
Ber
lin

C
e
n

te
r

fo
r

Genome Based
B
io

i n
fo

rm
atics

Max Planck Institute for Molecular Genetics

Computational Diagnostics Group @ Dept. Vingron

Ihnestrasse 63-73, D-14195 Berlin, Germany

http://compdiag.molgen.mpg.de/

Estimation of Local False Discovery Rates

User’s Guide to the Bioconductor Package

twilight

Stefanie Scheid and Rainer Spang

email: first.last@molgen.mpg.de

Technical Report
Nr. 2004/01

Abstract

This is the vignette of the Bioconductor compliant package twilight . We describe our
implementation of a stochastic search algorithm to estimate the local false discovery rate.
In addition, the package provides functions to test for differential gene expression in the
common two-condition setting.

Contents

1 Introduction 2

2 Implemented functions 3

2.1 twilight.pval: Testing effect sizes . 3

2.2 twilight.pval: Testing correlation . 9

2.3 twilight.filtering: Filtering permutations 11

2.4 twilight: Estimating the local FDR . 14

2.5 twilight.combi: Enumerating permutations of binary vectors 18

3 Differences to earlier versions 21

4 Bibliography 24

1

Chapter 1

Introduction

In a typical microarray setting with gene expression data observed under two conditions,
the local false discovery rate describes the probability that a gene is not differentially
expressed between the two conditions given its corrresponding observed score or p-value
level. The resulting curve of p-values versus local false discovery rate offers an insight into
the twilight zone between clear differential and clear non-differential gene expression.
The Bioconductor compliant package twilight contains two main functions: Function twi-

light.pval performs a two-condition test on differences in means for a given input matrix
or expression set (exprSet) and computes permutation based p-values. Function twilight

performs the successive exclusion procedure described in Scheid and Spang (2004) [4] to
estimate local false discovery rates and effect size distributions. The package is also de-
scribed in a short application note [5].

Acknowledgements

This work was done within the context of the Berlin Center for Genome Based Bioinfor-
matics (BCB), part of the German National Genome Network (NGFN), and supported by
BMBF grants 031U109C and 03U117 of the German Federal Ministry of Education.

2

Chapter 2

Implemented functions

2.1 twilight.pval: Testing effect sizes

twilight.pval(xin, yin, method="fc", paired=FALSE, B=1000, yperm=NULL,
balance=FALSE, quant.ci=0.95, s0=NULL, verbose=TRUE)

The input object xin is either a pre-processed gene expression set of class exprSet or any
data matrix where rows correspond to genes and columns to samples. Each sample was
taken under one of two distinct conditions, for example under treatment A or treatment
B. The functions in package twilight are not limited to microarray data only but can be
applied to any two-sample data matrix. However, it is necessary for both expression set or
numerical matrix that values are on additive scale like log or arsinh scale. The function
does not check or transform the data to additive scale. The input vector yin contains
condition labels of the samples. Vector yin has to be numeric and dichotomous. Note
that in terms of under - and over -expression, the samples of the higher labeled condition
are compared to the samples of the lower labeled condition.

We are given a preprocessed matrix for samples belonging to two distinct conditions A
and B, and gene expression values on additive scale. For gene i in the experiment (i =
1, . . . , N), ᾱi is the mean expression under condition A and β̄i is the mean expression
under condition B. To test the null hypothesis of no differential gene expression, function
twilight.pval compares the mean expression levels ᾱi and β̄i. The current version offers
three test variants: The classical t-test uses score Ti with

Ti =
ᾱi − β̄i

si
, (2.1)

where si denotes the pooled standard deviation. The t-test is called with method="t".

The t-test score can be misleadingly high if si is very small. To overcome this problem,
the Z-test enlarges the denominator by a fudge factor s0 [7], [1]:

Zi =
ᾱi − β̄i

si + s0
. (2.2)

The Z-test is called with method="z". Fudge factor s0 is set to s0=NULL by default and
is only evaluated if method="z". In that case, it is the median of the pooled standard

3

CHAPTER 2. IMPLEMENTED FUNCTIONS 4

deviations s1, . . . , sN . However, the fudge factor can be chosen manually. Note that if
method="z" is chosen with s0=0, the test call is altered to method="t", the t-test as
described above.

The third variant is based on log ratios only with score

Fi = ᾱi − β̄i. (2.3)

The distribution of scores Fi under the alternative is called effect size distribution. With
expression values on log or arsinh scale, exp(|Fi|) is an estimator for the fold change. We
call exp(|Fi|) the fold change equivalent score [4]. Note that the package contains a function
for plotting the effect size distribution which is only available if function twilight.pval

was run with method="fc", the fold change equivalent test.

Function twilight.pval handles paired and unpaired data. In the unpaired case (paired=FALSE),
only one microarray was hybridized for each patient, like in a treatment and control group
setting. In the paired case (paired=TRUE), we observed expression values of the same
patient under both conditions. The typical example are before and after treatment exper-
iments, where each patient’s expression was measured twice. The input arguments xin

and yin do not need to be ordered in a specific manner. It is only necessary that samples
within each group have the same order, such that the first samples of the two groups
represent the first pair and so on. However, the order of the samples in xin has to equal
the order in yin.

As an example, we apply function twilight.pval on the training set of the leukemia data
of Golub et al. (1999) [3] as given in library(golubEsets). For normalization, apply the
variance-stabilizing method vsn in library(vsn) [2].

> data(Golub_Train)

> golubNorm <- vsn(exprs(Golub_Train))

> id <- as.numeric(Golub_Train$ALL.AML)

There are 38 samples either expressing acute lymphoblastic leukemia (ALL) or acute
myeloid leukemia (AML). As the AML patients are labeled with “2” and ALL with “1”,
we compare AML to ALL expression.

> Golub_Train$ALL.AML

[1] ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL

[18] ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL AML AML AML AML AML AML AML

[35] AML AML AML AML

Levels: ALL AML

> id

[1] 1 2 2 2 2 2 2 2 2

[36] 2 2 2

CHAPTER 2. IMPLEMENTED FUNCTIONS 5

Additionally to computation of scores, empirical p-values are calculated. Argument B

specifies the number of permutations with default set to B=1000. The distribution of
scores under the null hypothesis is estimated by computing test scores from the same input
matrix with randomly permuted class labels. These permutations are either balanced or
unbalanced, with default balance=FALSE. The permutation options are described in detail
in section 2.5. For computing empirical p-values, we count for each gene how many of all
absolute permutation scores exceed the absolute observed score, and divide by B·(number
of genes).

Permutation scores are also used to compute expected scores as described in Tusher et
al. (2001) [7]. In addition, we compute confidence bounds for the maximum absolute
difference of each set of permutation scores to expected scores. The width of the confidence
bound is chosen with quant.ci. With default quant.ci=0.95, the maximum absolute
difference of permutation to expected scores exceeded the confidence bound in only 5% of
all permutations.

Using the optional argument yperm, a user-specified permutation matrix can be passed to
the function. In that case, yperm has to be a binary matrix where each row is one vector
of permuted class labels. The label ”1” in yperm corresponds to the higher labeled original
class. If the permutation matrix is specified, no other permutation is done and argument
B will be ignored. Besides set.seed, argument yperm can be used to reproduce results by
fixing the matrix of random permutations. Please note that the first row of yperm must
be the input vector yin. Otherwise, the p-value calculation will be incorrect.

Continuing the example above, we perform a fold change test on the expression data in
golubNorm which was transformed to arsinh scale by normalization with vsn. We do a
quick example with few permutations.

> library(twilight)

> pval <- twilight.pval(golubNorm, id, B = 100)

No complete enumeration. Prepare permutation matrix.

Compute vector of observed statistics.

Compute expected scores and p-values. This will take approx. 4 seconds.

Compute q-values.

Compute values for confidence lines.

The function checks whether complete enumeration of all permutations is possible. Com-
plete enumeration is performed as long as the number of permutations does not exceed the
value set by B. Thus, if you want to turn off the compulsive enumeration and use all possi-
ble permutations, you need to select a small B or simply keep the default B=1000. Details
on the enumeration functions are given in section 2.5. The values in the accompanying
data set expval were computed in the same manner as in the example above but with the
complete data set data(Golub_Merge) in library(golubEsets) and 1000 permutations.

> data(expval)

> expval

CHAPTER 2. IMPLEMENTED FUNCTIONS 6

Twilight object with

7129 transcripts

observed and expected test statistics

p- and q-values

Estimated percentage of non-induced genes:

pi0

0.6197128

Function call:

Test: fc. Paired: FALSE. Number of permutations: 1000. Balanced: FALSE.

The output object of function twilight.pval is of class twilight with several elements
stored in a list.

> class(expval)

[1] "twilight"

> names(expval)

[1] "result" "ci.line" "quant.ci" "lambda" "pi0" "boot.pi0"

[7] "boot.ci" "effect" "call"

The element quant.ci contains the corresponding input value which is passed to the
plotting function. Element ci.line is used for plotting confidence bounds and contains
the computed quantile of maximum absolute differences. The output dataframe result

contains a matrix with several columns.

> names(expval$result)

[1] "observed" "expected" "candidate" "pvalue" "qvalue"

[6] "fdr" "mean.fdr" "lower.fdr" "upper.fdr" "index"

The dataframe stores observed and expected scores and corresponding empirical p-values.
The genes are ordered by absolute observed test scores. Genes with observed score ex-
ceeding the confidence bounds are marked as “1” in the binary vector result$candidate.
The output object is passed to function plot.twilight to produce a plot as in Tusher et
al. (2001) [7] with additional confidence lines and genes marked as candidates, see Figure
2.1.

> expval$result[1:7, 1:5]

observed expected candidate pvalue qvalue
M84526_at 3.990578 1.1088376 1 1.402721e-07 0.0006197128
M27891_at 3.669657 0.9690305 1 2.805443e-07 0.0006197128
M89957_at -3.153319 -1.1027192 1 4.208164e-07 0.0006197128
X82240_rna1_at -3.111376 -0.9680745 1 5.610885e-07 0.0006197128
U89922_s_at -2.954233 -0.8948820 1 7.013606e-07 0.0006197128
M19507_at 2.925666 0.8960149 1 8.416328e-07 0.0006197128
M11722_at -2.689999 -0.8422853 1 9.819049e-07 0.0006197128

CHAPTER 2. IMPLEMENTED FUNCTIONS 7

Figure 2.1: Expected versus observed test scores. Deviation from
the diagonal line gives evidence for differential expression. The
red lines mark the 95% confidence interval on the absolute differ-
ence between oberved and expected scores. The plotting call is
plot(expval,which="scores",grayscale=F,legend=F).

In addition, q-values and the estimated percentage of non-induced genes π0 are computed
as described in Remark B of Storey and Tibshirani (2003) [6]. These are stored in re-

sult$qvalue (see above) and pi0. The remaing output elements of expval are left free
to be filled by function twilight. With "qvalues", Figure 2.2 shows the plot of q-values
against the corresponding number of rejected hypotheses.

> expval$pi0

[1] 0.6197128

Column result$index contains the original gene ordering of the input object. With these
numbers, resorting of the result table is possible without knowing the original order of
the row names.

CHAPTER 2. IMPLEMENTED FUNCTIONS 8

Figure 2.2: Stairplot of q-values against the resulting size of the list of signifi-
cant genes. A list containing all genes with q ≤ q0 has an estimated global false
discovery rate of q0. The plotting call is plot(expval,which="qvalues").

CHAPTER 2. IMPLEMENTED FUNCTIONS 9

2.2 twilight.pval: Testing correlation

twilight.pval(xin, yin, method="fc", B=1000, yperm=NULL,
quant.ci=0.95, verbose=TRUE)

From version 1.1.0 on, function twilight.pval offers the computation of correlation
scores instead of effect size scores. Now, vector yin can be any clinical parameter con-
sisting of numerical values and having length equal to the number of samples. With
method="pearson", Pearson’s coefficient of correlation to yin is computed for every gene
in xin. With method="spearman", yin and the rows of xin are converted into ranks and
Spearman’s rank correlation is computed.

Note that most input arguments of twilight.pval will be ignored. Only B takes effect
and causes the computation of p-values based on B random permutations of yin. A matrix
of user-specified permutations can be passed on using argument yperm. Here, each row
has to contain a permutation of yin. Note that the values in yperm have to be changed
to ranks beforehand if Spearman correlation is to be computed. Please note that the first
row of yperm must be the input vector yin (probably changed into ranks). Otherwise, the
p-value calculation will be incorrect.

All successive analyses like expected scores, p- and q-values are kept as before. As an
illustration, we search for genes with high correlation to the highest scoring gene found in
the effect size test. Figure 2.3 displays the resulting scores.

> gene <- exprs(golubNorm)[pval$result$index[1],]

> corr <- twilight.pval(golubNorm, gene, method = "spearman",

+ quant.ci = 0.99, B = 100)

Compute vector of observed statistics.

Compute expected scores and p-values. This will take approx. 3 seconds.

Compute q-values.

Compute values for confidence lines.

> corr

Twilight object with

7129 transcripts

observed and expected test statistics

p- and q-values

Estimated percentage of non-induced genes:

pi0

0.6396329

Function call:

Test: spearman. Number of permutations: 100.

CHAPTER 2. IMPLEMENTED FUNCTIONS 10

Figure 2.3: Expected versus observed Spearman correlation scores. De-
viation from the diagonal line gives evidence for significant correlation.
The red lines mark the 99% confidence interval on the absolute dif-
ference between oberved and expected scores. The plotting call is
plot(corr,which="scores",grayscale=F,legend=F).

Note that the overall percentage of non-induced genes π0 is now interpreted as the overall
percentage of genes not correlated to the clinical parameter under the null hypothesis.

> corr$result[1:10, 1:5]

observed expected candidate pvalue qvalue
M27891_at 1.0000000 0.5819258 1 1.402721e-06 0.006396329
J03801_f_at 0.7822519 0.5448714 1 2.805443e-06 0.006396329
D88422_at 0.7772185 0.5271649 1 4.208164e-06 0.006396329
M19045_f_at 0.7713098 0.5135792 1 5.610885e-06 0.006396329
Z15115_at -0.7557720 -0.5679199 1 7.013606e-06 0.006396329
M83667_rna1_s_at 0.7544589 0.5042543 1 8.416328e-06 0.006396329
M63138_at 0.7533647 0.4976146 1 9.819049e-06 0.006396329
X64072_s_at 0.7485502 0.4905613 1 1.122177e-05 0.006396329
M33195_at 0.7457052 0.4849371 1 1.262449e-05 0.006396329
U22376_cds2_s_at -0.7387023 -0.5384397 1 1.402721e-05 0.006396329

CHAPTER 2. IMPLEMENTED FUNCTIONS 11

2.3 twilight.filtering: Filtering permutations

twilight.pval(..., filtering = FALSE)

twilight.filtering(xin, yin, method = "fc", paired = FALSE, s0 = 0,
verbose = TRUE, num.perm = 1000, num.take = 50)

From version 1.2.0 on, we included an permutation filtering algorithm. In a permutation
based test approach, each permutation of the given class labels is thought to reflect the
complete null model. However, in applications to real biological data, we often observe
that certain permutations produce score distributions that still have larger margins than
expected. Therefore, we treat each permutation as the original labeling, transform the
permutation scores to pooled p-values and test the resulting distribution for uniformity.
In an iterative search, we filter for a set of permutations whose p-value distributions fit
well to a uniform distribution.

The filtering is added as an optional argument in function twilight.pval. Although large
parts of the algorithm are written in C, the filtering is still time-consuming. Therefore, the
default within twilight.pval is set to FALSE. If filtering=TRUE, the filtering is called
internally with all the test parameters as given by the user. The only exception is the
balancing parameter: The filtering is done on unbalanced permutations however balance
is specified. Balancing is just a simplier way to select a set of permutations that are not
too close to the given labeling. However, this will not remove other sources of deviation
from a complete null distribution as the filtering does.

Calling the filtering within twilight.pval is very convenient. If one wants to further
examine the filtered permutations, function twilight.filtering can be called directly.
Most input arguments equal those of function twilight.pval, see Sections 2.1 and 2.2
for details on the different methods and formats. Only the fugde factor s0 differs. It takes
effect only if method="z" and is computed as the median pooled standard deviation if
s0=0.

The two input arguments num.perm and num.take are important. The first one is the
number of wanted permutations. Within twilight.pval, it is set to B. The argument
num.take specifies the number of valid permutations that are kept in each step of the
iteration. Within each step, this number increases by num.take. Hence, num.take might
be chosen such that num.take is a divisor of num.perm. Within twilight.pval, num.take
is set to the minimum of 50 and num.perm/20.

The output of function twilight.filtering is a list with two elements. The first element,
yperm, is a matrix with the filtered permutations of yin in rows. The number of rows is
approximately num.perm. The permutations are checked for uniqueness. If the number of
possible unique permutations is less than num.perm, the algorithm stops earlier. In this
case, the result is likely to be just the set of all possible permutations and it is not sure
whether all of these really produce uniform p-value distributions. Here, it is advisable to
lower num.perm.

The format of the output object yperm complies with the needed format of the input
argument yperm in function twilight.pval where two-condition labels are binarized or

CHAPTER 2. IMPLEMENTED FUNCTIONS 12

numerical values are changed to ranks if method="spearman". Please note that the first
row of yperm always contains the original labeling yin to be consistent with the other
permutation functions described in Section 2.5.

The second output element is the numerical value test. For each filtered permutation, the
Hamming distance to the original labeling yin is computed. The resulting distribution of
Hamming distances is tested for randomness using a χ2-test against the expected frequen-
cies of Hamming distances resulting from all possible permutations of yin. The resulting
χ2 p-value is stored in test. A significant p-value gives evidence that the filtering did
not leave a random subset of possible permutations. However, an effective run of twi-

light.filtering results in a non-significant χ2 p-value test. Within twilight.pval,
the result of the χ2 test is reported in the output element call if filtering=TRUE.

As an illustration, we proceed with a quick example of permutation filtering. We perform
the filtering on log ratio scores and only filter for 50 permutations in steps of 10.

> a <- twilight.filtering(golubNorm, id, method = "fc", num.perm = 50,

+ num.take = 10)

Filtering: Wait for 5 to 15 dotsdone

> dim(a$yperm)

[1] 50 38

> a$test

[1] 0.4082435

The filtering leads to a random subset of possible permutations. Next, we check whether
one of these permutations really produces a uniform p-value distribution. As the first row
of yperm has to contain the labeling for which the p-values will be computed, we have to
remove the current first row which is the original labeling yin. Thus, we compute p-values
for the first “random” permutation. The resulting histogram is shown in Figure 2.4.

> a$yperm <- a$yperm[-1,]

> b <- twilight.pval(golubNorm, a$yperm[1,], method = "fc",

+ yperm = a$yperm)

Compute vector of observed statistics.

Compute expected scores and p-values. This will take approx. 2 seconds.

Compute q-values.

Compute values for confidence lines.

> hist(b$result$pvalue, col = "gray", br = 20)

CHAPTER 2. IMPLEMENTED FUNCTIONS 13

Figure 2.4: Histogram of p-values of one filtered permutation. The p-values
are computed from pooling the scores of the set of filtered permutations. The
resulting distribution appears to be uniform.

CHAPTER 2. IMPLEMENTED FUNCTIONS 14

2.4 twilight: Estimating the local FDR

twilight(xin, lambda=NULL, B=0, boot.ci=0.95, clus=NULL, verbose=TRUE)

Local false discovery rates (fdr) are estimated from a simple mixture model given the
density f(t) of observed scores T = t:

f(t) = π0 f0(t) + (1− π0) f1(t) ⇒ fdr(t) = π0
f0(t)
f(t)

, (2.4)

where π0 ∈ [0, 1] is the overall percentage of non-induced genes. Terms f0 and f1 are score
densities under no induction and under induction respectively. Assume that there exists
a transformation W such that U = W (T) is uniformly distributed in [0, 1] for all genes
not differentially expressed. In a multiple testing scenario these u-values are p-values
corresponding to the set of observed scores. However, we do not regard the local false
discovery rate as a multiple error rate but as an exploratory tool to describe a microarray
experiment over the whole range of significance.

Mapping scores to p-values allows to assume f0(p) to be the uniform density instead of
specifying the null density f0(t) with respect to a chosen scoring method. The implemented
successive exclusion procedure (SEP) splits any vector of p-values into a uniformly dis-
tributed null part and an alternative part. The uniform part represents genes that are
not differentially expressed. The proportion of the uniform part to the total number of
genes in the experiment is a natural estimator for percentage π0. We apply a smoothed
density estimate based on the histogram counts of the observed mixture to estimate f(p).
Assuming uniformity leads to f0(p) = 1 for all p ∈ [0, 1]. Hence, the ratio of the estimates
π̂0 and f̂(p) estimates the local false discovery rate for a certain p-value level.

The successive exclusion procedure is described in detail in Scheid and Spang (2004) [4].
The functionality of twilight is not limited to microarray experiments. In principle, any
vector of p-values can be passed to twilight as long as the assumption of uniformity
under the null hypothesis is valid.

The objective function in twilight includes a penalty term that is controlled by the
regularization parameter λ ≥ 0. The regularization ensures that we find a separation such
that the uniform part contains as many p-values as possible. As percentage π0 is often
underestimated, the inclusion of a penalty term results in a more “conservative” estimate
that is usually less biased. If not specified (lambda=NULL), function twilight.getlambda

finds a suitable λ.

The estimates for probability π0 and the local false discovery rate are averaged over 10
runs of SEP. In addition, bootstrapping can be performed to give bootstrap estimates and
bootstrap percentile confidence intervals on both π0 and the local false discovery rate.
The number of bootstrap samples is set by argument B, and the width of the bootstrap
confidence interval is set by argument boot.ci.

Function twilight takes twilight objects or any vector of p-values as input and returns a
twilight object. If the input is of class twilight , the function works on the set of empirical p-
values and fills in the remaining output elements. Note that the estimate for π0 is replaced,

CHAPTER 2. IMPLEMENTED FUNCTIONS 15

and q-values are recalculated with the new estimate π0. As an example, we run SEP with
1000 bootstrap samples and 95% boostrap confidence intervals: twilight(xin=expval,

B=1000, boot.ci=0.95), as was done for data set exfdr.

> data(exfdr)

> exfdr

Twilight object with

7129 transcripts

observed and expected test statistics

p- and q-values

local FDR

bootstrap estimates of local FDR

Bootstrap estimate of percentage of non-induced

genes with lower and upper 95% CI:

pi0 lower.pi0 upper.pi0

0.6275649 0.5953114 0.656193

Function call:

Test: fc. Paired: FALSE. Number of permutations: 1000. Balanced: FALSE.

Function twilight used lambda = 0.035

> exfdr$result[1:5, 6:9]

fdr mean.fdr lower.fdr upper.fdr

M84526_at 0.01016839 0.01023125 0.006804447 0.01359302

M27891_at 0.01016949 0.01023236 0.006805623 0.01359414

M89957_at 0.01017059 0.01023347 0.006806799 0.01359526

X82240_rna1_at 0.01017169 0.01023457 0.006807976 0.01359638

U89922_s_at 0.01017279 0.01023568 0.006809152 0.01359750

The output elements result$fdr, result$mean.fdr, result$lower.fdr and
result$upper.fdr contain the estimated local false discovery rate, the bootstrap average
and upper and lower bootstrap confidence bounds. These values are used to produce the
following plots which are only available after application of function twilight. First, we
plot p-values against the corresponding conditional probabilities of being induced given
the p-value level, that is 1− fdr, see Figure 2.5. Going back to observed scores, we produce
a volcano plot, that is observed scores versus local false discovery rate, see Figure 2.6.

Output element effect contains histogram information about the effect size distribution,
that is log ratio under the alternative. One run of the successive exclusion procedure results
in a split of the input p-value vector into a null and an alternative part. We estimate the
effect size distribution from the distribution of log ratio scores corresponding to p-values
in the alternative part. Again, this estimate is averaged over 10 runs of the procedure.
Argument which="effectsize" produces the histogram of all observed log ratios overlaid

CHAPTER 2. IMPLEMENTED FUNCTIONS 16

Figure 2.5: Curve of estimated local false discovery over p-values. The
red lines denote the bootstrap mean (solid line) and the 95% boot-
strap confidence interval on the local false discovery rate (dashed lines).
The bottom ticks are 1% quantiles of p-values. The plotting call is
plot(exfdr,which="fdr",grayscale=F,legend=T).

Figure 2.6: Volcano plot of observed test scores versus local false discovery
rate. The bottom ticks are 1% quantiles of observed scores. The plotting call
is plot(exfdr,which="volcano").

CHAPTER 2. IMPLEMENTED FUNCTIONS 17

Figure 2.7: Observed effect size distribution (gray histogram) overlaid with
the estimated effect size distribution under the null hypothesis (black his-
togram). The plotting call is plot(exfdr,which="effectsize",legend=T).

with the averaged histogram of log ratios in the alternative, see Figure 2.7. The x-axis
is changed to fold change equivalent scores or rather to increase in effect size. Given an
observed log ratio F , the increase in effect size is (exp(|F |)−1) · sign(F) ·100%. A value of
0% corresponds to no change (fold change of 1), a value of 50% to fold change 1.5 and so
on. A value of -100% corresponds to a 2-fold down-regulation, that is fold change of 0.5.

The last plotting argument which="table" tabulates the histogram information in terms
of fold change equivalent scores and log ratios.

> tab <- plot(exfdr, which = "table")

> tab[1:8,]

LogRatio Mixture Alternative

-2234% -3.15 2 2.0

-2012% -3.05 0 0.0

-1811% -2.95 1 0.8

-1629% -2.85 0 0.0

-1464% -2.75 0 0.0

-1315% -2.65 1 1.0

-1181% -2.55 0 0.0

-1059% -2.45 1 0.8

The input argument clus of function twilight is used to perform parallel computation
within twilight. Parallelization saves computation time which is especially useful if the
number of bootstrap samples B is large. With default clus=NULL, no parallelization is
done. If specified, clus is passed as input argument to makeCluster in library(snow).
Please make sure that makeCluster(clus) works properly in your environment.

CHAPTER 2. IMPLEMENTED FUNCTIONS 18

2.5 twilight.combi: Enumerating permutations of binary
vectors

twilight.combi(xin, pin, bin)

Function twilight.combi is used within twilight.pval to completely enumerate all per-
mutations of a binary input vector xin. Argument pin specifies whether the input vector
corresponds to paired or unpaired data. Argument bin specifies whether permutations are
balanced or unbalanced. Note that the resulting permutations are always “as balanced as
possible”: The balancing is done for the smaller subsample. If its sample size is odd, say
7, twilight.combi computes all permutations with 3 and 4 samples unchanged.

As first example, compute all unbalanced permutations of an unpaired binary vector of
length 5 with two zeros and three ones. The number of rows are

m =
5!

2! · 3!
= 10. (2.5)

> x <- c(rep(0, 2), rep(1, 3))

> x

[1] 0 0 1 1 1

> twilight.combi(x, pin = FALSE, bin = FALSE)

[,1] [,2] [,3] [,4] [,5]

[1,] 0 0 1 1 1

[2,] 0 1 0 1 1

[3,] 0 1 1 0 1

[4,] 0 1 1 1 0

[5,] 1 0 0 1 1

[6,] 1 0 1 0 1

[7,] 1 0 1 1 0

[8,] 1 1 0 0 1

[9,] 1 1 0 1 0

[10,] 1 1 1 0 0

Each row contains one permutation. The first row contains the input vector. In balanced
permutations, we omit those rows where both original zeros have been shifted to the last
three columns. The number of balanced rows is

m =
(

2
1

)
· 3!
1! · 2!

= 6. (2.6)

> twilight.combi(x, pin = FALSE, bin = TRUE)

[,1] [,2] [,3] [,4] [,5]

[1,] 0 0 1 1 1

CHAPTER 2. IMPLEMENTED FUNCTIONS 19

[2,] 0 1 0 1 1

[3,] 0 1 1 0 1

[4,] 0 1 1 1 0

[5,] 1 0 0 1 1

[6,] 1 0 1 0 1

[7,] 1 0 1 1 0

Note that the function returns six balanced rows and the original input vector although
it is not balanced.

Next, consider a paired input vector with four pairs. The first zero and the first one are
the first pair and so on. In paired settings, values are flipped only within a pair. The
number of rows is

m =
1
2
· 24 = 23 = 8. (2.7)

> y <- c(rep(0, 4), rep(1, 4))

> y

[1] 0 0 0 0 1 1 1 1

> twilight.combi(y, pin = TRUE, bin = FALSE)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 0 0 0 0 1 1 1 1

[2,] 0 0 0 1 1 1 1 0

[3,] 0 0 1 0 1 1 0 1

[4,] 0 1 0 0 1 0 1 1

[5,] 1 0 0 0 0 1 1 1

[6,] 0 0 1 1 1 1 0 0

[7,] 0 1 0 1 1 0 1 0

[8,] 0 1 1 0 1 0 0 1

The matrix above contains only half of all possible 24 = 16 permutations. The reversed case
1 - twilight.combi(y, pin=TRUE, bin=FALSE) is omitted as this will lead to the same
absolute test scores as twilight.combi(y, pin=TRUE, bin=FALSE). The same concept
applies to balanced paired permutations. Now, two pairs are kept fixed and two pairs are
flipped in each row. The number of balanced rows is

m =
1
2
·
(

4
2

)
= 3. (2.8)

> twilight.combi(y, pin = TRUE, bin = TRUE)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 0 0 0 0 1 1 1 1

[2,] 0 0 1 1 1 1 0 0

[3,] 0 1 0 1 1 0 1 0

[4,] 0 1 1 0 1 0 0 1

CHAPTER 2. IMPLEMENTED FUNCTIONS 20

Again, the input vector is part of the output.

The complete enumeration of twilight.combi is limited by the sample sizes. The function
returns NULL if the resulting number of rows exceeds 10 000. If NULL is returned, function
twilight.pval uses the functions twilight.permute.unpair and twilight.permute.pair

which return a matrix of random permutations. For example, use the latter function to
compute 7 balanced permutations of the paired vector y. Similar to twilight.combi,
these two functions return the input vector in the first row of their output matrices.

> twilight.permute.pair(y, 7, bal = TRUE)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 0 0 0 0 1 1 1 1

[2,] 0 1 1 0 1 0 0 1

[3,] 1 1 0 0 0 0 1 1

[4,] 1 0 0 1 0 1 1 0

[5,] 0 1 1 0 1 0 0 1

[6,] 0 1 1 0 1 0 0 1

[7,] 1 1 0 0 0 0 1 1

Chapter 3

Differences to earlier versions

Changes in version 1.6.2

Adapted to changes of data package golubEsets.

Changes in version 1.6.1

It is now possible to directly compute observed test statistics via function twilight.teststat.
Additional minor cosmetic changes in the plot function.

Within twilight.pval, the complete enumeration depends now on the value of argument
B. If complete enumeration would lead to a larger number of permutations than B, it is
not done but B random permutations are taken instead.

Changes in version 1.5.1 and 1.5.2

Minor cosmetic changes. The jump in version numbers is due to Bioconductor’s version
bumping regime for packages in the release and in the developmental repository.

Changes in version 1.2.3

We updated the bootstrapping procedure in twilight.getlambda to get a reliable value
for the regularization parameter when π0 is small and many genes are truly differentially
expressed.

Changes in version 1.2.2

Changes in the C code which do not effect the results.

21

CHAPTER 3. DIFFERENCES TO EARLIER VERSIONS 22

Changes in version 1.2.1

Bug fixed on the calculation of Hamming distances.

Changes in version 1.2.0

We added the argument filtering = FALSE to function twilight.pval which (if set to
TRUE) invokes the filtering for class label permutations that produce uniform p-value distri-
butions. The set of admissible permutations is found using function twilight.filtering

which is called internally in function twilight.pval. However, it can also be used directly.

We changed the local FDR estimation in function twilight slightly. Instead of estimating
both densities f0 and f from the output of SEP, we rely on the uniform assumption such
that f0(p) = 1 for all p ∈ [0, 1]. Hence, the 10 runs of SEP lead to 10 estimates π̂0. The
average of these is taken as the final value which is mutliplied with the density estimate
of the mixture density f .

The mixture density estimation of f also changed slightly. Still, the estimates are based
on smoothed histogram counts. To improve the estimation for very small p-values, the
histogram bins were changed from equidistant to quantile bins.

Changes in version 1.1.0

The computation of p-values in twilight.pval changed from gene-wise to pooled p-values.
For the computation of a gene-wise p-value for gene i, only the permutation scores of gene
i are taken into account. For pooled p-values, all permutation scores of all genes are taken
as null distribution. This change has several advantages: First, gene-wise p-values were
not monotonically increasing with scores because each gene had its own null distribution.
Thus, two genes with almost equal scores might get quite different p-values. Now, the
null distribution is the same for all genes, that is the union set of all permutation scores.
Second, pooled p-values are less granular than gene-wise p-values. Gene-wise p-values
are computed from B permutation scores whereas pooled p-values are computed from B ·
(number of genes) scores.

These two important features gave rise to further changes: The ordering of the result

table is now more intuitive because the most significant genes on top have the highest
scores, the lowest p- and q-values and are candidates (if there are any). In addition, the
default value of the number of permutations B is lowered to 1000 permutations. Computa-
tion of pooled p-values is slower than for gene-wise p-values. On the other hand, changing
to pooled p-values increases the number of values in the null distribution by the factor of
number of genes. Hence, even with less permutations, the number of null values is larger
than before.

We integrated Pearson and Spearman correlation coefficients into twilight.pval. Each
gene is correlated to an numerical input vector. Expected scores are computed from
random permutations of the input vector.

CHAPTER 3. DIFFERENCES TO EARLIER VERSIONS 23

The result table contains an additional index column with genes indices which comes in
handy for sorting back to original ordering.

All output matrices of the permutation functions twilight.combi, twilight.permute.pair
and twilight.permute.unpair have the original labeling vector as first row. This is also
the case if balanced permutations are wanted, although the input vector is not balanced.
Hence, the permutation matrix within twilight.pval now includes the original labeling
even for balanced permutations implying that the smallest possible p-value is 1/(number
of permutations).

Changes in version 1.0.3

A print.twilight function was added which produces a short information about the
contents stored in the twilight object.

Changes in version 1.0.2

The which argument of the plot command changed from plot1 style to more intuitive
labels like scores or fdr.

Chapter 4

Bibliography

[1] B. Efron, R. Tibshirani, J.D. Storey and V.G. Tusher, ”Empirical Bayes Analysis of a
Microarray Experiment”, J. Am. Stat. Assoc., vol. 96, no. 456, pp. 1151-1160, 2001.

[2] W. Huber, A. von Heydebreck, H. Sültmann, A. Poustka and M. Vingron, “Variance
stabilization applied to microarray data calibration and to the quantification of differ-
ential expression”, Bioinformatics, vol. 18, suppl. 1, pp. S96-S104, 2002.

[3] T.R. Golub, D.K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J.P. Mesirov, H.
Coller, M.L. Loh, J.R. Downing, M.A. Caligiuri, C.D. Bloomfield and E.S. Lander,
”Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene
Expression Monitoring”, Science, vol. 286, pp. 531-537, 1999.

[4] S. Scheid and R. Spang, ”A stochastic downhill search algorithm for estimating the
local false discovery rate”, IEEE Transactions on Computational Biology and Bioin-
formatics, vol. 1, no. 3, pp. 98-108, 2004.

[5] S. Scheid and R. Spang, ”twilight; a Bioconductor package for estimating the local
false discovery rate”, Bioinformatics, vol. 21, no. 12, pp. 2921-2922, 2005.

[6] J.D. Storey and R. Tibshirani, “Statistical significance for genomewide studies”, Proc.
Natl. Acad. Sci., vol. 100, no. 16, pp. 9440-9445, 2003.

[7] V. Tusher, R. Tibshirani and C. Chu, “Significance analysis of microarrays applied to
ionizing radiation response”, Proc. Natl. Acad. Sci., vol. 98, no. 9, pp. 5116-5121, 2001.

24

	Introduction
	Implemented functions
	twilight.pval: Testing effect sizes
	twilight.pval: Testing correlation
	twilight.filtering: Filtering permutations
	twilight: Estimating the local FDR
	twilight.combi: Enumerating permutations of binary vectors

	Differences to earlier versions
	Bibliography

