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1 Introduction

The package Ringo deals with the analysis of two-color oligonucleotide microarrays used
in ChIP-chip projects. The package was started to facilitate the analysis of two-color
microarrays from the company NimbleGen1, but the package has a modular design, such
that the platform-specific functionality is encapsulated and analogous two-color tiling array
platforms can also be processed. The package employs functions from other packages of the
Bioconductor project (Gentleman et al., 2004) and provides additional ChIP-chip-specific
and NimbleGen-specific functionalities.

> library("Ringo")

If you use Ringo for analyzing your data, please cite:

� Joern Toedling, Oleg Sklyar, Wolfgang Huber (2007) Ringo - an R/Bioconductor
package for analyzing ChIP-chip readouts. BMC Bioinformatics, 8:221.

Getting help

If possible, please send questions about Ringo to the Bioconductor mailing list.
See http://www.bioconductor.org/docs/mailList.html
Their archive of questions and responses may prove helpful, too.

2 Reading in the raw data

For each microarray, the scanning output consists of two files, one holding the Cy3 intensi-
ties, the other one the Cy5 intensities. These files are tab-delimited text files.

The package comes with (shortened) example scanner output files, in NimbleGen’s pair
format. These files are excerpts of the ChIP-chip demo data that NimbleGen provide at
their FTP site for free download. Their biological context, identification of DNA binding
sites of complexes containing Suz12 in human cells, has been described before (Squazzo
et al., 2006).

1for NimbleGen one-color microarrays, we recommend the Bioconductor package oligo
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> exDir <- system.file("exData", package = "Ringo")

> list.files(exDir, pattern = "pair.txt")

[1] "MOD_20551_PMT1_pair.txt" "MOD_20742_PMT1_pair.txt"

> head(read.delim(file.path(exDir, "MOD_20551_PMT1_pair.txt"),

+ skip = 1))[, c(1, 4:7, 9)]

IMAGE_ID PROBE_ID POSITION X Y PM
1 20551_PMT1 SUZ100P0000021781 1 269 78 1149.33
2 20551_PMT1 SUZ100P0000021783 16 682 779 1192.00
3 20551_PMT1 SUZ100P0000021785 31 92 405 685.56
4 20551_PMT1 SUZ100P0000021787 46 219 608 562.67
5 20551_PMT1 SUZ100P0000021789 61 217 418 584.56
6 20551_PMT1 SUZ100P0000021791 76 147 406 636.22

In addition, there is a text file that holds details on the samples, including which two pair
files belong to which sample2.

> read.delim(file.path(exDir, "example_targets.txt"), header = TRUE)

SlideNumber FileNameCy3 FileNameCy5
1 Suz12 MOD_20551_PMT1_pair.txt MOD_20742_PMT1_pair.txt

Species Cy3 Cy5
1 Homo sapiens (human) total Suz12

The columns FileNameCy3 and FileNameCy5 hold which of the raw data files belong to
which sample. The immuno-precipitated extract was colored with the Cy5 dye in the
experiment, so the column Cy5 essentially holds which antibody has been used for the
immuno-precipitation, in this case one against the protein Suz12.

Furthermore, there is a file describing the probe categories on the array (you might know
these Spot Types files from limma (Smyth, 2005)).

> read.delim(file.path(exDir, "spottypes.txt"), header = TRUE)

SpotType GENE_EXPR_OPTION PROBE_ID Color
1 Probe FORWARD* * black
2 Probe REVERSE* * black
3 Negative NGS_CONTROLS* * yellow
4 Empty EMPTY * white
5 H_Code H_CODE * red
6 V_Code V_CODE * blue
7 Random RANDOM * green

2You may have to construct such a targets file for your own data. The scripts directory of this pack-
age contains a script convertSampleKeyTxt.R as an inspiration how the file SampleKey.txt provided by
NimbleGen could be used for this.
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Reading all these files, we can read in the raw probe intensities and obtain an object of
class RGList , a class defined in package limma.

> exRG <- readNimblegen("example_targets.txt", "spottypes.txt",

+ path = exDir)

This object is essentially a list and contains the raw intensities of the two hybridizations for
the red and green channel plus information on the probes on the array and on the analyzed
samples.

> head(exRG$R)

MOD_20742_PMT1_pair
[1,] 613.22
[2,] 841.67
[3,] 659.56
[4,] 494.44
[5,] 469.33
[6,] 544.11

> head(exRG$G)

MOD_20551_PMT1_pair
[1,] 1149.33
[2,] 1192.00
[3,] 685.56
[4,] 562.67
[5,] 584.56
[6,] 636.22

> head(exRG$genes)

GENE_EXPR_OPTION PROBE_ID POSITION X Y Status ID
1 FORWARD1 SUZ100P0000021781 1 269 78 Probe SUZ100P0000021781
2 FORWARD1 SUZ100P0000021783 16 682 779 Probe SUZ100P0000021783
3 FORWARD1 SUZ100P0000021785 31 92 405 Probe SUZ100P0000021785
4 FORWARD1 SUZ100P0000021787 46 219 608 Probe SUZ100P0000021787
5 FORWARD1 SUZ100P0000021789 61 217 418 Probe SUZ100P0000021789
6 FORWARD1 SUZ100P0000021791 76 147 406 Probe SUZ100P0000021791

> exRG$targets

SlideNumber FileNameCy3 FileNameCy5
1 Suz12 MOD_20551_PMT1_pair.txt MOD_20742_PMT1_pair.txt

Species Cy3 Cy5
1 Homo sapiens (human) total Suz12

Users can alternatively supply raw two-color ChIP-chip readouts from other platforms in
RGList format and consecutively use Ringo to analyze that data.
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3 Quality assessment

The image function allows us to look at the spatial distribution of the intensities on a chip.
This can be useful to detect obvious artifacts on the array, such as scratches, bright spots,
finger prints etc. that might render parts or all of the readouts useless.

> image(exRG, 1, channel = "green", mycols = c("black", "green4",

+ "springgreen"))

Figure 1: Spatial distribution of raw probe intensities laid out by the probe position on the
microarray surface.

See figure 1 for the image. Since the provided example data set only holds the intensities
for reporters mapped to the forward strand of chromosome 9, the image only shows the few
green dots of these probes’ positions. We see, however, that these chromosome 9 reporters
are well distributed over the whole array surface rather than being clustered together in
one part of the array.

It may also be useful to look at the absolute distribution of the single-channel densities.
limma’s function plotDensities may be useful for this purpose.

> plotDensities(exRG)
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Ringo, similar to the Bioconductor package tilingArray , employs a probeAnno environment
to describe the mapping between reporters on the microarray and genomic positions. Per
chromosome, four vectors of equal length and ordering specify at which genomic positions
reporter matches start and end, what identifiers or indices these reporters have in the
intensities data, and whether these reporters match uniquely to those genomic positions.

> load(file.path(exDir, "exampleProbeAnno.rda"))

> ls(exProbeAnno)

[1] "9.end" "9.index" "9.start" "9.unique" "probes.gc"

> head(get("9.start", exProbeAnno))

[1] 34315504 34315519 34315534 34315549 34315564 34315579

> head(get("9.index", exProbeAnno))

[1] "SUZ100P0000057421" "SUZ100P0000057423" "SUZ100P0000057425"
[4] "SUZ100P0000057427" "SUZ100P0000057429" "SUZ100P0000057431"

The package’s scripts directory contains a script makeProbeAnno.R that demonstrates
how to generate such a mapping object either from a NimbleGen POS file or from result files
of aligning the probe sequences to the genome.

In addition, the data file loaded above also contains a GFF (General Feature Format) file
of all transcripts on human chromosome 9 annotated in the Ensembl database (release 46,
August 2007). The aforementioned script makeProbeAnno.R also contains some example
source code showing how the Bioconductor package biomaRt can be used to generate such
a GFF data frame.
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> head(exGFF[, c("name", "symbol", "chr", "strand", "start", "end")])

name symbol chr strand start end
1 ENST00000382507 9 1 1056 1620
2 ENST00000326592 9 -1 5841 19587
3 ENST00000382502 9 -1 24394 25841
4 ENST00000355822 9 -1 24921 25277
5 ENST00000382501 9 -1 25028 25856
6 ENST00000382500 FOXD4 9 -1 105991 108951

To assess the impact of the small distance between probes on the data, one can look at the
autocorrelation plot. For each base-pair lag d, it is assessed how strong the intensities of
probes at genomic positions x + d are correlated with the probe intensities at positions x.

The computed correlation is plotted against the lag d.

> exAc <- autocor(exRG, probeAnno = exProbeAnno, chrom = "9", lag.max = 1000)

> plot(exAc)
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We see some auto-correlation between probe position up to 800 base pairs apart. Since the
sonicated fragments that are hybridized to the array have an average size in the range of
up to 1000 bp, such a degree of auto-correlation up to this distance can be expected, but
nevertheless has to be taken into account later on during data analysis.

4 Preprocessing

Following quality assessment of the raw data, we perform normalization of the probe inten-
sities and derive fold changes of probes’ intensities in the enriched sample divided by their
intensities in the non-enriched input sample and take the (generalized) logarithm of this
ratios.
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We use the variance-stabilizing normalization (Huber et al., 2002) or probe intensities and
generate an ExpressionSet object of the normalized probe levels.

> exampleX <- preprocess(exRG)

> sampleNames(exampleX) <- paste(exRG$targets$Cell.line, exRG$targets$Cy5,

+ exRG$targets$Set, sep = ".")

> print(exampleX)

ExpressionSet (storageMode: lockedEnvironment)
assayData: 991 features, 1 samples
element names: exprs

phenoData
sampleNames: Suz12_vs_total
varLabels and varMetadata description:
SlideNumber: NA
FileNameCy3: NA
...: ...
Cy5: NA
(6 total)

additional varMetadata: labelDescription
featureData
featureNames: SUZ100P0000021781, SUZ100P0000021783, ..., SUZ100P0000058079 (991 total)
fvarLabels and fvarMetadata description: none

experimentData: use 'experimentData(object)'
Annotation:

Among the provided alternative preprocessing options is also the Tukey-biweight scaling
procedure that NimbleGen have used to scale ChIP-chip readouts so that the data is cen-
tered on zero.

> exampleX.NG <- preprocess(exRG, method = "nimblegen")

Normalizing...

> sampleNames(exampleX.NG) <- sampleNames(exampleX)

The effects of different preprocessing procedures on the data, can be assessed using the
corPlot function.

> corPlot(cbind(exprs(exampleX), exprs(exampleX.NG)), grouping = c("VSN normalized",

+ "Tukey-biweight scaled"))
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The same function can also be used to assess the correlation between biological and technical
replicates among the microarray samples.

5 Visualize intensities along the chromosome

> chipAlongChrom(exampleX, chrom = "9", xlim = c(34318000, 34321000),

+ ylim = c(-2, 4), probeAnno = exProbeAnno, gff = exGFF)

See the result in figure 2.

6 Smoothing of probe intensities

Since the response of probes to the same amount of hybridized genome material varies
greatly, due to probe GC content, melting temperature, secondary structure etc., it is
suggested to do a smoothing over individual probe intensities before looking for ChIP-
enriched regions.

Here, we slide a window of 800 bp width along the chromosome and replace the intensity at
e genomic position x0 by the median over the intensities of those probes inside the window
that is centered at x0.
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Figure 2: Normalized probe intensities around the TSS of the Nudt2 gene.

> smoothX <- computeRunningMedians(exampleX, probeAnno = exProbeAnno,

+ modColumn = "Cy5", allChr = "9", winHalfSize = 400)

> sampleNames(smoothX) <- paste(sampleNames(exampleX), "smoothed")

> chipAlongChrom(exampleX, chrom = "9", xlim = c(34318000, 34321000),

+ ylim = c(-2, 4), probeAnno = exProbeAnno, gff = exGFF)

> chipAlongChrom(smoothX, chrom = "9", xlim = c(34318000, 34321000),

+ probeAnno = exProbeAnno, itype = "l", ilwd = 4, paletteName = "Spectral",

+ add = TRUE)

Figure 3: Normalized and smoothed probe intensities around the TSS of the Nudt2 gene.

See the smoothed probe levels in figure 3.
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7 Peak finding

To identify antibody-enriched genomic regions, we require the following:

� smoothed intensities of probes mapped to this region are exceed a certain threshold
y0

� the region contains at least three probe match positions

� each affected position is less than a defined maximum distance dmax apart from an-
other affected position in the region (we require a certain probe spacing to have
confidence in detected peaks3)

For setting the threshold y0, one has to assess the expected (smoothed) probe levels in
non-enriched genomic regions, i.e. the null distribution of probe levels. In a perfect world,
we could use a log ratio of 0 as definite cut-off. In this case the “enriched” DNA and
the input DNA sample would be present in equal amounts, so no antibody-bound epitope,
could be found at this genomic site. In practice, there are some reasons why zero may be
a too naive cut-off for calling a probe-hit genomic site enriched in our case. See Bourgon
(2006) for an extensive discussion on problematic issues with ChIP-chip experiments. We
will just briefly mention a few issues here. For once, during the immuno-precipitation, some
non-antibody-bound regions may be pulled down in the assay and consequently enriched
or some enriched DNA may cross-hybridize to other probes. Furthermore, since genomic
fragments after sonication are mostly a lot larger than the genomic distance between two
probe-matched genomic positions, auto-correlation between probes certainly is existent.
Importantly, different probes measure the same DNA amount with a different efficiency
even after normalizing the probe levels, due to sequence properties of the probe, varying
quality of the synthesis of probes on the array and other reasons. To ameliorate this fact,
we employ the sliding-window smoothing approach.

Please note that this procedure was developed to identify genomic regions enriched for
histone modifications rather than transcription factor binding sites. The frequency and
extent of genomic regions with modified histones is expected to be much larger than, say,
regions containing binding sites for a certain transcription factor. In that case one cannot
assume that the large majority of probes does not show enrichment. In the example data
case, however, we look for enriched transcription-factor-bound regions. For this setup a
number of alternative, and likely superior, algorithms for detecting enriched regions have
been suggested, some being available in other Bioconductor packages, too.

The aforementioned issues make it difficult to come up with a reasonable estimate for the
null distribution of smoothed probe levels in non-enriched genomic regions. We simulate
such a distribution by permuting the probe match positions on the chromosome. We take
the 99% quantile of these smoothed intensities as the threshold y0

4.

3Note that the term ”peak”, while commonly used in ChIP-chip context, is slightly misleading and the
term ”ChIP-enriched region” would be more appropriate. Within such regions the actual signal could show
two or more actual signal peaks or none at all (long plateau). For succinctness sake, we use the term ”peak”
for a ChIP-enriched region, though.

4To get a more realistic estimate for such a null distribution, one should shuffle all chromosomes’ positions
and repeat the whole process many times.
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> permProbeAnno <- copyEnv(exProbeAnno)

> sampled.index <- sample(get("9.index", env = exProbeAnno))

> assign("9.index", sampled.index, env = permProbeAnno)

> sampledX <- computeRunningMedians(exampleX, probeAnno = permProbeAnno,

+ modColumn = "Cy5", allChr = c("9"), winHalfSize = 400, verbose = FALSE)

> (y0 <- quantile(exprs(sampledX), 0.99, na.rm = TRUE))

99%
0.4956420

Since antibodies vary in their efficiency to bind to their target epitope, we suggest to obtain
a different threshold for each antibody. In the example data, however, we have only one
antibody against Suz12.

While this threshold worked well for us, we do not claim this way to be a gold standard for
determining the threshold. In particular, it does not take into account the auto-correlation
between near-by probes.

> peaksX <- findPeaksOnSmoothed(smoothX, probeAnno = exProbeAnno,

+ thresholds = y0, allChr = "9", distCutOff = 600, cellType = "human")

> peaksX <- relatePeaks(peaksX, exGFF)

> peaksXD <- as.data.frame.peakList(peaksX)

> peaksXD

name chr start end cellType
1 human.Suz12_vs_total smoothed.chr9.peak1 9 34318984 34319884 human
2 human.Suz12_vs_total smoothed.chr9.peak2 9 34579054 34582400 human

antibody
1 Suz12_vs_total smoothed
2 Suz12_vs_total smoothed

transcripts
1 ENST00000379158 ENST00000379154 ENST00000379155 ENST00000346365 ENST00000337747
2 ENST00000378980 ENST00000351266

maxPeak score
1 1.995891 66.26737
2 1.534150 94.12441

> plot(peaksX[[1]], smoothX, probeAnno = exProbeAnno, gff = exGFF,

+ paletteName = "Spectral")

Figure 4 displays the identified peak, which is the one upstream of the Nudt2 gene. This
peak was obvious in plots of the normalized data (see figure 3). And while it is reassuring
that our method recovers it as well, a number of other approaches would certainly have
reported it as well.
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Figure 4: One of the identified Suz12-antibody enriched regions on chromosome 9.

8 Concluding Remarks

The package Ringo aims to facilitate the analysis ChIP-chip readouts. We constructed it
during the analysis of a ChIP-chip experiment for the genome-wide identification of modified
histone sites on data gained from NimbleGen two-color microarrays. Analogous two-color
microarray platforms, however, can also be processed. Key functionalities of Ringo are
data read-in, quality assessment, preprocessing of the raw data, and visualization of the
raw and preprocessed data. The package contains a heuristic algorithm for the detection
of for ChIP-enriched genomic regions, too. While this algorithm worked quite well on our
data, we do not claim it to be the definite algorithm for that task.

This vignette was generated using the following package versions:

� R version 2.6.0 (2007-10-03), x86_64-unknown-linux-gnu

� Locale: LC_CTYPE=en_US;LC_NUMERIC=C;LC_TIME=en_US;LC_COLLATE=en_US;LC_MONETARY=en_US;LC_MESSAGES=en_US;LC_PAPER=en_US;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=en_US;LC_IDENTIFICATION=C

� Base packages: base, datasets, graphics, grDevices, methods, stats, tools, utils

� Other packages: affy 1.16.0, affyio 1.6.0, annotate 1.16.0, AnnotationDbi 1.0.0, Biobase 1.16.0,
DBI 0.2-3, geneplotter 1.16.0, lattice 0.16-5, limma 2.12.0, preprocessCore 1.0.0, RCol-
orBrewer 1.0-1, Ringo 1.2.0, RSQLite 0.6-3, vsn 3.2.1, xtable 1.5-1

� Loaded via a namespace (and not attached): grid 2.6.0, KernSmooth 2.22-21
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