Using Protein Protein Predictions

R. Gentleman

April 25, 2006

? describe methodology that they employed to make predictions of protein-protein interac-
tions in S. cerevisiae. They have provided a downloadable set of predicted interactions, from
http://bioinformatics.med.yale.edu/interaction/ and these data are available as the
ppipred data.

> library("y2hStat")

Loading required package: GO
Loading required package: GOstats
Loading required package: graph
Loading required package: Ruuid
Loading required package: annotate
Loading required package: Biobase
Loading required package: RBGL
Loading required package: xtable

Attaching package: 'xtable'

The following object(s) are masked from package:graph :
label

Loading required package: Biobase
Loading required package: genefilter
Loading required package: survival
Loading required package: splines
Loading required package: multtest
Loading required package: Category
Loading required package: KEGG
Loading required package: hgu9bav2
Loading required package: YEAST
Loading required package: ScISI
Loading required package: apComplex
Loading required package: Rgraphviz

http://bioinformatics.med.yale.edu/interaction/

Loading required package: graph
Loading required package: Rgraphviz

> data(ppipred)

The first two columns are yeast gene names, typically they are common names and will
need to be translated to systematic names for further processing.

A first decision that should be made is whether to select only those interaction pairs where
the prediction is larger than a specified cut-off. For our example we will use a cut-off of 0.5,
largely to ensure that the lists are quite short.

> ppi2 = ppipred[ppipred$Prob >= 0.5,]
> dim(ppi2)

[1] 2854 3

Now we translate the names. For now we don’t worry too much, but one problem is that
in the YEAST package only verified ORFs are used, and so the uncharacterized ones are not
getting translated. We will need some way to do that, in the long run.

> library("YEAST")

> trN1 = mget(ppi2[[1]], YEASTCOMMON2SYSTEMATIC, ifnotfound = NA)
> trN1 = sapply(trN1, function(x) x[1])

> ppi2[[1]] = ifelse(is.na(trN1), ppi2[[1]], trN1)

> trN2 = mget(ppi2[[2]], YEASTCOMMON2SYSTEMATIC, ifnotfound = NA)
> trN2 = sapply(trN2, function(x) x[1])

> ppi2[[2]] = ifelse(is.na(trN2), ppi2[[2]], trN2)

Now there are 2854 pairs left. For our purposes we want to find interaction pairs that are
wholy contained within a predicted protein complex, as that will be used as a basis for helping
to determine if particular protein complexes are well defined.

> pairsBy = split(ppi2[[2]], ppi2[[1]1])
> table(sapply(pairsBy, length))

i 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 22
464 198 82 76 50 33 25 12 9 11 6 8 b 1 1 1 1 1 2 1
23 24 26 29 32 33

1 1 1 1 1 1

The basic idea here is to think of each pair as a bait-prey (although that is not true) since
it helps us to reduce the number of protein complexes that need to be examined.
Next we load up the ScISI package.

> library("ScISI")
> data(ScISI)

And now, we find complexes that contain at least one bait.

> haveB = row.names (ScISI) Jinj, names(pairsBy)

>

ScSubl = ScISI[haveB,]

> havC = colSums(ScSubl) > 0

>
>
+

V+ + + 4+ 4+ + ++ 4+ ++++++ 4+

ScSub2 = ScISI[, hav(C]
byComp = function(cMat, bpL) {
rn = row.names (cMat)
bNames = names (bpL)
ans = rep(0, ncol(cMat))
for (i in 1:ncol(cMat)) {
nln = 0
protInC = rn[cMat[, i] > 0]
wB = bNames [bNames Jinj, protInC]
if (length(wB) == 0)
warning ("Complex", i, "has a problem")
else {
for (j in wB) nIn = nIn + length(intersect(bpL[[j]],
protInC))
}
ans[i] = nlIn
}
ans
}
t1 = byComp(ScSub2, pairsBy)

