
Description of S-Score: Expression Analysis of
Affymetrix GeneChips from Probe-Level Data

Richard E. Kennedy, Kellie J. Archer, Robnet T. Kerns, and Michael F. Miles

August 1, 2006

Contents

1 Introduction 2

2 Reading in data and generating S-Scores 2

3 Multiple pairwise comparisons 6

4 Using S-Scores in gene expression analysis 7

5 Computing scale factor and statistical difference threshold 8

6 Identifying outliers 9

7 Changes from the stand-alone version 9

8 Acknowledgements 10

1



1 Introduction

The S-Score algorithm described by Zhang et al. (2002) and Kerns et al. (2003) is
a novel comparative method for gene expression data analysis that performs tests of
hypotheses directly from probe level data. It is based on a new error model in which
the detected signal is assumed to be proportional to the probe pair signal for highly
expressed genes, but assumed to approach a background level (rather than 0) for genes
with low levels of expression. This model is used to calculate relative change in probe
pair intensities that converts probe signals into multiple measurements with equalized
errors, which are summed over a probe set to form the significance score (S-Score).
Assuming no expression differences between chips, the S-Score follows a standard normal
distribution. Thus, p-values can be easily calculated from the S-Score, and a separate
step estimating the probe set expression summary values is not needed. Furthermore,
in comparisons of dilution and spike-in microarray datasets, the S-Score demonstrated
greater sensitivity than many existing methods, without sacrificing specificity. The sscore
package implements the S-Score algorithm in the R programming environment, making
it available to users of the Bioconductor1 project.

2 Reading in data and generating S-Scores

Affymetrix data are generated from GeneChipsTM by analyzing the scanned image of the
chip (stored in a *.DAT file) to produce a *.CEL file. The *.CEL file contains, among
other information, a decimal number for each probe on the chip that corresponds to its
intensity. The S-Score algorithm compares two GeneChips by combining all of the probe
intensities from a probeset (typically 11 to 20) into a single summary statistic for each
gene. The sscore package processes the data obtained from *.CEL files, which must be
loaded into R prior to calling the SScore function. Thus, the typical sequence of steps
to accomplish this is as follows:

1. Create a directory containing all *.CEL files relevant to the planned analysis.

2. If using Linux / Unix, start R in that directory.

3. If using the Rgui for Microsoft Windows, make sure your working directory contains
the *.CEL files (use “File -> Change Dir” menu item).

4. Load the library.

> library(sscore)

5. Read in the data and create an expression set.

1http://www.bioconductor.org/

2

http://www.bioconductor.org/


Both of the functions SScore and SScoreBatch operate on an AffyBatch object
containing all of the relevant information from the *.CEL files. Additional information
regarding the ReadAffy function and detailed description of the structure of *.CEL files
can be found in the affy vignette. Note that, even though the intensities have been
loaded into R, SScore will still need direct access to the *.CEL files later to obtain the
information about outliers. If a copy of the *.CEL files is not available when
SScore is called, an error may result.

The SScore and SScoreBatch functions return an object of class exprSet. (The
class exprSet is described in the Biobase vignette.) The S-Score values are returned
in the exprs slot. The se.exprs slot contains the CorrDiff values, which represent the
correlation of each probe on the first chip with the corresponding probe on the second
chip.

The following examples illustrate the sscore package with the results of the S-Score
analysis for the affybatch.example data set included with the affy package. These
examples utilize the data files 20A, 20B, and 10A supplied with the sscore package,
which are *.CEL files corresponding to the data in the affybatch.example data set.

A basic S-Score analysis without any optional parameters is generated using the
commands:

> data(affybatch.example)

> pathname <- system.file("doc", package = "sscore")

> cel <- affybatch.example[, c(1, 2)]

> SScore.basic <- SScore(cel, celfile.path = pathname)

and the first few S-Score values are

> exprs(SScore.basic)[1:20]

[1] -2.17420230 -4.24094488 -4.44349557 -4.18499593 -2.74249911 -2.28790523

[7] -1.74419342 0.24810727 0.31346327 0.16440667 0.80364237 0.19070958

[13] -2.54961726 0.01896020 -0.51937243 1.54286509 -0.98656272 1.49549562

[19] 0.83286432 0.83091110

Optional parameters for SScore include:

celfile.path – character string giving the directory in which the *.CEL files are stored.
If a directory is not specified, the current working directory is used.

SF, SDT – the Scale Factor and Standard Difference Threshold. Each is a vector with
length equal to the number of columns in the AffyBatch object, and contains a
numeric value for each chip. The Scale Factor is used to scale each intensity to
a target background value, with the default of 500 (as used by the Affymetrix
GeneChip Operating Software [GCOS]). The Standard Difference Threshold is
used as an estimate of background noise, and is equal to the standard deviation

3



for the lowest 2% of intensities on a chip. These values are available from the
Affymetrix GCOS output, or may be calculated by the SScore function.

An example of an S-Score analysis in which SF and SDT were specified is

> data(affybatch.example)

> pathname <- system.file("doc", package = "sscore")

> cel <- affybatch.example[, c(1, 2)]

> SScore.sfsdt <- SScore(cel, SF = c(22.24, 25.49), SDT = c(2526.3,

+ 2590.297), celfile.path = pathname)

and the first few S-Score values are

> exprs(SScore.sfsdt)[1:20]

[1] -2.17300674 -4.24057690 -4.44313894 -4.18443227 -2.74129309 -2.28661939

[7] -1.74383046 0.24874623 0.31377987 0.16510372 0.80389891 0.19000364

[13] -2.55018124 0.01884504 -0.51909837 1.54334223 -0.98581755 1.49505752

[19] 0.83285780 0.83173454

rm.outliers, rm.mask, rm.extra – These are logical values used to exclude certain
probes from the S-Score calculations. These options perform the same as they do in
the ReadAffy function, which it calls. rm.outliers excludes all probes designated
as outliers in the *.CEL file. rm.mask excludes all probes designated as masked
in the *.CEL file. rm.extra removes both outlier and mask probes, and overrides
rm.outliers and rm.mask if these are specified.

An example of an S-Score analysis in which outliers were included is

> data(affybatch.example)

> pathname <- system.file("doc", package = "sscore")

> cel <- affybatch.example[, c(1, 2)]

> SScore.outliers <- SScore(cel, rm.outliers = FALSE, rm.mask = FALSE,

+ celfile.path = pathname)

and the first few S-Score values are

> exprs(SScore.outliers)[1:20]

[1] -2.17420230 -4.24094488 -4.44349557 -4.18499593 -2.74249911 -2.28790523

[7] -1.74419342 0.24810727 0.31346327 0.16440667 0.80364237 0.19070958

[13] -2.54961726 0.01896020 -0.51937243 1.54286509 -0.98656272 1.49549562

[19] 0.83286432 0.83091110

4



digits – a numeric value that specifies the number of significant decimal places for the
S-Score and CorrDiff values, which are rounded as needed. The default uses full
precision with no rounding. The output from the stand-alone version of the S-Score
uses digits=3.

The example SScore.digits contains the results of a S-Score analysis in which
only 3 significant digits were retained:

> data(affybatch.example)

> pathname <- system.file("doc", package = "sscore")

> cel <- affybatch.example[, c(1, 2)]

> SScore.digits <- SScore(cel, digits = 3, celfile.path = pathname)

and the first few S-Score values are

> exprs(SScore.digits)[1:28]

[1] -2.174 -4.241 -4.443 -4.185 -2.742 -2.288 -1.744 0.248 0.313 0.164

[11] 0.804 0.191 -2.550 0.019 -0.519 1.543 -0.987 1.495 0.833 0.831

[21] -0.095 -0.013 -1.847 -0.947 0.189 -0.315 -0.802 -0.139

verbose – a logical value indicating whether additional information on the analyses is
printed. This includes the chip type, sample names, values of alpha and gamma,
and the SF and SDT values:

> data(affybatch.example)

> pathname <- system.file("doc", package = "sscore")

> cel <- affybatch.example[, c(1, 2)]

> SScore.sfsdt <- SScore(cel, SF = c(22.24, 25.49), SDT = c(2526.3,

+ 2751.634), verbose = TRUE, celfile.path = pathname)

Computing outliers

Computing S-score values

Renormalizing S-scores

S-score data. Parameter section:

Probearray type: cdfenv.example

sample1: 20A

sample2: 20B

Alpha--error coupling factor within a probeset: 1.290

Gamma--weight of multiplicative error: 0.100

Number of Probesets: 150

Scaling Factor: 22.240 25.490

SDT background noise: 2526.300 2751.634

Max Intensity: 411846.992 298589.860

5



3 Multiple pairwise comparisons

The SScore function calculates the S-Score values for one pair of chips (i.e. a single two-
chip comparison). However, for many experiments, several chips need to be compared.
This can be done using the SScoreBatch function, which automates the process of
making several two-chip comparisons. The setup and options for SScoreBatch are very
similar to SScore.

The SScoreBatch function has an additional parameter, the compare matrix, which
specifies the pairs of chips to compare. It is an N x 2 matrix, where N is the number
of comparisons being made. Each row contains the column number of the chips in the
AffyBatch object that are being compared. For example, if the compare matrix is set
up as

[1,] [2,]

[,1] 2 5

[,2] 2 6

[,3] 5 9

[,4] 10 2

[,5] 5 7

[,6] 10 8

[,7] 9 4

[,8] 1 2

[,9] 3 10

The first comparison made is between the chips in columns 2 and 5 of the AffyBatch
object; the second comparison made is between the chips in columns 2 and 6; the third
comparison made is between the chips in columns 5 and 9; and so forth. If the compare

matrix has more than two columns, only the first two columns will be used for identifying
the GeneChips in the AffyBatch object to be compared.

Each column of eset will contain the results of a single two-chip comparison. The
first column of eset will contain the comparison corresponding to the first row of the
compare matrix, the second column of eset will contain the comparison corresponding
to the second row of the compare matrix, and so forth.

A basic S-Score analysis using SScoreBatch is generated using the commands:

> data(affybatch.example)

> pathname <- system.file("doc", package = "sscore")

> compare <- matrix(c(1, 2, 1, 3, 2, 3), ncol = 2, byrow = TRUE)

> SScoreBatch.basic <- SScoreBatch(affybatch.example, compare = compare,

+ celfile.path = pathname)

and the first few S-Score values are

> exprs(SScoreBatch.basic)[1:10, ]

6



20A vs 20B 20A vs 10A 20B vs 10A

A28102_at -2.1742023 5.2727284 4.36733851

AB000114_at -4.2409449 4.7704399 5.44854043

AB000115_at -4.4434956 4.3773693 5.37508990

AB000220_at -4.1849959 1.7889006 3.74381887

AB002314_at -2.7424991 2.5998731 3.28796811

AB002315_at -2.2879052 2.4636345 2.90160455

AB002318_at -1.7441934 1.1059614 1.82876437

AB002365_at 0.2481073 -0.9201087 -0.67090993

AB002366_at 0.3134633 0.3062314 -0.03992446

AC000099_at 0.1644067 -0.2186991 -0.21141391

The example SScoreBatch.sfsdt contains the results of an analysis in which the SF
and SDT values were specified

> data(affybatch.example)

> pathname <- system.file("doc", package = "sscore")

> compare <- matrix(c(1, 2, 1, 3, 2, 3), ncol = 2, byrow = TRUE)

> SScoreBatch.sfsdt <- SScoreBatch(affybatch.example, compare = compare,

+ SF = c(22.24, 25.49, 25.56), SDT = c(2526.3, 2590.297, 2751.634),

+ celfile.path = pathname)

and the first few S-Score values are

> exprs(SScoreBatch.sfsdt)[1:10, ]

20A vs 20B 20A vs 10A 20B vs 10A

A28102_at -2.1730067 5.2750887 4.36733224

AB000114_at -4.2405769 4.7729407 5.44854591

AB000115_at -4.4431389 4.3799714 5.37508923

AB000220_at -4.1844323 1.7918125 3.74382489

AB002314_at -2.7412931 2.6026575 3.28796387

AB002315_at -2.2866194 2.4663821 2.90160255

AB002318_at -1.7438305 1.1073120 1.82876652

AB002365_at 0.2487462 -0.9194895 -0.67094707

AB002366_at 0.3137799 0.3064170 -0.03993815

AC000099_at 0.1651037 -0.2179405 -0.21142380

Other parameters for SScoreBatch are identical to SScore.

4 Using S-Scores in gene expression analysis

Under conditions of no differential expression, the S-Scores follow a standard normal
(Gaussian) distribution with a mean of 0 and standard deviation of 1. This makes it

7



straightforward to calculate p-values corresponding to rejection of the null hypothesis
and acceptance of the alternative hypothesis of differential gene expression. Cutoff values
for the S-Scores can be set to achieve the desired level of significance. As an example,
an absolute S-Score value of 3 (signifying 3 standard deviations from the mean, a typical
cutoff value) would correspond to a p-value of 0.003. Under this scenario, the significant
genes can be found as:

> sscores <- exprs(SScore.basic)

> signif <- geneNames(affybatch.example)[abs(sscores) >= 3]

Similarly, the p-values can be calculated as:

> sscores <- exprs(SScore.basic)

> p.values.1 <- 1 - pnorm(abs(sscores))

> p.values.2 <- 2 * (1 - pnorm(abs(sscores)))

The S-Score algorithm does account for the correlations among probes within a two-
chip comparison. However, it does not adjust p-values for multiple comparisons when
comparing more than one pair of chips.

5 Computing scale factor and statistical difference

threshold

The SScore and SScoreBatch functions call the function computeSFandSDT to compute
the values for the Scale Factor (SF) and Statistical Difference Threshold (SDT) if these
are not supplied by the user. computeSFandSDT is an internal function that generally
will not be called or modified.

The calculations for the SF and SDT are performed as described in the Affymetrix
Statistical Algorithms Description Document (Affymetrix, 2002) and implemented in
the Affymetrix (using SDT = 4 * RawQ * SF). The calculation of these values can be
both time- and memory-intensive; it is recommended that the user supply these values
from the Affymetrix MAS5 or GCOS Metrics table whenever possible. Alternatively,
computeSFandSDT may be called directly to obtain the SF and SDT values for each
*.CEL file, which are then supplied by the user in subsequent calls to SScore. The
calculations for each *.CEL file are independent. If memory is not sufficient to allow
computation of all SF and SDT values simultaneously, the *.CEL files may be broken
into smaller batches; identical results will be obtained either way.

In addition to computing the specified values, computeSFandSDT may be used to
generate histograms of the log intensities for the chips being compared. Such plots are
useful for identifying potentially problematic chips prior to analysis. It may also be
used to display additional information about the *.CEL file parameters. The options for
computeSFandSDT are

8



TGT – a numeric value for the target intensity to which the arrays should be scaled.

verbose – a logical value indicating whether additional information on the calculations
is printed. This includes the SF, SDT, and RawQ values, as well as descriptive
statistics on the background and noise. This is similar to the information provided
by the Affymetrix GCOS Metrics table for the *.CEL file.

plot.histogram – a logical value indicating whether a histogram should be plotted.
Both the PM and MM log intensities will be shown in a single graphics window.
Separate plots will be generated for each chip being analyzed.

digits – a numeric value that specifies the number of significant decimal places for the
SF and SDT values, which are rounded as needed. Using digits=3 rounds to the
same number of digits as the stand-alone version of the S-Score.

celfile.path – character string specifying the directory for *.CEL files

6 Identifying outliers

The SScore and SScoreBatch functions call the function computeOutlier to flag probes
as outliers that should be excluded from the S-Score calculation. This is an internal func-
tion that generally will not be called or modified, but may be altered if necessary to meet
specific needs. The computeOutlier function is called if the rm.outliers, rm.mask, or
rm.extra parameters of SScore or SScoreBatch are set to TRUE. As currently imple-
mented, these parameters work as described in the affy documentation since they are
passed to the ReadAffy function to identify outlier and mask probes. The return value
from computeOutlier is a logical matrix the same size and order as the intensity matrix
for the AffyBatch object. Each cell of the logical matrix contains a TRUE value if the
corresponding intensity is identified as an outlier and excluded from the S-Score calcula-
tion; otherwise it contains FALSE. By changing the computeOutlier function, you may
create additional features not currently available, such as removing modified probes.

7 Changes from the stand-alone version

The S-Score algorithm has been previously implemented as a stand-alone executable for
the Windows operating system, using Borland Delphi. This version has been available
from the Miles Laboratory website at http://www.brainchip.vcu.edu/expressionda.
htm. Users of the stand-alone version will notice small differences in results compared to
the sscore package as it is implemented in R, though these should not significantly affect
inferences regarding gene expression. The following lists identifies differences between
the two implementations:

9

http://www.brainchip.vcu.edu/expressionda.htm
http://www.brainchip.vcu.edu/expressionda.htm


1. The stand-alone version excludes outlier, masked, and modified intensities from
calculations when using *.CEL files. When using *.CSV files, the stand-alone pro-
gram also excludes outlier, masked, and modified intensities if the corresponding
*.CEL file is present for obtaining this information. (The *.CSV file does not
contain any information about which intensities are outlier, masked, or modified.)
The default for the R package is not to exclude outlier, masked, or modified in-
tensities, though this may be changed using various options. Note that, due to
the way the affy package is implemented, it is not possible to exclude modified
intensities using the sscore package.

2. The rounding methods are not identical for Borland Delphi and R, which can lead
to slight differences in calculations. The difference is negligible for most of the
S-Score calculations, and should be less than or equal to 0.001.

3. The SF and SDT calculations in the stand-alone version are performed using an
independently developed algorithm. The original C++ version uses natural loga-
rithms, while the Delphi version uses base 10 logarithm. The sscore package uses
a ported version of the Affymetrix algorithms described on the Affymetrix website
http://www.affymetrix.com under Support -> Developer’s Network -> Open
Source -> MAS5 Stat SDK. Base 2 logarithms are used for these calculations.

A Java version of the S-Score algorithm is also under development. Differences
between the Java version and the sscore package will be included after the Java version
is released.

8 Acknowledgements

The development of the S-Score algorithm and its original implementation in C++ is
the work of Dr. Li Zhang. The Delphi implementation of the S-Score algorithm is the
work of Dr. Robnet Kerns. This work was partly supported by NLM F37 training grant
LM008728 to Richard E. Kennedy and NIAAA research grant AA13678 to Michael F.
Miles.

References

Affymetrix. Statistical algorithms description document. Technical report, Affymetrix,
2002.

Robnet T. Kerns, Li Zhang, and Michael F. Miles. Application of the s-score algorithm
for analysis of oligonucleotide microarrays. Methods, 31(3):274–281, 2003.

10

http://www.affymetrix.com


Li Zhang, Long Wang, Ajay Ravindranathan, and Michael F. Miles. A new algorithm for
analysis of oligonucleotide arrays: Application to expression profiling in mouse brain
regions. Journal of Molecular Biology, 317(3):225–235, 2002.

11


	Introduction
	Reading in data and generating S-Scores
	Multiple pairwise comparisons
	Using S-Scores in gene expression analysis
	Computing scale factor and statistical difference threshold
	Identifying outliers
	Changes from the stand-alone version
	Acknowledgements

