Pairwise Sequence Similarity Simple

Witold Eryk Wolski
April 25, 2006

1 Introduction

The first fact of biological sequence analysis: In bio-molecular sequences (DNA,
RNA; or amino acid sequences), high sequence similarity usually implies signif-
icant functional or structural similarity. The pairseqsim package can be used
to compute pairwise sequence alignments of two amino acid sequences. Based
on the optimal alignment of two sequences it computes also basic scores like se-
quence similarity, identity, and the alignment score. The optimal alignment can
be visualized. A distance matrix storing all pairwise distances of all sequences
in list can be computed. This matrix can be used to cluster the sequences using
various clustering algorithms provided by R. To compute a biological meaning-
ful alignment, a measure of amino acid similarity is needed. This information is
provided by the families of BLOSUM or the PAM amino acid residue distance
matrices. We imported many of this matrices from the EMBOSS software pack-
age (http://www.hgmp.mrc.ac.uk/Software/EMBOSS/. Gaps in an alignment
are undesirable and thus penalized. The package implements an affine gap
penalty:

Y(g) =d+(g—1)e (1)
where d is the gap opening penalty and e is the gap extension penalty.

The package implements three types of alignment:

e Global Alignment.
e Local Alignment.

e Overlap Alignment.

Global alignment is applicable when we have two similar sequences that we
want to align from end-to-end, e.g. two homologous genes from related species.
To compute the global alignment the Needelman and Wunsch algorithm are
used. For computing the local alignment the Smith Waterman algorithm are
used. This type of alignment can be used if we would like to find the best match
between subsequences of both. For example, we may want to find the position of
a fragment of DNA in a genomic sequence. If we are given different fragments of
genomic DNA that we would like to piece together, then we need an alignment
method that does not penalize overhanging ends. Such an alignment can be
computed by the overlap alignment.



2 Defining Sequences, Sequence Lists and Load-
ing Data.

First you have to load the package with
> library(pairsegsim)

If we want to analyze more than one pair of sequences we need to define a
list (AASequencelist) which stores our sequence objects.

> mySequlist <- new("AASequencelList", info = "my sequence list")

To the AASequencelList only an AASequence can be assigned. To define a
new sequence we either use the new function or the function AASequence. The
default constructor checks if the string is an amino acid sequence. This is done by
comparing the letters in the sequence string to the amino acid alphabet which is
defined by the class AAAlphabet. In the AAAlphabet class the characters which
denote the amino acids are hard coded.

> new("AAAlphabet")

info : AminoAcid
Alphabet :
ARNDCQEGHILKMFPSTWYVBZZX *

> pseq <- "MRTNPTTSNPEVSIREKKNLGRIAQIIGPVLDVAFPPGKMPNIYNALVVK"
> access <- "MyatpB"

> myseql <- new("AASequence", pseq, info = access)

> myseql <- AASequence(access, pseq)

There are many protein sequence database formats. In this package only a
reader for the FASTA file format is implemented (readFasta). The FASTA file
format looks in the following way.

>At1g01010 NAC domain protein, putative
MEDQVGFGFRPNDEELVGHYLRNKIEGNTSRDVEVAISEVNICSYDPWNLRFQSKYKSRD
AMWYFFSRRENNKGNRQSRTTVSGKWKLTGESVEVKDQWGFCSEGFRGKIGHKRVLVFLD
GRYPDKTKSDWVIHEFHYDLLPEHQRTYVICRLEYKGDDADILSAYAIDPTPAFVPNMTS
S*

Sequences in FASTA file format are preceded by a line starting with the symbol
“>" as the first character. The rest of the line is the name and description of the
sequence. The following lines contain the sequence data. To extract the “info”
(id) string from the first line we define a function infogrep that extracts the
appropriate substring from the line with the “>”. We assign this function to the
argument grepinfo.

> infogrep <- function(x) {
+ return(sub("">([a-zA-Z0-9]+) .+", "\\1", x, perl = TRUE))
+ }



Additionally a function can be defined which pre-processes the amino acid
sequence. In many sequence databases the end of the sequence is denoted by “*”.
The function seqgrep which we assign to the parameter grepseq will remove
it from the end of the sequence string.

> seqgrep <- function(x) {
+ return(gsub("\\*", "", x))

+}

The first argument to the function readFasta are a object of class AASequenceList,
the second are the path to the file.

> fdat <- system.file("test", package = "pairseqsim")

> mySequlist <- readFasta(mySequlist, paste(fdat, "ex.fasta", sep = "/"),
+ grepinfo = infogrep, grepseq = seqgrep)

> length(mySequlist)

[1] 66

3 Analysing the Protein sequences

To take a look at the amino acid composition of a protein sequence we use the

30
|

20
|
|

10
|

function frequency.

We also can compute a score if the sequence are aligned with itself. To
compute the alignment we also need a similarity matrix to judge the similarity
between two amino acid residues and to compute an optimal alignment of the
sequence. In the data directory you will find many different similarity matrices
from the Emboss package.



> data(EPAM110)
> selfalign(mySequlist[[2]], EPAM110)

A
738

The class AASequence inherits from the R class character so you can use all
the R/base functions defined for this class. E.g. to determine the length of the

sequence we use

the function nchar.

> nchar (mySequlist[[1]])

[1] 429

For pairwise comparison of sequences we use the function salign. The
parameters which control the behavior of the function are:

e delta = Gap opening penalty, (default = -4)

e gapext = Gap extension penalty (default = delta)

e alignment = Type of the alignment, either “global”; “local”; “overlap”

alignment.

e scoring = The return-type of the aligment. For two sequences it defaults
to “AAAlignment”.

The sequences in the sequence list can be accessed by their id. For two
object of class AASequence the function salign returns by default an object of
class “AAAlignment”.

strl <- mySequlist[["At1g01580"]]
str2 <- mySequlist[["At1g01590"]]
as(strl, '"character") <- substr(stri, 1, 90)

res <- salign(strl, str2, EPAM110, delta = -4, gapext

scoring
res

selfscore 1:
selfscore 2:
alig lenght:
score :
FM

identity
similarity :

= "AAAlignment")

>
>
>
> as(str2, "character") <- substr(str2, 1, 140)
>
+
>

542 ; seq length 1 : 90
821 ; seq length 2 : 140
153

188

0.2818296

45 / 90

57 / 90

= -1, alignment

To see how the sequences where aligned use the function summary. The “|”

denotes a identity of amino acid residues, the “:” denotes a similarity.

"global",



> summary (res)

selfscore 1: 542
selfscore 2: 821
alig lenght: 153

score ;188
FM(score) : 0.2818296
identity : 45 / 90

similarity : 57 / 90

At1g01580 MEIEKSNNGGSNPSAGEEFKDMI-KGVTKFLMMVIFLGTIMLWIMMPTLTYRTKWLPHLRI
| I L O O R N N R N N B B

At1g01590 M----—--- G----VGEMNKEVIDK-VIKFLMMVILMGTIVIWIMMPTSTYKEIWLTSMRA

At1g01580 IKFGTSTYFGATGTTLFMYMFPMMVVA-=-C-==============———————————————
L L AR
At1g01590 AKLGKSIYYGRPGVNLLVYMFPMILLAFLGCIYLHLKKSTTVNQFNSGVEKKRAKFGALRR

At1g01680 -—------ LGC-————=—=———m—mm—m—omee
[l
At1g01590 RPMLVNGPLGIVTVTEVMFLTMFMALLLWSLAN

3.1 Scoring sequences

We use the function align to score a sequence against a list of sequences for
example to find the most similar sequence. To rank the similarity of sequences
we can use several scores.

e Based on the number of identities (matches of identical amino acid residues)
in the optimal alignment we define the identity as:
#identity
length of shorter sequence

(2)

e Based on the number of similarities (similar amino acid residues at the
same position in the alignment) we define the similarity as:

#similarity

(3)

length of shorter sequence

e The Smith Waterman, alignment score defined as:
N
S(A,B) = Z My, j, — 8ap penalties (4)
k=1

e The normalized Smith Waterman alignment score (scoreN) we define as
the score of the alignment (if it is larger 0) divided by the smaller score of
the alignment of the sequences with itself, zero otherwise.

Seore or 0 if score<0 (5)

min(selfscore 1, selfscore 2)



e the pozitive score [1].

S(A, B) - ,U/perm

Operm

POZ(A,B) = (6)

To find a sequence in a list of sequences with the highest score to the bait
sequence we use the function salign and R/base functions.

> siml <- salign(mySequlist, mySequlist[[1]], EPAM110, alignment = "global",

+ scoring = "similarity")
> which(siml == max(siml1))
At1g01010

1

> hist(siml, breaks = 100)

Histogram of sim1

2.0 25 3.0
|

Frequency
15

1.0

0.5

0.0
L

[ T T T T 1
0.5 0.6 0.7 0.8 0.9 1.0

siml

We also use the function salign to compute a distance matrix for all se-
quences in the list. The distance matrix can be used for example for clustering.
To obtain the distance matrix we supply a AASequencelist as first parameter
and NULL as second parameter to the function saling. In this case the scores
defined above are converted in distances:

e l-similarity, 1-identity, 1-scoreN

e Smith Waterman score first are converted into the Z score
S(A, B) — mean

Z(A,B) =
(4, B) standard deviation




Under the assumption that the Z scores for the sample set are normally
distributed with N(0,1) * we compute the probability P(X >= Z(A, B))
that such or a higher score occur.

e The POZITIVE score is as well transformed in a p-value P(X >= Z,oitive)
with the assumption that X is normal distributed.

> globaldist <- salign(mySequlist[1:10], NULL, EPAM110, alignment = "global",
+ scoring = "score")

> localdist <- salign(mySequlist[1:10], NULL, EPAM110, alignment = "local",
+ scoring = "score")

The distance matrix returned by the function salign can be supplied to
many clustering algorithms provided by R e.g. to the hierarchical clustering
function hclust in the package R/mva.

> plot(hclust(localdist))

Cluster Dendrogram

0.6 0.8
I I
At1g01030 J
At1g01100 ——

04
At1g01020 ——

Height

0.2
I

0.0
Atlg01060 ——

At1g01050 T
At1g01080 J
At1g01070 T
At1g01090 J

At1g01010 “
At1g01040 J

localdist
hlust (¥, "complete”)

It is also interesting to look at examples where the scores for different types
of alignment highly differ. To do this the residues between the distance matrices
can be computed and plotted

> plot(sort(as.numeric(localdist) - as.numeric(globaldist)), main = expression("Differences
+ xlab = "Sequence Pair", ylab = expression("Difference $P(Z_score)$"))

Tts not[2]! We do it, not to derive a significance of the alignment, but to transform the
SW-score (or the pozitive score) into a distance measure and to cluster the dataset.



Differences of the $P(Z_score)$ distance of local and overlap alignm

o
s
v c000°?®
o 00
°
00
ODOD
0o0°
0o
&2 e
O o _| °
? o 600
N 0®
a
3
4]
2 o
3]
o
[
E
[a)] ? —
000
o
o
. 000
T T T T T
0 10 20 30 40

Sequence Pair

We see that there are some sequence pairs which have different scores in the
overlap and in the local alignment.

4 Summary

We are using the package pairseqsim to analyses results of Peptide Mass Fin-
gerprint (PMF) identification experiments. By comparing the sequences of the
highest scoring hits, we can draw conclusions about the significance of the identi-
fication result. Have fun and let me know if you find errors(!), have suggestions,
your impressions, or for what you found useful this tool.

References
[1] Booth, H and Maindonald, J and Nielsen, O and Wilson, S Normalizing sequence align-
ment scores for composition bias Recomb 2008 - Berlin

[2] Waterman, M. S. and Vingron, M. 1994. Sequence comparison significance and Poisson
approximation. Statistical Science9:367-381.



