Correlation between Transcriptome and Interactome

A major goal of current bioinformatics research is the functional characterization of genes
using multiple data sources resulting from high-throughput technology. For example, Ge et
al. (2001, 2003) investigate what they call a ‘correlation mapping’ between the transcriptome,
monitored by microarray data, and the interactome, measured by protein-protein interactions
(PPIs), for the yeast Saccharomyces cerevisiae. By combining information from two large
data sources, they conclude that the proteins encoded by genes with similar expression
profiles interact more frequently than other proteins, and suggest that the combination of
multiple data sources can improve the quality of hypotheses regarding the function of genes.

Ge et al. (2001, 2003) used data from publicly available sources for their study. One of the
microarray expression data sets came from a cell-cycle experiment described by Cho et al.
(1998) in which 2885 unique genes (2945 probes) were divided into 30 clusters using k-means
clustering. A ‘literature’ data set of 1666 PPIs (315 heterodimers, 1351 homodimers) was
constructed from information in YPD and MIPS. Using a binomial distribution to assess sta-
tistical significance, Ge et al. (2003) concluded that the protein-protein heterodimers tended
to be intracluster interactions rather than intercluster interactions. The same conclusions
were made using gene expression data from yeast cells experiencing meiosis (Primig et al.,
2000) or various stress conditions (Jelinsky et al., 2000), and PPI data from yeast two-hybrid
experiments (Uetz et al., 2000; Ito et al., 2000, 2001).

Rather than use a binomial distribution for statistical inference, the data is better mod-
eled using a hypergeometric distribution. In the ‘literature’ PPI list, there were 315 het-
erodimer interactions, 42 of which were between intracluster pairs. Suppose all of the possible
pairwise interactions are represented by balls in an urn. Since we have 2885 genes, there

are ( 28285 = 4160170 balls in the urn. If all the balls that represent intracluster inter-

actions are red, and the intercluster interaction balls are white, then for the cell cycle data
set, there are 156205 red balls and 4003965 white balls. Suppose we select 315 balls at ran-
dom from this urn. The probability of drawing 42 or more red balls, assuming all balls are
drawn independently of each other, can be calculated using the hypergeometric distribution.
Specifically,

156205 4003965
315 i 315 —i
P(#red balls > 42) =

o 4160170
315

We would conclude that it is highly unlikely to observe 42 or more red balls in a random
draw of 315 balls. In order to use the binomial distribution, Ge et al. (2003) assumed the
balls were drawn with replacement. Despite this discrepancy, the qualitative conclusion is
the same.

) = 1.797187 x 10~ 2.




Graph Representation of the Transcriptome and Inter-
actome

The problem posed in Ge et al. (2001, 2003) can be formulated in terms of graphs. Figure
1 is a graph representation of the ‘literature’ PPI list. Each gene is represented by a node,
and if two proteins are known to interact, an edge is drawn between the two nodes. The 298
nodes in Figure 1 are colored according to membership in the 30 k-means clusters, and the
315 edges correspond to the number of interacting heterodimer protein pairs. There are an
additional 2587 nodes of degree zero that are not pictured in Figure 1; these nodes represent
genes that were used in the clustering analysis, but were not present in the list of PPIs.

The k-means clustering results can also be represented by a graph in which each node
is connected by an edge to any other node in the same cluster. For the cell cycle data, the
graph would consist of 30 completely connected subgraphs with the number of nodes in each
subgraph corresponding to the number of genes in each cluster. Figure 2 demonstrates the
30 cluster graphs for the cell cycle data, using only the genes that are contained in the list of
interacting protein pairs. Note that all connected nodes are the same color, corresponding
to cluster membership. Figure 3 gives a closer view of the cluster graphs for clusters 1, 9,
and 16.

The number of intracluster edges can be found by intersecting the graphs in Figures 1
and 2, resulting in the graph in Figure 4. The intersection graph keeps all of the same nodes
as in the PPI and cluster graphs, but only retains the edges that exist in both graphs. Figure
4 demonstrates the 42 observed edges among 65 nodes that are reported in Ge et al. (2003).
(All nodes of degree zero are excluded from the intersection graph).

Statistical Inference using Graphs

The graph representations of the expression cluster and PPI data easily accomodate the
type of inference performed in Ge et al. (2001, 2003). Specifically, using the hypergeometric
distribution to evaluate the statistical significance of observing 42 intracluster pairs, or 42
edges in the intersection graph, is equivalent to taking the 315 edges from the observed liter-
ature PPI graph, randomly reassigning the edges to different node pairs, and then counting
the number of edges in the intersection graph of the randomized PPI graph and the cluster
graph. Many repetitions of this permute-the-edges (PE) model results in a hypergeometric
reference distribution for the number of edges in the intersection graph. Figure 5 shows one
example of the random reallocation of the edges in the PPI graph. There were 8 edges in
the intersection of this graph with the cluster graph, the arrangement of which are shown in
Figure 6.

Notice that the graph in Figure 5 is composed of several components consisting of a very
small number of nodes. Given the number of nodes and the number of edges that we are
dealing with, this graph structure is consistent with the Erdos-Renyi theory of random graphs
in which the degree distribution for the random edge graph is exponential. As suggested
in several studies of the structure of PPI networks, however, PPI graphs tend to be scale-
free with a degree distribution that follows a power law (Jeong et al., 2000, 2001; Snel et
al., 2002; Strogatz, 2001). There is cause for concern in using a random edge model as a



basis for statistical inference since such models are likely not representative of actual PPI
networks.

An alternative procedure for generating a reference distribution would be to retain the
edge structure of the graph, and randomly permute the node labels (which we will call PN).
This guarantees that the structure of the randomized PPI graph is from the sample space of
possible PPI graphs, but still leads to a natural reference distribution since the node labels
are not preferentially assigned.

Somewhat surprisingly, the PE and PN models result in similar distributions of the
number of edges in the intersection graph (see Figure 8). It is possible, however that the
number of edges in the intersection graph may not be the most descriptive test statistic.
Figure 7 shows a graph with 42 edges and 84 vertices that would give the same p-value
result as the observed intersection graph in Figure 4. These two graphs are quite different in
terms of the arrangement of the edges. Figure 4 demonstrates a tendency toward connected
components with greater numbers of nodes. Test statistics involving node degree and edge
structure may give more insight into the structure of the intersection graph, and possibly
the relevant biology.

For test statistics on the intersection graph other than the number of edges, Figure 8
shows that the PE and PN methods do give strikingly different distributions. Specifically,
node degree > 2, node degree > 3, and the number of 3-cycles all have much different
distributions depending on the algorithm. The PN method tends to give nodes with higher
degree, and picks up more 3-cycles. Both of these features are evident in the observed
intersection graph in Figure 4.

We also evaluated the number of connected components as a test statistic using the PE
and PN algorithms. Although the distributions in Figure 8 are not strikingly different, there
is some evidence that the PN algorithm tends to give fewer connected components in the
intersection graph. This corresponds to finding larger groups of genes, possibly functional
modules, that are connected in both the PPI and the cluster graph.

The graph representation of the cluster and PPI data illustrates that some clusters tend
to have more intracluster interactions than others, and intercluster communication increases
for certain pairs of clusters. Table 1 records the cluster size, the number of intracluster edges
for each cluster, and the number of intercluster interactions for a cluster’s top two interaction
partners for 15 of the clusters. The remaining 15 clusters had no intracluster interactions;
the sizes of these clusters and their intercluster activity are described in Table 2.
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Cluster # # of Nodes

Table 1: Intracluster and Intercluster Activity

# of Intracluster Edges

Highest Interactivity
Cluster(# of Edges)

Second Interactivity
Cluster(# of Edges

)
1 157 9 7,30(4) 6,18,24(3)
2 185 11 23(8) 14,16(6)
5 151 2 4,8,9,13,22(3) 1,2,7,12(2)
7 101 3 2.4(5) 12 16(4)
8 148 2 5(3) 25(2)
10 78 1 11,13(2) 6,12,15,17,28,29(1)
11 94 1 13(4)  2,6,7,9,10,12,14,17,29(2)
13 96 1 11,17(4) 3,5,15,22(3)
14 73 5 2(6) 11,22,30(2)
18 96 1 1(3) 3,7,12,13,14,15,24(1)
19 73 1 9,25(1) -
22 83 1 2,5,13(3) 14,16(2)
23 63 1 2(8) 12,28(2)
26 49 1 13,16(1) -
27 63 2 2,11,12,21,22(1) -

Table 2: Intercluster Activity for Clusters without Intracluster Interactions

Highest Interactivity

Second Interactivity

Cluster # # of Nodes Cluster(# of Edges) Cluster(# of Edges)
3 103 13(3) 6,7,28(2)
4 169 7(5) 2,5(3)
6 100 1,24(3) 3,11,17(2)
9 146 5(3) 2,4,11,25(2)
12 79 2,7(4) 4,5,11,13,16,23(2)
15 113 13(3)  7,10,11,12,16,17,18,22(1)
16 98 2(6) 7(4)
17 81 13(4) 16(3)
20 84 6,17(1) :
21 68 1(2) 3,11,12,13,16,27,28,29(1)
24 83 1,6(3) 29(2)
25 74 8,9(2) 4,7,19,24(1)
28 67 3,23(2) 1,10,13,21(1)
29 51 11,13,24(2)  1,6,8,10,12,17,21,22(1)
30 59 1,2(4) 14(2)



Figure 1: Observed Literature Protein-Protein Interaction Graph




Figure 2: 30 Completely Connected Cell-Cycle Cluster Graphs
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Figure 3: Graphs for Cell-Cycle Clusters 1, 9, and 16







Figure 5: Randomly Reassigned Edges in PPI Graph
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Figure 6: Intersection Graph after Random Edge Reassignment
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Figure 8: Test Statistics
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