescence Region and Morphology Gate
Fluorescence Region in Morphology Gate Fluorescence Region in Morphology Gate
Fluorescence Region or Morphology Gate Fluorescence Region or Morphology Gate

Region an

Region an

Region an

Region an

Region an

Fluorescence Region new("rectangleGate", min = structure(c(50, 50), .Name:

24

Morphology Gate new(
Debris

Fluorescence Region and Morphology Gate

Fluorescence Region in Morphology Gate

Fluorescence Region or Morphology Gate

A flowSet with 6 experiments.

An object of class "AnnotatedDataFrame"
rowNames: Fluorescence Region, Morphology Gate, ..., Fluorescence Region or Mo
rphology Gate (6 total)
varLabels and varMetadata description:
name: Name
as.data.frame.f..nn...: Filter

column names:
FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H

While this provides access to all subsets, for automated analysis we will often only wish
to work with the “leaf” gates (i.e. those without children of their own). In this case, we can
specify “drop=TRUE” to obtain only the leaf gates:

> split(fs[[1]], fsetl, drop = TRUE, flowSet = TRUE)

name
Debris Debris
Fluorescence Region and Morphology Gate Fluorescence Region and Morphology Gate
Fluorescence Region in Morphology Gate Fluorescence Region in Morphology Gate
Fluorescence Region or Morphology Gate Fluorescence Region or Morphology Gate

Debris

Fluorescence Region and Morphology Gate "Fluorescence Region and Morphology Gate™ ~ “F1
Fluorescence Region in Morphology Gate “Fluorescence Region in Morphology Gate™ ~ “Fluoresce:
Fluorescence Region or Morphology Gate "Fluorescence Region or Morphology Gate™ = “FIi

A flowSet with 4 experiments.

An object of class "AnnotatedDataFrame"
rowNames: Debris, Fluorescence Region and Morphology Gate, Fluorescence Region
in Morphology Gate, Fluorescence Region or Morphology Gate
varLabels and varMetadata description:
name: Name
as.data.frame.f..nn...: Filter

column names:
FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H

Note that in both cases, we use the “dlowSet=TRUE” option that has been added to the
split function to automatically create a flowSet object from the resulting flowFrame objects.

25

For filterSet objects, the split function can take advantage of the added structure in this
case to provide some information about the filtering operation itself in the flowSet’s metadata
as well.

26

References

C. Bruce Bagwell. DNA histogram analysis for node-negative breast cancer. Cytometry A, 58:
7678, 2004.

Mark S Boguski and Martin W McIntosh. Biomedical informatics for proteomics. Nature, 422:
233-237, 2003.

Raul C Braylan. Impact of flow cytometry on the diagnosis and characterization of lymphomas,
chronic lymphoproliferative disorders and plasma cell neoplasias. Cytometry A, 58:57-61,
2004.

A. Brazma. On the importance of standardisation in life sciences. Bioinformatics, 17:113-114,
2001.

M. Chicurel. Bioinformatics: bringing it all together. Nature, 419:751-755, 2002.

Maura Gasparetto, Tracy Gentry, Said Sebti, Erica O’Bryan, Ramadevi Nimmanapalli,
Michelle A Blaskovich, Kapil Bhalla, David Rizzieri, Perry Haaland, Jack Dunne, and Clay
Smith. Identification of compounds that enhance the anti-lymphoma activity of rituximab
using flow cytometric high-content screening. J Immunol Methods, 292:59-71, 2004.

M. Keeney, D. Barnett, and J. W. Gratama. Impact of standardization on clinical cell analysis
by flow cytometry. J Biol Regul Homeost Agents, 18:305-312, 2004.

N. LeMeur and F. Hahne. Analyzing flow cytometry data with bioconductor. Rnews, 6:27-32,
2006.

DR Parks. Data Processing and Analysis: Data Management., volume 1 of Current Protocols
in Cytometry. John Wiley & Sons, Inc, New York, 1997.

J. Spidlen, R.C. Gentleman, P.D. Haaland, M. Langille, N. Le Meur N, M.F. Ochs, C. Schmitt,
C.A. Smith, A.S. Treister, and R.R. Brinkman. Data standards for flow cytometry. OMICS,
10(2):209-214, 2006.

Maria A Suni, Holli S Dunn, Patricia L Orr, Rian de Laat, Elizabeth Sinclair, Smita A
Ghanekar, Barry M Bredt, John F Dunne, Vernon C Maino, and Holden T Maecker. Perfor-
mance of plate-based cytokine flow cytometry with automated data analysis. BMC Immunol,
4:9, 2003.

27

	Introduction
	Representing Flow Cytometry Data
	The flowFrame Class
	Data elements
	Reading a flowFrame
	Visualizing a flowFrame

	The flowSet Class
	Creating a flowSet
	Working with experimental metadata
	Bringing it all together: read.flowSet
	Manipulating a flowSet

	Transformation
	Standard Transforms

	Filtering
	Standard Filters
	Count Statistics
	Subsetting
	Combining Filters
	Transformation Filters

	filterSet: Organizing Filtering Strategies
	Building Filter Sets
	Manipulating Filter Sets
	Using Filter Sets

