The Biostrings 2 classes (work in progress)

Hervé Pages

December 1, 2007

Contents

1 Introduction 1
2 The BString class and its subsetting operator [1
3 The == binary operator for BString objects 3
4 The BStringViews class and its subsetting operators [and [[4
5 A few more BStringViews objects 5
6 The == binary operator for BStringViews objects 6
7 The start, end and width methods 6

1 Introduction

This document briefly presents the new set of classes implemented in the Biostrings 2 pack-
age. Like the Biostrings 1 classes (found in Biostrings v 1.4.x), they were designed to make
manipulation of big strings (like DNA or RNA sequences) easy and fast. This is achieved by
keeping the 3 following ideas from the Biostrings 1 package: (1) use R external pointers to
store the string data, (2) use bit patterns to encode the string data, (3) provide the user with a
convenient class of objects where each instance can store a set of views on the same big string
(these views being typically the matches returned by a search algorithm).

However, there is a flaw in the BioString class design that prevents the search algorithms
to return correct information about the matches (i.e. the views) that they found. The new
classes address this issue by replacing the BioString class (implemented in Biostrings 1) by 2
new classes: (1) the BString class used to represent a single string, and (2) the BStringViews
class used to represent a set of views on the same BString object, and by introducing new
implementations and new interfaces for these 2 classes.

2 The BString class and its subsetting operator [

A first BString object:

> library(Biostrings)
> b <- BString("I am a BString object")
> b

21-letter "BString" instance
Value: I am a BString object

> length(b)
[1] 21

The DNAString and RNAString classes are direct extensions of the BString class (no
additional slot):

> d <- DNAString("TTGAAAA-CTC-N")
> d

13-letter "DNAString" instance
Value: TTGAAAA-CTC-N

> length(d)
(1] 13

The differences with a BString object are: (1) only letters from the IUPAC extended genetic

alphabet + the gap letter (=) are allowed and (2) each letter in the argument passed to the

DNAString function is encoded in a special way before it’s stored in the DNAString object.
Access to the individual letters:

> d[3]

1-letter "DNAString" instance
Value: G

> d[7:12]

6-letter "DNAString" instance
Value: A-CTC-

> d[]

13-letter "DNAString" instance
Value: TTGAAAA-CTC-N

> b[length(b):1]

21-letter "BString" instance
Value: tcejbo gnirtSB a ma I

Only in bounds positive numeric subscripts are supported.
In fact the subsetting operator for BString (or DNAString) objects is not efficient and one
should always use the subBString method to extract a substring from a big string:

> bb <- subBString(b, 3, 6)
> dd1 <- subBString(d, end = 7)
> dd2 <- subBString(d, start = 8)

To dump a BString (or DNAString) object as a character vector (of length 1), use the
toString method:

> toString(dd2)
[1] "-CTC-N"

Note that length(dd2) is equivalent to nchar (toString(dd2)) but the latter would be
very inefficient on a big DNAString object.

[TODO: Make a generic of the substr() function to work with BString objects. It will be
essentially doing toString(subBString()).]

3 The == binary operator for BString objects

The 2 following comparisons are TRUE:

> bb == "am a"
> dd2 != DNAString("TG")

When the 2 sides of == don’t belong to the same class then the side belonging to the “lowest”
class is first converted to an object belonging to the class of the other side (the “highest” class).
The class (pseudo-)order is character < BString < DNAString. When both sides are BString
(or DNAString) objects then the comparison is very fast because it only has to call the C
standard function memcmp () and no memory allocation or string encoding is required.

The 2 following expressions provoke an error because the right member can’t be “upgraded”
(converted) to an object of the same class than the left member:

> bb == "
> d == bb

A DNAString object and a RNAString object are considered equals when they are com-
plementary:

> dAlphabet <- DNAString("ACGT-MRSVWYHKDBN")
> rAlphabet <- RNAString("UGCA-KYSBWRDMHVN")
> dAlphabet == rAlphabet

[1] TRUE

Note that this behaviour is consistent with the fact that RNAString(dAlphabet) is equal to
rAlphabet and DNAString(rAlphabet) is equal to dAlphabet.

4 The BString Views class and its subsetting operators [and [[

A BStringViews object contains a set of views on the same BString (or DNAString, or RNAS-
tring) object called the subject string. Here is a BStringViews object with 4 views:

> v4 <- views(dd2, 3:0, 5:8)
> v4

Views on a 6-letter DNAString subject
Subject: -CTC-N

Views:
start end width
[1] 3 5 3 [Tc-]
[2] 2 6 5 [CTC-N]
[3] 17 7 [-CTC-N]
[4] 0 8 9 [-CTC-N 1]

> length(v4)
(1] 4

Note that the 2 last views are out of limits.
You can select a subset of views from a BString Views object:

> v4[4:2]

Views on a 6-letter DNAString subject
Subject: -CTC-N

Views:

start end width
[1] 0 8 9 [-CTC-N 1]
[2] 1 7 7 [-CTC-N]
[3] 2 6 5 [CTC-N]

The returned object is still a BString Views object, even if we select only one element. You
need to use double-brackets to extract a given view as a BString object:

> v4[[2]]

5-letter "DNAString" instance
Value: CTC-N

You can’t extract a view that is out of limits:

> v4[[3]]

Error in v4[[3]] : view is out of limits

Note that, when start and end are numeric vectors and i is a single integer, views (b,
start, end) [[i]] is equivalent to subBString(b, start[i], end[il]).
The following is the same as doing subject (v4) (provided as a convenience):

> v4[[0o]]

6-letter "DNAString" instance
Value: -CTC-N

Subsetting also works with negative or logical values with the expected semantic (the same
as for R built-in vectors):

> v4[-3]

Views on a 6-letter DNAString subject
Subject: -CTC-N

Views:
start end width
[1] 3 5 3 [TC-]
[2] 2 6 5 [CTC-N]
[3] 0 8 9 [-CTC-N]

> v4[c(TRUE, FALSE)]

Views on a 6-letter DNAString subject
Subject: -CTC-N

Views:
start end width
[1] 3 5 3 [TC-]
[2] 1 7 7 [-CTC-N]

Note that the logical vector is recycled to the length of v4.

5 A few more BStringViews objects

12 views (all of the same width):
> v12 <- views(DNAString("TAATAATG"), -2:9, 0:11)
This is the same as doing views(d, 1, length(d)):
> views(d)
Hence the following will always return the d object itself:
> views(d) [[1]1]
3 BStringViews objects with no view:

> v12[0]
v12[FALSE]
> views(d, integer(0), integer(0))

v

6 The == binary operator for BStringViews objects

This operator is the vectorized version of the == operator defined previously for BString (or
DNAString) objects:

> v12 == DNAString("TAA")
[1] FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

To display all the views in v12 that are equals to a given view, you can type R cuties like:

> vi2[v12 == v12[4]]

Views on a 8-letter DNAString subject
Subject: TAATAATG

Views:

start end width
[1] 1 3 3 [TAA]
[2] 4 6 3 [TAA]

> vi2[v12 == v12[1]]

Views on a 8-letter DNAString subject
Subject: TAATAATG

Views:

start end width
[1] -2 0 3 []
[2] 9 11 3L]

This is TRUE:
> v12[3] == views(RNAString("AU"), 0, 2)

7 The start, end and width methods

> start (v4)
[11 3210
> end(v4)

[11 5678
> width(v4)
[11] 3579

Note that start(v4) [i] is equivalent to start(v4[i]), except that the former will not
issue an error if i is out of bounds (same for end and width methods).

Also, when i is a single integer, width(v4) [i] is equivalent to length(v4[[i]]) except
that the former will not issue an error if i is out of bounds or if view v4[i] is out of limits.

