
Ber
lin

C
e
n

te
r

fo
r

Genome Based
B
io

i n
fo

rm
atics

Max Planck Institute for Molecular Genetics

Computational Diagnostics Group @ Dept. Vingron

Ihnestrasse 63-73, D-14195 Berlin, Germany

http://compdiag.molgen.mpg.de/

Structured Analysis of Microarrays

User’s Guide to the Bioconductor package stam

Claudio Lottaz1 and Rainer Spang

Max Planck Institute for Molecular Genetics
Computational Diagnostics, Department for Computation Molecular Biology

Ihnestr. 63-73, D-14195 Berlin, Germany

Technical Report
Nr. 2004/03

Abstract

This is the vignette of the Bioconductor compliant packege stam. We describe our im-
plementation of structured analysis of microarray data for decomposing complex clinical
phenotypes in clinical gene expression profiling studies.

1Corresponding author: claudio.lottaz@molgen.mpg.de

Contents

1 Introduction 2

2 Training Classifiers 4
2.1 Generate a raw classifier graph . 5
2.2 Cross validate graph shrinkage candidates 6
2.3 Computing a single model . 8

3 Structured Prediction 16

4 All in One 18
4.1 Explorative Use . 18
4.2 Predictive Use . 18

5 StAM WWW-Server 20

6 Bibliography 22

1

Chapter 1

Introduction

In clinical context microarray data can be used in a straight forward manner for diag-
nostic tasks. Thereby, standard classification methods developed in the machine learning
community have been suggested and applied in clinical research to distinguish between
clinically relevant phenotypes. However, it is commonly accepted that such phenotypes
are often complex, i.e. caused by different causes. Thus we expect to find heterogenous
gene expression profiles in patients with homogenous clinical phenotype.

In order to decompose complex phenotypes, we suggest a procedure we call structured
analysis of Microarrays. In this procedure we train many classifiers to recognize the same
complex phenotype. Each classifier focusses on a single biological aspect by extracting only
the expression data of the corresponding genes. Many of these classifiers will be unable
to recognize the phenotype of interest and are thus discarded. Others will recognize a
subset of patients and some of them hopefully discover all patients. Structured analysis
of microarrays uses classifiers with high specificity, we call them molecular symptoms,
to further stratify patients on a molecular level. Patterns of absence and presence of
molecular symptoms identify particular groups of patients. Due to the biological focus of
our classifiers, molecular symptoms always have a biological meaning.

The Bioconductor compliant R package stam described in this document implements
structured analysis of microarrays based on the Gene Ontology [1]. GO terms attributed
to leaf nodes of the GO graph are used as biological focusses for potential molecular
symptoms. The hierarchy of the Gene Ontology is used to compute more general classifiers
by weighted averaging. Thereby, good classifiers obtain higher weights. A shrinkage
process of these weights, similar to the one used in PAM [4] to select genes, restricts the
graph of classifiers in a cross validation setting to the branches linked to the phenotype.

The remainder of this document describes the usage of the stam package. stam relies on
Bioconductor meta data packages to implement structured training of classifiers (Section
2) and structured prediction (Section 3). For further convenience we have implemented
a complete structured evaluation of a data set (Section 4) and a web based possibility to

2

CHAPTER 1. INTRODUCTION 3

explore some crucial parameters of such an analyses interactively (Section 5).

Chapter 2

Training Classifiers

The training of a structured classifier for a phenotype in microarray data consists of the
following steps:

1. Generate a classifier network according to the chip’s annotations and the GO hier-
archy.

2. Perform cross-validated PAM fits in each leaf node to determine adequate PAM
shrinkage levels and compute performance for several graph shrinkage candidates.

3. Compute single structured model using the best graph shrinkage level chosen by the
user or automatically according some performance criterion calculated in the cross
validation step.

Before starting any analysis you have to load the stam package in your R session as
follows:

> library(stam)

Loading required package: GO

Loading required package: pamr

Loading required package: cluster

Loading required package: annaffy

Loading required package: KEGG

For illustration of stam usage we use the Golub data set on acute leukemia [3] as it is stored
in the golubEsets data package. For preparing the data, issue the following commands:

> library(vsn)

> library(golubEsets)

> data(Golub_Merge)

> golubTrain <- Golub_Merge[, 1:38]

> golubTest <- Golub_Merge[, 39:72]

4

CHAPTER 2. TRAINING CLASSIFIERS 5

2.1 Generate a raw classifier graph

The raw classifier graph can be generated by the function stam.net. This function needs
the name of the chip used in the study to be analyzed as well as the root node to be used
for the classifier graph. The function returns an object of class stamNet .

> net <- stam.net(chip = "hu6800", root = "GO:0005576",

+ probes = rownames(exprs(Golub_Merge)))

The string given as the chip’s name is used to load the annotation data. Thus stam expects
a library of the same name to be installed, where it looks for the <chip-name>GO hash as it
is provided by Bioconductor meta data packages. The root of the classifier graph must be
identified by a string interpreted as a GO identifier of the form ’GO:ddddddd’. The default is
GO:0008150 which represents the ’biological process’ branch of the Gene Ontology. Other
prominent candidates may be GO:0003674 (molecular function) or GO:0005575 (cellular
component). However, any valid GO identifier is allowed.

The classifier graph may be analysed using the print function as is shown in the next
chunk of R code. Printing the object returned by stam.net directly shows some properties
of the generated classifier graph. One component of this object holds an entry for each
node. Summary information on each node can also be printed as shown below.

> print(net)

stamNet on chip hu6800

Chip data package:

version 1.12.0

Mon Apr 24 11:03:41 2006; tliu

Gene Ontology GO package:

version 1.12.0

Mon Apr 24 11:01:57 2006; tliu)

root is set to

GO:0005576 (extracellular region)

holds 47 nodes, 34 of which are leafs and 13 are inner nodes

831 of 7129 probesets have annotations (11.7%)

> print(net@nodes[[31]])

stamLeaf GO:0005604 basement membrane

from category cell components

contains 19 genes

[1] "M91196_at" "L41939_at" "X17059_s_at"

[4] "HG2238-HT2321_s_at" "U90543_s_at" "X81895_at"

CHAPTER 2. TRAINING CLASSIFIERS 6

[7] "M83664_at" "U76388_at" "U76388_at"

[10] "HG1078-HT1078_at" "J03171_at" "L37378_at"

[13] "M55047_at" "L32164_at" "M64571_at"

[16] "X90846_at" "L20320_at" "HG2530-HT2626_at"

[19] "D63998_at"

> print(net@nodes[["GO:0005579"]])

stamLeaf GO:0005579 membrane attack complex

from category cell components

contains 8 genes

[1] "X79204_at" "U44754_at" "HG2614-HT2710_at"

[4] "X72889_at" "L09753_at" "M30703_s_at"

[7] "U85245_at" "X63187_at"

A convenient meands to explore the information on the raw classifier graph is provided
by the function stam.writeHTML which, applied on a stamNet object, writes a set of
interlinked HTML pages.

> stam.writeHTML(net)

One referrable section of an HTML page is written for each node. Each such section
contains links to the parents and the children. Sections for leaf nodes contain links to the
Affymetrix annotations of the genes they contain.

2.2 Cross validate graph shrinkage candidates

In order to choose the graph shrinkage level reasonnably, we provide a cross validation
method similar to the procedure suggested for choosing shrinkage fore gene selection in
PAM. stam.cv applies this method and returns an object of class stamCV :

> golubTrain.cv <- stam.cv(golubTrain, "ALL.AML", chip = "hu6800",

+ root = "GO:0005575", ndeltas = 10)

This call also generates the above mentioned raw classifier graph. The considered shrink-
age candidates can be provided to this function directly. If only a number of candidates
is specified using ndeltas stam.cv chooses these equidistantly within the range of perfor-
mance measures observed in the leaf nodes.

For further investigation of the returned stamCV object you can use the print and
plot methods.

> print(golubTrain.cv)

CHAPTER 2. TRAINING CLASSIFIERS 7

stamCV on expression matrix holding 38 samples from 2 classes.

Structure from: stamNet on chip hu6800

Chip data package:

version 1.12.0

Mon Apr 24 11:03:41 2006; tliu

Gene Ontology GO package:

version 1.12.0

Mon Apr 24 11:01:57 2006; tliu)

root is set to

GO:0005575 (cellular_component)

holds 609 nodes, 410 of which are leafs and 199 are inner nodes

5896 of 7129 probesets have annotations (82.7%)

Class priors: 'ALL': 0.631579 'AML': 0.3684211

Class weights: 'ALL': 0.631579 'AML': 0.3684211

Shrinkage candidates: 0 0.1389774 0.2779548 0.4169322 0.5559095 0.694887 0.8338643 0.9728417 1.111819 1.250796

Results from 10-fold cross validation:

Root.error.rate Root.performance Mean.redundancy Nodes Genes

0 0.05263 0.59886 0.86068 315 5808

0.139 0.05263 0.52942 0.90351 263 5786

0.278 0.05263 0.47627 1.03877 162 5688

0.417 0.05263 0.41331 1.25380 107 5592

0.556 0.05263 0.30507 1.73380 64 5456

0.695 0.05263 0.24587 2.03016 49 5263

0.834 0.05263 0.22676 2.61715 36 4795

0.973 0.02632 0.18806 3.22429 20 3025

1.112 0.02632 0.14148 4.28383 14 1007

> plot(golubTrain.cv, delta = 0.6)

The plot method can actually provide two types of plots as shown below. One of them
shows the error rate and performance measure in the root node as well as the mean
redundancy across the resulting classifier graph depending on the graph shrinkage level
(Figure 2.1). Thereby, our performance measure in the root node is similar to a deviance
and thus to be minimized. The second plot shows number of nodes and accessible genes
in the remaining graphs depending on the graph shrinkage level (Figure 2.2).

In order to investigate the cruss validation results, you can also apply the function
stam.writeHTML on the object returned by stam.cv.

CHAPTER 2. TRAINING CLASSIFIERS 8

Cross Validation of ALL−Prediction − Performance

ro
ot

 e
rr

or
 r

at
e

0.
03

0
0.

04
5

∆∆0

ro
ot

 p
er

fo
rm

an
ce

0.
2

0.
4

0.
6

∆∆0

0.0 0.2 0.4 0.6 0.8 1.0

1.
0

2.
0

3.
0

4.
0

shrinkage parameter ∆∆

m
ea

n
re

du
nd

an
cy

∆∆0

Figure 2.1: Results of cross validation - performance and redundancy

2.3 Computing a single model

After deciding for the best graph shrinkage level based on the cross validation results, we
suggest to determine a single model to recognize the investigated phenotype. This task is
performed using the stam.fit function. The graph shrinkage level can be chosen through
the delta argument. It can also be determined automatically based on a weighting factor
between performance and redundancy specified in alpha. If alpha is set to NULL the error
rate in the root node is minimized. You can also provide a sequence of weighting factors
between 0 and 1 in alpha. In this case stam.fit computes evaluation criteria for each of
these factors and asks the user to provide the best graph shrinkage level interactively.

> golubTrain.fit <- stam.fit(golubTrain.cv, golubTrain,

+ alpha = seq(0, 1, 0.1))

- Fitting for best shrinkage...

Best Delta Root Error Rate Performance Redundancy #Nodes #Genes

0 0.0000 0.0526 0.5989 0.8607 315 5808

0.1 0.1390 0.0526 0.5294 0.9035 263 5786

0.2 0.1390 0.0526 0.5294 0.9035 263 5786

0.3 0.2780 0.0526 0.4763 1.0388 162 5688

CHAPTER 2. TRAINING CLASSIFIERS 9

Cross Validation of ALL−Prediction − Data Used

nu
m

be
r

of
 G

O
−

no
de

s

50
15

0
25

0

∆∆0

0.0 0.2 0.4 0.6 0.8 1.0

10
00

30
00

50
00

shrinkage parameter ∆∆

nu
m

be
r

of
 a

cc
es

si
bl

e
ge

ne
s ∆∆0

Figure 2.2: Results of cross validation - number of nodes and genes

0.4 0.5559 0.0526 0.3051 1.7338 64 5456

0.5 0.6949 0.0526 0.2459 2.0302 49 5263

0.6 0.6949 0.0526 0.2459 2.0302 49 5263

0.7 0.6949 0.0526 0.2459 2.0302 49 5263

0.8 1.1118 0.0263 0.1415 4.2838 14 1007

0.9 1.1118 0.0263 0.1415 4.2838 14 1007

1 1.1118 0.0263 0.1415 4.2838 14 1007

. fitting weights with shrinkage 0.6949 ...

yields error rate: 0.05263158 (performance 0.2458663, redundancy 2.030172)

through 49 nodes with 5263 accessible genes

For further investigation we provide print and plot methods on the stamFit object
returned by stam.fit. The plot method on stamFit objects generates two different pluts.
The first plut, only generated when a set of weighting factors is given to stam.fit, il-
lustrates the dependency between weighting factor and resulting graph shrinkage (Figure
2.3). The second plot shows the nodewise evaluation of classifiers according to sensitivity,
specificity, redundancy and performance (Figure 2.4).

> print(golubTrain.fit)

CHAPTER 2. TRAINING CLASSIFIERS 10

stamFit to predict from 2 classes.

Structure from: stamNet on chip hu6800

Chip data package:

version 1.12.0

Mon Apr 24 11:03:41 2006; tliu

Gene Ontology GO package:

version 1.12.0

Mon Apr 24 11:01:57 2006; tliu)

root is set to

GO:0005575 (cellular_component)

holds 49 nodes, 18 of which are leafs and 31 are inner nodes

5896 of 7129 probesets have annotations (82.7%)

Class priors: 'ALL': 0.6316 'AML': 0.3684

Class weights: 'ALL': 0.6316 'AML': 0.3684

Shrinkage parameter: 0.6949 chosen by considering weighted scores between root performance and mean redundancy

Candidates for performance weights: 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

Left 49 nodes with weights

Performance Redundancy ALL (sens.) AML (sens.) ALL (spec.)

GO:0005615 0.2865 2.6336 1.0000 0.9286 0.9286

GO:0005615 0.2865 2.6336 1.0000 0.9286 0.9286

GO:0005576 0.4477 3.2146 1.0000 0.9286 0.9286

GO:0005576 0.3019 2.7003 1.0000 0.9286 0.9286

GO:0008372 0.2496 2.4237 1.0000 0.9286 0.9286

GO:0005913 0.5369 1.7731 0.9583 0.7143 0.7143

GO:0005913 0.5369 1.7731 0.9583 0.7143 0.7143

GO:0005911 0.5369 1.7731 0.9583 0.7143 0.7143

GO:0005912 0.5369 1.7731 0.9583 0.7143 0.7143

GO:0030054 0.5369 1.7731 0.9583 0.7143 0.7143

GO:0005887 0.4267 1.6724 0.9583 0.9286 0.9286

GO:0005887 0.4267 1.6724 0.9583 0.9286 0.9286

GO:0031226 0.4267 1.6724 0.9583 0.9286 0.9286

GO:0005886 0.4360 1.7105 0.9583 0.9286 0.9286

GO:0005886 0.4472 1.6911 0.9583 0.9286 0.9286

GO:0016021 0.4191 3.3181 1.0000 0.9286 0.9286

GO:0016021 0.3065 2.0083 1.0000 0.9286 0.9286

GO:0031224 0.3388 1.8720 1.0000 0.9286 0.9286

GO:0016020 0.5645 1.3622 1.0000 0.9286 0.9286

GO:0016020 0.3936 1.7254 1.0000 0.9286 0.9286

GO:0005856 0.1850 2.2544 1.0000 0.9286 0.9286

CHAPTER 2. TRAINING CLASSIFIERS 11

GO:0005856 0.2161 2.2020 1.0000 0.9286 0.9286

GO:0005634 0.3221 1.7559 1.0000 0.9286 0.9286

GO:0005634 0.3221 1.7559 1.0000 0.9286 0.9286

GO:0005783 0.0654 2.9849 1.0000 0.9286 0.9286

GO:0005783 0.0654 2.9849 1.0000 0.9286 0.9286

GO:0005764 0.5394 1.3740 1.0000 0.9286 0.9286

GO:0005764 0.5394 1.3740 1.0000 0.9286 0.9286

GO:0005773 0.5394 1.3740 1.0000 0.9286 0.9286

GO:0005739 0.5697 1.3676 1.0000 0.8571 0.8571

GO:0005739 0.5697 1.3676 1.0000 0.8571 0.8571

GO:0043231 0.1987 1.9799 1.0000 0.9286 0.9286

GO:0043232 0.2177 2.1999 1.0000 0.9286 0.9286

GO:0043229 0.2059 2.0138 1.0000 0.9286 0.9286

GO:0005829 0.5819 1.4780 0.9167 0.9286 0.9286

GO:0005829 0.5819 1.4780 0.9167 0.9286 0.9286

GO:0005737 0.1335 2.8643 0.9583 0.9286 0.9286

GO:0005737 0.1529 2.1825 1.0000 0.9286 0.9286

GO:0005622 0.2125 1.9950 1.0000 0.9286 0.9286

GO:0005624 0.3792 2.9648 0.9583 0.8571 0.8571

GO:0005624 0.3792 2.9648 0.9583 0.8571 0.8571

GO:0005625 0.4701 1.9811 1.0000 0.8571 0.8571

GO:0000267 0.3919 2.2813 0.9583 0.8571 0.8571

GO:0009986 0.4493 1.6237 1.0000 0.9286 0.9286

GO:0009986 0.4493 1.6237 1.0000 0.9286 0.9286

GO:0005623 0.3093 1.8120 1.0000 0.9286 0.9286

GO:0043227 0.1987 1.9799 1.0000 0.9286 0.9286

GO:0043226 0.2059 2.0138 1.0000 0.9286 0.9286

GO:0005575 0.2459 2.0705 1.0000 0.9286 0.9286

AML (spec.)

GO:0005615 1.0000

GO:0005615 1.0000

GO:0005576 1.0000

GO:0005576 1.0000

GO:0008372 1.0000

GO:0005913 0.9583

GO:0005913 0.9583

GO:0005911 0.9583

GO:0005912 0.9583

GO:0030054 0.9583

CHAPTER 2. TRAINING CLASSIFIERS 12

GO:0005887 0.9583

GO:0005887 0.9583

GO:0031226 0.9583

GO:0005886 0.9583

GO:0005886 0.9583

GO:0016021 1.0000

GO:0016021 1.0000

GO:0031224 1.0000

GO:0016020 1.0000

GO:0016020 1.0000

GO:0005856 1.0000

GO:0005856 1.0000

GO:0005634 1.0000

GO:0005634 1.0000

GO:0005783 1.0000

GO:0005783 1.0000

GO:0005764 1.0000

GO:0005764 1.0000

GO:0005773 1.0000

GO:0005739 1.0000

GO:0005739 1.0000

GO:0043231 1.0000

GO:0043232 1.0000

GO:0043229 1.0000

GO:0005829 0.9167

GO:0005829 0.9167

GO:0005737 0.9583

GO:0005737 1.0000

GO:0005622 1.0000

GO:0005624 0.9583

GO:0005624 0.9583

GO:0005625 1.0000

GO:0000267 0.9583

GO:0009986 1.0000

GO:0009986 1.0000

GO:0005623 1.0000

GO:0043227 1.0000

GO:0043226 1.0000

GO:0005575 1.0000

CHAPTER 2. TRAINING CLASSIFIERS 13

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Weighted Scores vs. Shrinkage

shrinkage parameter ∆∆

w
ei

gh
te

d
sc

or
e

●

●

●

●

● ●●●

●

●

●

∆∆0

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Performance Weight vs. Best Shrinkage

performance weight

be
st

 s
hr

in
ka

ge
 p

ar
am

et
er

 ∆∆

∆∆o

Figure 2.3: Results of model fit - weighting vs. shrinkage

> plot(golubTrain.fit)

The function stam.writeHTML can also be applied on stamFit objects. If the package
graphviz is installed on your system, an HTML page with a clickable graph plot is gen-
erated for exploration of the fitted model. The function stam.graph.plot generates this
graph layout using the dot utility from graphviz (Figure 2.5.

CHAPTER 2. TRAINING CLASSIFIERS 14

●●

●

●

●

●●●●●

●●●

●
●

●

●

●

●

●

●

●

●●

●●

●●● ●●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

0.1 0.2 0.3 0.4 0.5 0.6

1.
5

2.
0

2.
5

3.
0

Performance vs. Redundancy

performance

re
du

nd
an

cy

●●●●●

●●●●●

●●●●● ●●●●●●●●●●●●●●

●●

●●●●● ● ●●

●● ●●

●●●●●●

0.92 0.94 0.96 0.98 1.00

0.
75

0.
80

0.
85

0.
90

Sensitivity vs. Specificity

sensitivity

sp
ec

ifi
ci

ty

Figure 2.4: Results of model fit - nodewise evaluation

CHAPTER 2. TRAINING CLASSIFIERS 15

GO:0005624a

GO:0005624

1

GO:0005625

GO:0000267
0.99
0.01

GO:0008091GO:0030864
1

GO:0005938

1

GO:0015629
1

GO:0005856a

GO:0005856

0.09

0.09

0.81

GO:0005829aGO:0005829
1

GO:0005783aGO:0005783
1

GO:0005794aGO:0005794
1

GO:0005764aGO:0005764
1

GO:0005737a

GO:0005737

0.28

0.04

0.22
0.1

0.35

0

GO:0005634a

GO:0005634

1

GO:0005622a

GO:0005622 0.09

0.67

0.07

0.17

GO:0008305

GO:0005887a

GO:0005887

0.08

0.92

GO:0016021a

GO:0016021 0.39

0.61

GO:0005886a

GO:0005886

0.98

0.02GO:0016020

0.59

0.41

GO:0005623 0.38

0.21

0.4

GO:0008372

GO:0005578aGO:0005578
1

GO:0005615aGO:0005615
1

GO:0005576
0.58
0.42

GO:0005575

0.6

0.16

0.24

Figure 2.5: Shrunken classifier graph

Chapter 3

Structured Prediction

The model generated in the above described manner is meant to be used as a classifier for
new expression profiles. The stam.predict function allows for this task and returns an
object of class stamPrediction. When calling stam.predict the user can specify a series
of expression profiles and may specify a number of these to be part of the test set while
the others are assumed to be from the training set. The two variants of the call to the
structured prediction function are shown here:

> golubTest.pred <- stam.predict(golubTrain.fit, golubTest,

+ pData(golubTest)[, "ALL.AML"])

- Predicting new samples...

> golubMerge.pred <- stam.predict(golubTrain.fit, Golub_Merge,

+ pData(Golub_Merge)[, "ALL.AML"], testset = 39:72)

- Predicting new samples...

The stam.predict returns an object of class stamPrediction. In addition to the usual
call to stam.writeHTML the print , plot , and image methods may be used for further
exploration of the structured prediction:

> print(golubTest.pred)

stamPrediction on 34 samples.

Root predictor says:

5 6 7 8 9 10 11 12 13 14 15

"ALL" "ALL" "ALL" "ALL" "ALL" "ALL" "ALL" "ALL" "ALL" "ALL" "ALL"

16 17 18 19 20 21 22 23 24 25 26

"ALL" "ALL" "ALL" "ALL" "ALL" "ALL" "ALL" "ALL" "ALL" "ALL" "ALL"

27 34 35 36 37 38 28 29 30 31 32

16

CHAPTER 3. STRUCTURED PREDICTION 17

GO−
Structure

Prediction of ALL
Specificity: [0,1], Sensitivity [0.1,1], GO−nodes: 40

96% / 91%
96% / 91%
96% / 91%

100% / 64%
100% / 64%

100% / 100%
100% / 100%
100% / 100%
100% / 100%
100% / 100%
100% / 100%

96% / 100%
96% / 64%
96% / 82%
96% / 82%
96% / 82%
96% / 82%
83% / 91%
83% / 91%

100% / 73%
100% / 73%
100% / 73%
100% / 82%
100% / 82%

100% / 100%
100% / 82%

96% / 55%
96% / 55%
96% / 82%
96% / 82%
91% / 45%
87% / 73%
87% / 73%
91% / 91%
87% / 73%

96% / 100%
96% / 100%

70% / 91%
70% / 91%
83% / 91%

sens./spec.

membrane fraction (annot.)
membrane fraction
cell fraction
lysosome (annot.)
lysosome
integral to plasma membrane (annot.)
integral to plasma membrane
plasma membrane
integral to membrane (annot.)
integral to membrane
membrane
cell
integrin complex
spectrin
cortical actin cytoskeleton
cell cortex
actin cytoskeleton
cytoskeleton (annot.)
cytoskeleton
endoplasmic reticulum (annot.)
endoplasmic reticulum
cytoplasm
intracellular
intracellular (annot.)
cellular_component
cellular_component unknown
cytosol (annot.)
cytosol
nucleus (annot.)
nucleus
cytoplasm (annot.)
Golgi apparatus (annot.)
Golgi apparatus
soluble fraction
plasma membrane (annot.)
extracellular space (annot.)
extracellular space
extracellular matrix (annot.)
extracellular matrix
extracellular

B C E H K L N R V

47 samples of class ’ALL’, 23 in test set marked with letters

0.0

0.2

0.4

0.6

0.8

1.0

Classifier Output
colorcode

Figure 3.1: Molecular symptoms image of a prediction, test samples are marked with
capitals.

"ALL" "AML" "AML" "AML" "AML" "AML" "AML" "AML" "AML" "AML" "AML"

33

"AML"

> plot(golubTest.pred)

> image(golubMerge.pred)

Structured prediction means to compute prediction probabilities for each considered
phenotype as well as each expression profile of interest. Thereby, the classifier in each
node of the shrunken classifier graph is evaluated and the averaging through the node
weights computed in the model fit step is performed. Thus we can derive an overall
decision for new expression profiles according to the root node classeifier. Additionally,
we can consider the pattern of absence and presence of molecular symptoms for each node
to define a similarity to expression profiles used in training. This is illustrated using the
image method in Figure 3.1.

The stam.writeHTML function can generate a clickable map for the molecular symp-
tom image, where each of the GO terms can be clicked in order to view the results of
the corresponding classifier. The plot method illustrates nodewise sensitivity, specificity,
redundancy and performance.

Chapter 4

All in One

The function stam.evaluate calls the functions mentioned so far in sequence by the
function in order to performe a complete structured analysis. Thereby, we have two
application paradigms in mind: the predictive usage and the explorative usage.

4.1 Explorative Use

When using structured analyses of microarray in an explorative manner, we do not split the
available expression profiles into training and test set. Thus we are not able to evaluate the
prediction accuracy of the classifier. However, we are looking for particular structure in the
classifiers of the shrunken classifier graph. In order to call stam.evaluate exploratively
it must be called with the argument testset set to NULL:

> golubNorm.eval.explore <-

+ stam.evaluate(Golub_Merge, "ALL.AML", testset = NULL,

+ chip="hu6800", root="GO:0005576",

+ alpha=seq(0, 1, 0.1), ndelta=10)

For further investigation of the returned stamEval object, a print method is provided
but we recommend the usage of stam.writeHTML. The latter function generates a series
of inter-linked HTML pages holding most plots and both clickable maps of the generated
objects. Furthermore, the stamEval object holds the original objects returned by stam.cv,
stam.fit, and stam.predict in its slots. The user can further investigate using the
corresponting print , plot , and image methods.

4.2 Predictive Use

The predictive use of structured analysis of microarrays is the standard behavior of
stam.evaluate. By default a third of the expression profiles is chosen randomly as testset

18

CHAPTER 4. ALL IN ONE 19

while the rest is used for training. The user can explicitly set the testset through the
testset parameter of stam.evaluate:

> golubNorm.eval.predict <-

+ stam.evaluate(Golub_Merge, "ALL.AML", testset=39:72,

+ chip = "hu6800", root = "GO:0005576",

+ ndelta = 10)

The same remarks as above apply according the further investigation possibilities.

Chapter 5

StAM WWW-Server

For the interactive exploration of the graph shrinkage level and a few parameters to influ-
ence the model graph plot as well as the molecular symptoms image, we have implemented
a WWW based solution. The function stam.writeHTML can write HTML forms for these
parameters directly into the HTML pages representing the analysis results. We provide
CGI scripts with the stam package which collect the user entries from these forms and
store them into requests stored in a temporary directory writable for the web server. The
stam.serve provides the functionality to check this temporary directory and perform the
stored requests as illustrated in Figure 5.1. The WWW client is redirected to a progress
page which reloads automatically every other second. As soon as stam.serve has finished
treating the request the progress page redirects the browser to the new result page.

When the stam.serve function is first called after installing the package, the location
of the temporary directory for requests, the directory for CGI scripts and the URL where
these scripts can be found is obtained either from function arguments or interactively.

> stam.serve(tmp.path = "/home/upload/stam",

+ cgi.path = "/home/cgi-bin/stam",

CGI Skripts

StAM Server Analysis
Data

Tasks

Figure 5.1: Architecture of StAM’s server feature.

20

CHAPTER 5. STAM WWW-SERVER 21

+ cgi.url = "/cgi-bin/stam")

The CGI URL has changed, make sure to regenerate the HTML pages

to be worked with through the server.

- start listening '/home/upload/stam'...

Stop the server by creating '/home/upload/quit'.

Make sure you have written the HTML pages to be worked with

through the StAM server with 'options(stam.write.forms=TRUE)'

stam.serve stores this information into the package installation and copies the modi-
fied CGI scripts to the given location. Now stam.serve starts ”listening” in the temporary
directory and will do so without the installation steps in subsequent calls.

In order to use stam’s server feature, you need to set the option stam.write.forms to
TRUE before rewriting the HTML code for the model you want to work with:

> options(stam.write.forms=TRUE)

> stam.writeHTML(golubNorm.eval.explore)

Now, if you load the generated HTML page into your browser, you will see the forms to
enter modified parameters. It is enough to start stam.serve in order to use these forms
interactively.

Acknowledgements

This research has been supported by BMBF grant 031U117/031U217 of the German Fed-
eral Ministry of Education and the National Genome Research Network.

Chapter 6

Bibliography

[1] The Gene Ontology Consortium. Gene ontology: Tool for the unification of biology. Nature
Genetics, 25:25–29, May 2000.

[2] W. Huber, A. von Heydebreck, H. Sültmann, A. Poustka, and M. Vingron. Variance stabiliza-
tion applied to microarray data calibration and to the quantification of differential expression.
Bioinformatics vol. 18, suppl. 1, pp. S96-S104, 2002.

[3] T.R. Golub, D.K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J.P. Mesirov, H. Coller,
M.L. Loh, J.R. Downing, M.A. Caligiuri, C.D. Bloomfield, and E.S. Lander. Molecular classi-
fication of cancer: class discovery and class prediction by gene expression monitoring. Science,
vol. 286, pp. 531-537, 1999.

[4] R. Tibshirani, T. Hastie, B. Narashiman, and B. Chu. Diagnosis of multiple cancer types by
shrunken centroids of gene expression. PNAS, 99:6567–6572, May 2002.

22

	Introduction
	Training Classifiers
	Generate a raw classifier graph
	Cross validate graph shrinkage candidates
	Computing a single model

	Structured Prediction
	All in One
	Explorative Use
	Predictive Use

	StAM WWW-Server
	Bibliography

