Sample of aCGH analysis

ML Smith
April 25, 2006

1 Introduction

This document outlines some of the commands used to read in, investigate and subsequently
segment array CGH data. The files analysed represent 50 breast cancer cell lines obtained
from Jessica M Pole and Paul AW Edwards.

> options(width = 75)
> library(snapCGH)

snapCGH is designed to be used in conjunction with limma and so it will automatically
load that library before proceeding. In addition to limma, the following packages are also
loaded: GLAD, DNAcopy and aCGH. Each of these impliments an alternative segmenta-
tion method that may be applied to the data.

2 Reading Data

We read in the samples and create the initial RG object using the following commands.

> datadir <- system.file("testdata", package = "snapCGH")
> targets <- readTargets("targets.txt", path = datadir)
> RG1 <- read.maimages (targets$FileName, path = datadir, source = "genepix")

Information about the clones on the array (e.g. what part of the genome they represent)
can be read in separately using the read.clonesinfo function. In order to do this it is
necessary to create a clones info file. Such a file (which can be created using Excel and
saved as a 'txt’ file) must contain columns called Position and Chr which give the position
along a chromosome (in Mb) and the chromosome to which a clone belongs. It must be
ordered in the same way as the clones are ordered in the genepix file. The information is
added to the RG$genes object. The second command adds information about the structure
of the slide (blocks/rows/columns) to the RG object. Finally we read in a spot types file.
This file contains information about the control status of particular spots on the array and
allows specific spots to be highlighted in many of the plotting functions. The content of a
spot types file is covered extensively within the limma manual.



> RG1 <- read.clonesinfo("cloneinfo.txt", RGl, path = datadir)
> RG1$printer <- getLayout (RG1$genes)

> types <- readSpotTypes("SpotTypes.txt", path = datadir)

> RG1$genes$Status <- controlStatus(types, RG1)

Commonly, when aCGH experiments are carried out the reference channel is dyed using
Cyb and the test channel is dyed using Cy3. This is the opposite way to expression data.
In order to take this into account we need to specify which channel is the reference within
our RGList. To do this we create a design vector with each column corresponding to an
array in the experiment. A value of 1 indicates that the Cy3 channel is the reference, whilst
a value of -1 equates to Cy5 being the reference.

> RG1$design <- c(-1, -1)

We now proceed to use the function backgroundCorrect to remove the background
intensity for each spot. In this example we have chosen the method 'minimum’ which
subtracts the background value from the forground. Any intensity which is zero or neg-
ative after the background subtraction is set equal to half the minimum of the positive
corrected intensities for that array. For other background correction methods please see the
appropriate help file.

> RG2 <- backgroundCorrect (RG1, method = "minimum")

Next, we normalise the data. Here we will carry out a (global) median normalisation.
Other options for normalization methods are: mone, loess, printtiploess, composite and
robustspline. The output of the normalization function is a new type of object called an
MAList. This is composed of the logs ratios, intensities, gene and slide layout information
which it gleans from the RG object.

> MA <- normalizeWithinArrays(RG2, method = "median")

We are now ready to process the data with the purpose of segmenting the dataset into
regions corresponding to sections of the genome where there are the same number of copy
number gains or losses.

Firstly, we use the processCGH to 'tidy up’ the MAList object. The method.of.averaging
option defines how clones of the same type should be averaged. If this is specified the
duplicates are removed following the averaging leaving only one occurence of each clone set.

> MA2 <- processCGH(MA, method.of.averaging = mean)

We are now ready to fit the segmentation method. For larger data sets this step can
take a long time (several hours). We fit the HMM using the following commands. The
other segmentation methods included in this library are GLAD and DNAcopy. See manual
pages for the functions runDNAcopy and runGLAD for details of how to use them.

> SegInfo.Hom <- runHomHMM(MA2, criteria = "AIC")



We now deal with the fact that the HMM sometimes has a tendency to fit states whose
means are very close together. We overcome this problem by merging states whose means
are within a given threshold. There are two different methods for carrying out the merging

process. For more information on their differences please see the appropriate page in the
helpfiles.

> Seglnfo.Hom.merged <- mergeStates(SegInfo.Hom, MergeType = 1)

We are now ready to use any of the plotting functions available in the library.

3 Plotting Functions

The library comes with a variety of plotting functions that provide visual representations
of the data at various stages of the analysis process. Firstly we will look at the genomePlot
function. This function takes either an MA List or a SegList object (in this example we’ve
used an MAList) and plots the M-value for each gene against it’s position on the genome.
The array argument indicates which array is plotted. This function utilizes the spot types
data that was read in earlier to highlight specific genes of interest.

> genomePlot (MA2, array = 1)



1 10Mbslide28

1

8

6

X3 3 3
08 9 3R AL 0o %
s S0 <

o s ® ¢

B I e IR Pra %0 £ 08 A% e e KRR s
p <

2t

G0 00 S0- O0TI- GT- 02
olreyzhon




It is also possible to look at specific chromosomes, rather than the entire genome as in
the previous example. Which particular chromosome is to be plotted is specified using the
chrom.to.plot argument.

> genomePlot(MA2, array = 1, chrom.to.plot = 8)

1 10Mbslide28

2.0

15

1.0

0.5
e
o
0"‘ ‘0"
.
.
S
.
R .
$
R
2
.
.
.
.
S
.

Log2Ratio
M

-1.0

! ! !
0 20 40 60 80 100 120 140

Distance along chromosome (Mb)

Here we cluster the samples. Again this function will except an object of class MAList
or SeglList. It is possible to specify which chromosomes to cluster using the vecchrom
argument as well as defining the colours that represent areas of amplification or deletion.
Please see the help file for more details.



> heatmapGenome (MA2)

sample

10Mbslide28

Image Plot

8

clone

10 12 1416 18 2@2

9 11 1315171921

10Mbslide29



The plotSegmentedGenome function provides a visual representation of the observed
M-values overlayed with the predicted states produced by the segementation algorithm. It

requires a SegList as input.

> plotSegmentedGenome (SegInfo.Hom.merged, array = 1)

1 10Mbslide28
2 4 6 8 10 12 14 16 18 2022

o |l
N : N O
w | a3
— : N O
aE S o
o o R O
- S N
i g f
R N S O B
) <% 4 < |
= "ot |t
- . %l .
o s I Pt M
(&Y o % :.' > !
(@] * *
o 3 e 0N
_I .

11 13 15 17 1921

Using the argument chrom.to.plot it is possible to specify individual chromosomes to
plot. Additionally the function can accept more than one SegList allowing visual compar-

ison between segmentation methods.



The following example applies the DNAcopy algorithm to the data, merges it and then
plots both that segmentation method and the homogeneous HMM on the same axis.

> Seg.DNAcopy <- runDNAcopy (MA2)

> SegInfo.DNAcopy.merged <- mergeStates(Seg.DNAcopy)

> plotSegmentedGenome (SegInfo.Hom.merged, SegInfo.DNAcopy.merged,
+ array = 1, chrom.to.plot = 1, colors = c("blue", "green"))

1 10Mbslide28

2.0

15

1.0

0.5

Log2Ratio

Lo
O R PR
|
o
cl\] O
T T 1 T T
0 50 100 150 200

Distance along chromosome (Mb)



