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Chapter 1

Introduction

Limma is a package for the analysis of gene expression microarray data, especially the use of lin-
ear models for analysing designed experiments and the assessment of differential expression.
Limma provides the ability to analyse comparisons between many RNA targets simultane-
ously. It has features which make the analyses stable even for experiments with small number
of arrays—this is achieved by borrowing information across genes. The normalization and
exploratory data analysis functions are for two-colour spotted microarrays. The linear model
and differential expression functions apply to all microarrays including Affymetrix and other
single-channel microarray experiments.

This guide gives a tutorial-style introduction to the main limma features but does not
describe every feature of the package. A full description of the package is given by the
individual function help documents available from the R online help system. To access the
online help, type help(package=limma) at the R prompt or else start the html help system
using help.start() or the Windows drop-down help menu.

The Bioconductor package marray provides alternative functions for reading and normaliz-
ing spotted microarray data. The marray package provides flexible location and scale normal-
ization routines for log-ratios from two-color arrays. The limma package overlaps with marray
in functionality but is based on a more general separation between within-array and between-
array normalization. If you are using limma in conjunction with marray, see Section 6.4. The
Bioconductor package affy provides functions for reading and normalizing Affymetrix microar-
ray data. Advice on how to use limma with the affy package is given throughout the User’s
Guide, see for example Section 7.2 and the E. coli and estrogen case studies.

This guide describes limma as a command-driven package. Packages limmaGUI and affylmGUI
are also available which provides graphical user interfaces to the most commonly used func-
tions in limma [25]. Both packages are available from Bioconductor or from http://bioinf.

wehi.edu.au/limmaGUI. The package limmaGUI is for use with two-color data while afflmGUI
is for Affymetrix data.

This user’s guide was prepared using R Version 2.2.0 for Windows and limma version 2.4.1.
The limma homepage is http://bioinf.wehi.edu.au/limma.
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Chapter 2

Preliminaries

2.1 Citing limma

Limma is an implementation of a body of methodological research by the authors and co-
workers. To give fair professional credit, please be careful to cite the appropriate methodolog-
ical papers whenever you use results from the limma software in a publication. Such citations
are the main means by which the authors receive professional credit for their work.

If you use limma for differential expression analysis, please cite:

Smyth, G. K. (2004). Linear models and empirical Bayes methods for assess-
ing differential expression in microarray experiments. Statistical Applications in
Genetics and Molecular Biology, Vol. 3, No. 1, Article 3.

This article describes the linear modeling approach implemented by lmFit and the empirical
Bayes statistics implemented by eBayes, topTable etc.

If you use the duplicateCorrection function to handle duplicate spots or technical repli-
cation, please cite

Smyth, G. K., Michaud, J., and Scott, H. (2005). The use of within-array replicate
spots for assessing differential expression in microarray experiments. Bioinformat-
ics 21(9), 2067–2075.

If you use limma for pre-processing or normalization of two-color microarray data, please
cite:

Smyth, G. K., and Speed, T. P. (2003). Normalization of cDNA microarray data.
Methods 31, 265–273.

This article describes the functions read.maimages, normalizeWithinArrays, normalizeBetween-
Arrays etc, including the use of spot quality weights.

The limma software itself can be cited as:

Smyth, G. K. (2005). Limma: linear models for microarray data. In: Bioinfor-
matics and Computational Biology Solutions using R and Bioconductor, R. Gen-
tleman, V. Carey, S. Dudoit, R. Irizarry, W. Huber (eds.), Springer, New York,
pages 397–420.
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This article describes the software package in the context of the Bioconductor project and
surveys the range of experimental designs for which the package can be used, including spot-
specific dye-effects. The pre-processing capabilities of the package are also described but more
briefly, with examples of background correction, spot quality weights and filtering with control
spots. This article is also the best current reference for the normexp background correction
method.

Finally, if you are using one of the menu-driven interfaces to the software, please cite the
appropriate one of

Wettenhall, J. M., and Smyth, G. K. (2004). limmaGUI: a graphical user interface
for linear modeling of microarray data. Bioinformatics, 20, 3705–3706.

Wettenhall, J. M., Simpson, K. M., Satterley, K., and Smyth, G. K. (2006).
affylmGUI: a graphical user interface for linear modeling of single channel mi-
croarray data. Bioinformatics. Advance online publication 2 February 2006.

2.2 Installation

Limma is a package for the R computing environment and it is assumed that you have already
installed R. See the R project at http://www.r-project.org.

Installing from CRAN. Limma is available as a contributed package from the R Project
CRAN site. If you are using R on a system with a suitable internet connection and with
installation privileges on your computer, you should be able to install it via

> install.packages("limma")

at the R prompt from an internet-connected computer. If you are using Windows, use the
drop-down menu Packages � Install package(s) from CRAN . . ..

Installing from Bioconductor. Limma is available as part of the Bioconductor project at
http://www.bioconductor.org. Bioconductor works on a 6-monthly official release cycle,
lagging each major R release by a few weeks. This means that Bioconductor software is
updated only once every six months, unless you are using the developmental version of R.
Updates of limma between the Bioconductor official releases can be obtained from CRAN.

Change-log. Limma is updated frequently, often a couple of times a week. Once you have
installed limma, the change-log can also be viewed from the R prompt. To see the most recent
20 lines type:

> changeLog(n=20)

2.3 How to get help

Most questions about limma will hopefully be answered by the documentation or references.
If you’ve run into a question which isn’t addressed by the documentation, or you’ve found
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a conflict between the documentation and software itself, then there is an active support
community which can offer help.

The authors of the package always appreciate receiving reports of bugs in the package
functions or in the documentation. The same goes for well-considered suggestions for im-
provements.

Any other questions or problems concerning limma should be sent to the Bioconduc-
tor mailing list bioconductor@stat.math.ethz.ch. To subscribe to the mailing list, see
https://stat.ethz.ch/mailman/listinfo/bioconductor. Please send requests for gen-
eral assistance and advice to the mailing list rather than to the individual authors. Users
posting to the mailing list for the first time should read the helpful posting guide at http:

//www.bioconductor.org/doc/postingGuide.html. Note that each function in limma has
it’s own online help page, as described in the next section. Mailing list etiquette requires that
you read the relevant help page carefully before posting a problem to the list.

6



Chapter 3

Quick Start

3.1 A brief introduction to R

R is a program for statistical computing. It is a command-driven language meaning that
you have to type commands into it rather than pointing and clicking using a mouse. In
this guide it will be assumed that you have successfully downloaded and installed R from
http://www.r-project.org. A good way to get started is to type

> help.start()

at the R prompt or, if you’re using R for Windows, to follow the drop-down menu items Help
� Html help. Following the links Packages � limma from the html help page will lead you to
the contents page of help topics for functions in limma.

Before you can use any limma commands you have to load the package by typing

> library(limma)

at the R prompt. You can get help on any function in any loaded package by typing ? and
the function name at the R prompt, for example

> ?read.maimages

or equivalently

> help("read.maimages")

for detailed help on the read.maimages function. The individual function help pages are
especially important for listing all the arguments which a function will accept and what values
the arguments can take.

A key to understanding R is to appreciate that anything that you create in R is an “object”.
Objects might include data sets, variables, functions, anything at all. For example

> x <- 2

will create a variable x and will assign it the value 2. At any stage of your R session you can
type
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> objects()

to get a list of all the objects you have created. You see show the contents of any object by
typing the name of the object at the prompt, for example either of the following commands
will print out the contents of x:

> show(x)
> x

We hope that you can use limma without having to spend a lot of time learning about the
R language itself but a little knowledge in this direction will be very helpful, especially when
you want to do something not explicitly provided for in limma or in the other Bioconductor
packages. For more details about the R language see An Introduction to R which is available
from the online help. For more background on using R for statistical analyses see [4].

3.2 Sample limma Session

This is a quick overview of what an analysis might look like. The first example assumes four
replicate two-color arrays, the second and fourth of which are dye-swapped. We assume that
the images have been analyzed using GenePix to produce a .gpr file for each array and that
a targets file targets.txt has been prepared with a column containing the names of the .gpr

files.

> library(limma)
> targets <- readTargets("targets.txt")

Set up a filter so that any spot with a flag of −99 or less gets zero weight.

> f <- function(x) as.numeric(x$Flags > -99)

Read in the data.

> RG <- read.maimages(targets$FileName, source="genepix", wt.fun=f)

The following command implements a type of adaptive background correction. This is optional
but recommended for GenePix data.

> RG <- backgroundCorrect(RG, method="rma")

Print-tip loess normalization:

> MA <- normalizeWithinArrays(RG)

Estimate the fold changes and standard errors by fitting a linear model for each gene. The
design matrix indicates which arrays are dye-swaps.

> fit <- lmFit(MA, design=c(-1,1,-1,1))

Apply empirical Bayes smoothing to the standard errors.
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> fit <- eBayes(fit)

Show statistics for the top 10 genes.

> topTable(fit)

The second example assumes Affymetrix arrays hybridized with either wild-type (wt) or
mutant (mt) RNA. There should be three or more arrays in total to ensure some replication.
The targets file is now assumed to have another column Genotype indicating which RNA source
was hybridized on each array.

> library(affy)
> library(limma)
> targets <- readTargets("targets.txt")

Read and pre-process the Affymetrix CEL file data.

> ab <- ReadAffy(filenames=targets$FileName)
> eset <- rma(ab)

Form an appropriate design matrix for the two RNA sources and fit linear models. The design
matrix has two columns. The first represents log-expression in the wild-type and the second
represents the log-ratio between the mutant and wild-type samples. See Section 8.5 for more
details on the design matrix.

> design <- cbind(WT=1, MUvsWT=targets$Genotype=="mu")
> fit <- lmFit(eset, design)
> fit <- eBayes(fit)
> topTable(fit, coef="MUvsWT")

This code fits the linear model, smooths the standard errors and displays the top 10 genes for
the mutant versus wild-type comparison.

3.3 Data Objects

There are four main types of data objects created and used in limma:

RGList. Red-Green list. A class used to store raw intensities as they are read in from an
image analysis output file, usually by read.maimages().

MAList. Intensities converted to M-values and A-values, i.e., to within-spot and whole-
spot contrasts on the log-scale. Usually created from an RGList using MA.RG() or
normalizeWithinArrays(). Objects of this class contain one row for each spot. There
may be more than one spot and therefore more than one row for each probe.

MArrayLM. Store the result of fitting gene-wise linear models to the normalized intensities or
log-ratios. Usually created by lmFit(). Objects of this class normally contain one row
for each unique probe.
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TestResults. Store the results of testing a set of contrasts equal to zero for each probe.
Usually created by decideTests(). Objects of this class normally contain one row for
each unique probe.

For those who are familiar with matrices in R, all these objects are designed to obey many
analogies with matrices. In the case of RGList and MAList, rows correspond to spots and
columns to arrays. In the case of MarrayLM, rows correspond to unique probes and columns to
parameters or contrasts. The functions summary, dim, length, ncol, nrow, dimnames, rownames,
colnames have methods for these classes. For example

> dim(RG)

[1] 11088 4

shows that the RGList object RG contains data for 11088 spots and 4 arrays.

> colnames(RG)

will give the names of the filenames or arrays in the object, while if fit is an MArrayLM object
then

> colnames(fit)

would give the names of the coefficients in the linear model fit.
Objects of any of these classes may be subsetted, so that RG[,j] means the data for array

j and RG[i,] means the data for probes indicated by the index i. Multiple data objects may
be combined using cbind, rbind or merge. Hence

> RG1 <- read.maimages(files[1:2], source="genepix")
> RG2 <- read.maimages(files[3:5], source="genepix")
> RG <- cbind(RG1, RG2)

is equivalent to

> RG <- read.maimages(files[1:5], source="genepix")

Alternatively, if control status has been set in the an MAList object then

> i <- MA$genes$Status=="Gene"
> MA[i,]

might be used to eliminate control spots from the data object prior to fitting a linear model.
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Chapter 4

Reading Two-Color Data

4.1 Scope of this Chapter

This chapter is for two-color arrays. If you are using Affymetrix arrays, you should use the affy
or affyPLM packages to read and normalize the data. If you have single channel arrays other
than Affymetrix, you will need to the read the intensity data into your R session yourself using
the basic R read functions such as read.table. You will need to create a matrix containing
the log-intensities with rows for probes and columns for arrays.

4.2 Recommended Files

We assume that an experiment has been conducted with one or more microarrays, all printed
with the same library of probes. Each array has been scanned to produce a TIFF image. The
TIFF images have then been processed using an image analysis program such a ArrayVision,
ImaGene, GenePix, QuantArray or SPOT to acquire the red and green foreground and back-
ground intensities for each spot. The spot intensities have then been exported from the image
analysis program into a series of text files. There should be one file for each array or, in the
case of Imagene, two files for each array.

You will need to have the image analysis output files. In most cases these files will include
the IDs and names of the probes and possibly other annotation information. A few image
analysis programs, for example SPOT, do not write the probe IDs into the output files. In
this case you will also need a genelist file which describes the probes. It most cases it is also
desirable to have a targets file which describes which RNA sample was hybridized to each
channel of each array. A further optional file is the spot types file which identifies special
probes such as control spots.

4.3 The Targets Frame

The first step in preparing data for input into limma is usually to create a targets file which
lists the RNA target hybridized to each channel of each array. It is normally in tab-delimited
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text format and should contain a row for each microarray in the experiment. The file can
have any name but the default is Targets.txt. If it has the default name, it can be read into
the R session using

> targets <- readTargets()

Once read into R, it becomes the targets frame.
The targets frame normally contains a FileName column, giving the name of the image-

analysis output file, a Cy3 column giving the RNA type labelled with Cy3 dye for that slide
and a Cy5 column giving the RNA type labelled with Cy5 dye for that slide. Other columns
are optional. The targets file can be prepared using any text editor but spreadsheet programs
such as Microsoft Excel are convenient. The targets file for the Swirl case study includes
optional SideNumber and Date columns:

It is often convenient to create short readable labels to associate with each array for use in
output and in plots, especially if the file names are long or non-intuitive. A column containing
these labels can be included in the targets file, for example the Name column used for the ApoAI
case study:
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This column can be used to created row names for the targets frame by

> targets <- readTargets("targets.txt", row.names="Name")

The row names can be propagated to become array names in the data objects when these are
read in.

For ImaGene files, the FileName column is split into a FileNameCy3 column and a FileNameCy5

because ImaGene stores red and green intensities in separate files. This is a short example:

4.4 Reading in Intensity Data

Let files be a character vector containing the names of the image analysis output files. The
foreground and background intensities can be read into an RGList object using a command of
the form

> RG <- read.maimages(files, source="<imageanalysisprogram>", path="<directory>")

where <imageanalysisprogram> is the name of the image analysis program and <directory>

is the full path of the directory containing the files. If the files are in the current R working
directory then the argument path can be omitted; see the help entry for setwd for how to set
the current working directory. The file names are usually read from the Targets File. For
example, the Targets File Targets.txt is in the current working directory together with the
SPOT output files, then one might use

> targets <- readTargets()
> RG <- read.maimages(targets$FileName, source="spot")

Alternatively, and even more simply, one may give the targets frame itself in place of the
files argument as

> RG <- read.maimages(targets, source="spot")

In this case the software will look for the column FileName in the targets frame.
If the files are GenePix output files then they might be read using

> RG <- read.maimages(targets, source="genepix")
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given an appropriate targets file. Consult the help entry for read.maimages to see which other
image analysis programs are supported. Files are assumed by default to be tab-delimited,
although other separators can be specified using the sep= argument.

Reading data from ImaGene software is a little different to that of other image analysis
programs because the red and green intensities are stored in separate files. This means that the
targets frame should include two filename columns called, say, FileNameCy3 and FileNameCy5,
giving the names of the files containing the green and red intensities respectively. An example
is given in Section 4.3. Typical code with ImaGene data might be

> targets <- readTargets()
> files <- targets[,c("FileNameCy3","FileNameCy5")]
> RG <- read.maimages(files, source="imagene")

For ImaGene data, the files argument to read.maimages() is expected to be a 2-column
matrix of filenames rather than a vector.

What should you do if your image analysis program is not currently supported by limma?
If your output files are of a standard format, you can supply the column names corresponding
to the intensities yourself. For example,

> RG <- read.maimages(files,
+ columns=list(R="F635 Mean",G="F532 Mean",Rb="B635 Median",Gb="B532 Median"),
+ annotation=c("Block","Row","Column","ID","Name"))

is exactly equivalent to the earlier command with source="genepix". “Standard format”
means here that there is a unique column name identifying each column of interest and that
there are no lines in the file following the last line of data. Header information at the start of
the file is ok.

It is a good idea to look at your data to check that it has been read in correctly. Type

> show(RG)

to see a print out of the first few lines of data. Also try

> summary(RG$R)

to see a five-number summary of the red intensities for each array, and so on.
It is possible to read the data in several steps. If RG1 and RG2 are two data sets corre-

sponding to different sets of arrays then

> RG <- cbind(RG1, RG2)

will combine them into one large data set. Data sets can also be subsetted. For example
RG[,1] is the data for the first array while RG[1:100,] is the data on the first 100 genes.

4.5 Spot Quality Weights

It is desirable to use the image analysis output to compute a weight for each spot between 0
and 1 which indicates the reliability of the acquired intensities for that spot. For example, if
the SPOT image analysis program is used and the size of an ideal perfectly circular spot is
known to be 100 pixels, then one might use
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> RG <- read.maimages(files,source="spot",wt.fun=wtarea(100))

The function wtarea(100) gives full weight to spots with area 100 pixels and down-weights
smaller and larger spots. Spots which have zero area or are more than twice the ideal size are
given zero weight. This will create a component called weights in the RG-list. The weights
will be used automatically by functions such as normalizeWithinArrays which operate on the
RG-list. With GenePix data

> RG <- read.maimages(files,source="genepix",wt.fun=wtflags(0.1))

will give weight 0.1 to any spot which receives a negative flag from the GenePix program.
The appropriate way to computing spot quality weights depends on the image analysis

program that you are used. Consult the help entry QualityWeights to see what quality weight
functions are available. The wt.fun argument is very flexible and allows you to construct your
own weights. The wt.fun argument can be any function which takes a data set as argument
and computes the desired weights. For example, if you wish to give zero weight to all Genepix
flags less than -50 you could use

> myfun <- function(x) as.numeric(x$Flags > -50.5)
> RG <- read.maimages(files, source="genepix", wt.fun=myfun)

The wt.fun facility can be used to compute weights based on any number of columns in the
image analysis files. For example, some researchers like to filter out spots if the foreground
mean and median from GenePix for a given spot differ by more than a certain threshold, say
50. This could be achieved by

> myfun <- function(x, threshold=50) {
+ okred <- abs(x[,"F635 Median"]-x[,"F635 Mean"]) < threshold
+ okgreen <- abs(x[,"F532 Median"]-x[,"F532 Mean"]) < threshold
+ as.numeric(okgreen & okred)
+}
> RG <- read.maimages(files, source="genepix", wt.fun=myfun)

Then all the “bad” spots will get weight zero which, in limma, is equivalent to flagging them
out. The definition of myfun here could be replaced with any other code to compute weights
using the columns in the GenePix output files.

4.6 Reading the Gene List

The RGList read by read.maimages() will almost always contain a component called genes

containing the IDs and other annotation information associated with the probes. The only
exceptions are SPOT data, source="spot", or when reading generic data, source="generic",
without setting the annotation argument, annotation=NULL. Try

> names(RG$genes)
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to see if the genes component has been set.
If the genes component is not set, the probe IDs will need to be read from a separate file.

If the arrays have been scanned with an Axon scanner, then the probes IDs will be available
in a tab-delimited GenePix Array List (GAL) file. If the GAL file has extension “gal” and is
in the current working directory, then it may be read into a data.frame by

> RG$genes <- readGAL()

Non-Genepix gene lists can be read into R using the function read.delim from R base.

4.7 Printer Layout

The printer layout is the arrangement of spots and blocks of spots on the arrays. The blocks
are sometimes called print-tip groups or pin-groups or meta rows and columns. Each block
corresponds to a print tip on the print-head used to print the arrays, and the layout of the
blocks on the arrays corresponds to the layout of the tips on the print-head. The number
of spots in each block is the number of times the print-head was lowered onto the array.
Where possible, for example for Agilent, GenePix or ImaGene data, read.maimages will set
the printer layout information in the component printer. Try

> names(RG$printer)

to see if the printer layout information has been set.
If you’ve used readGAL to set the genes component, you may also use getLayout to set the

printer information by

> RG$printer <- getLayout(RG$genes)

Note this will work only for GenePix GAL files, not for general gene lists.

4.8 The Spot Types File

The Spot Types file (STF) is another optional tab-delimited text file which allows you to
identify different types of spots from the gene list. The STF is used to set the control status of
each spot on the arrays so that plots may highlight different types of spots in an appropriate
way. It is typically used to distinguish control spots from those corresponding to genes of
interest and to distinguish positive from negative controls, ratio from calibration controls and
so on. The STF should have a SpotType column giving the names of the different spot-types.
One or more other columns should have the same names as columns in the gene list and should
contain patterns or regular expressions sufficient to identify the spot-type. Any other columns
are assumed to contain plotting attributes, such as colors or symbols, to be associated with
the spot-types. There is one row for each spot-type to be distinguished.

The STF uses simplified regular expressions to match patterns. For example, AA* means
any string starting with AA, *AA means any code ending with AA, AA means exactly these two
letters, *AA* means any string containing AA, AA. means AA followed by exactly one other
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character and AA\. means exactly AA followed by a period and no other characters. For those
familiar with regular expressions, any other regular expressions are allowed but the codes ^

for beginning of string and $ for end of string should be excluded. Note that the patterns are
matched sequentially from first to last, so more general patterns should be included first. The
first row should specify the default spot-type and should have pattern * for all the pattern-
matching columns.

Here is a short STF appropriate for the ApoAI data:

In this example, the columns ID and Name are found in the gene-list and contain patterns to
match. The asterisks are wildcards which can represent anything. Be careful to use upper
or lower case as appropriate and don’t insert any extra spaces. The remaining column gives
colors to be associated with the different types of points. This code assumes of that the probe
annotation data.frame includes columns ID and Name. This is usually so if GenePix has been
used for the image analysis, but other image analysis software may use other column names.

Here is a STF below appropriate for arrays with Lucidea Universal ScoreCard control
spots.
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If the STF has default name SpotTypes.txt then it can be read using

> spottypes <- readSpotTypes()

It is typically used as an argument to the controlStatus() function to set the status of each
spot on the array, for example

> RG$genes$Status <- controlStatus(spottypes, RG)

18



Chapter 5

Data Exploration

It is advisable to display your data in various ways as a quality check and to check for
unexpected effects. We recommend an imageplot of the raw log-ratios and an MA-plot of
the raw data at least for each array as routine quality assessment displays. See the Swirl
case study for some examples. The functions imageplot3by2 and plotMA3by2 can be used to
automate the production of plots for all arrays in an experiment.

The following is an example MA-Plot for an Incyte array with various spike-in and other
controls. (Data courtesy of Rebecca McCracken and Steve Gerondakis, Walter and Eliza Hall
Institute of Medical Research.) The plot was produced using

> spottypes <- readSpotTypes()
> RG$genes$Status <- controlStatus(spottypes, RG)
> plotMA(RG)

The array includes spike-in ratio controls which are 3-fold, 10-fold and 25-fold up and down
regulated, as well as non-differentially expressed sensitivity controls and negative controls.
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Chapter 6

Pre-Processing Two-Color Data

6.1 Background Correction

The default background correction action is to subtract the background intensity from the
foreground intensity for each spot. If the RGList object has not already been background
corrected, then normalizeWithinArrays will do this by default. Hence

> MA <- normalizeWithinArrays(RG)

is equivalent to

> RGb <- backgroundCorrect(RG, method="subtract")
> MA <- normalizeWithinArrays(RGb)

However there are many other background correction options which may be preferable in
certain situations.

For the purpose of assessing differential expression, we often find

> RG <- backgroundCorrect(RG, method="normexp", offset=50)

to be preferable to the simple background subtraction when using output from most image
analysis programs. This method adjusts the foreground adaptively for the background in-
tensities and results in strictly positive adjusted intensities, i.e., negative or zero corrected
intensities are avoided. The use of an offset damps the variation of the log-ratios for very low
intensities spots towards zero.

To illustrate some differences between the different background correction methods we
consider one cDNA array which was self-self hybridized, i.e., the same RNA source was hy-
bridized to both channels. For this array there is no actual differential expression. The array
was printed with a human 10.5k library and hybridized with Jurkatt RNA on both channels.
(Data courtesy Andrew Holloway and Dileepa Diyagama, Peter MacCallum Cancer Centre,
Melbourne.) The array included a selection of control spots which are highlighted on the
plots. Of particular interest are the spike-in ratio controls which should show up and down
fold changes of 3 and 10. The first plot displays data acquired with GenePix software and
background corrected by subtracting the median local background, which is the default with

20



GenePix data. The plot shows the typical wedge shape with fanning of the M-values at low
intensities. The range of observed M-values dominates the spike-in ratio controls. The are
also 1148 spots not shown on the plot because the background corrected intensities were zero
or negative.

The second plot shows the same array background corrected with method="normexp" and
offset=50. The spike-in ratio controls now standout clearly from the range of the M-values.
All spots on the array are shown on the plot because there are now no missing M-values.

The third plot shows the same array quantified with SPOT software and with “morph” back-
ground subtracted. This background estimator produces a similar effect to that with normexp.
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The effect of using “morph” background or using method="normexp" with an offset is to sta-
bilize the variability of the M-values as a function of intensity. The empirical Bayes methods
implemented in the limma package for assessing differential expression will yield most benefit
when the variabilities are as homogenous as possible between genes. This can best be achieved
by reducing the dependence of variability on intensity as far as possible.

6.2 Within-Array Normalization

Limma implements a range of normalization methods for spotted microarrays. Smyth and
Speed [20] describe some of the most commonly used methods. The methods may be broadly
classified into methods which normalize the M-values for each array separately (within-array
normalization) and methods which normalize intensities or log-ratios to be comparable across
arrays (between-array normalization). This section discusses mainly within-array normaliza-
tion, which all that is usually required for the traditional log-ratio analysis of two-color data.
Between-array normalization is discussed further in Section 6.3.

Print-tip loess normalization [29] is the default normalization method and can be performed
by

> MA <- normalizeWithinArrays(RG)

There are some notable cases where this is not appropriate. For example, Agilent arrays do
not have print-tip groups, so one should use global loess normalization instead:

> MA <- normalizeWithinArrays(RG, method="loess")

Print-tip loess is also unreliable for small arrays with less than, say, 150 spots per print-tip
group. Even larger arrays may have particular print-tip groups which are too small for print-
tip loess normalization if the number of spots with non-missing M-values is small for one or
more of the print-tip groups. In these cases one should either use global "loess" normalization
or else use robust spline normalization
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> MA <- normalizeWithinArrays(RG, method="robustspline")

which is an empirical Bayes compromise between print-tip and global loess normalization,
with 5-parameter regression splines used in place of the loess curves.

Loess normalization assumes that the bulk of the probes on the array are not differentially
expressed. It doesn’t assume that that there are equal numbers of up and down regulated
genes or that differential expression is symmetric about zero, provided that the loess fit is
implemented in a robust fashion, but it is necessary that there be a substantial body of probes
which do not change expression levels. This assumption can be suspect for boutique arrays
where the total number of unique genes on the array is small, say less than 150, particularly
if these genes have been selected for being specifically expressed in one of the RNA sources.
In such a situation, the best strategy is to include on the arrays a series of non-differentially
expressed control spots, such as a titration series of whole-library-pool spots, and to use the
up-weighting method discussed below. A whole-library-pool means that one makes a pool of
a library of probes, and prints spots from the pool at various concentrations [28]. The library
should be sufficiently large than one can be confident that the average of all the probes is not
differentially expressed. The larger the library the better. Good results have been obtained
with library pools with as few as 500 clones. In the absence of such control spots, normalization
of boutique arrays requires specialist advice.

Any spot quality weights found in RG will be used in the normalization by default. This
means for example that spots with zero weight (flagged out) will not influence the normal-
ization of other spots. The use of spot quality weights will not however result in any spots
being removed from the data object. Even spots with zero weight will be normalized and will
appear in the output object, such spots will simply not have any influence on the other spots.
If you do not wish the spot quality weights to be used in the normalization, their use can be
over-ridden using

> MA <- normalizeWithinArrays(RG, weights=NULL)

The output object MA will still contain any spot quality weights found in RG, but these weights
are not used in the normalization step.

It is often useful to make use of control spots to assist the normalization process. For exam-
ple, if the arrays contain a series of spots which are known in advance to be non-differentially
expressed, these spots can be given more weight in the normalization process. Spots which
are known in advance to be differentially expressed can be down-weighted. Suppose for exam-
ple that the controlStatus() has been used to identify spike-in spots which are differentially
expressed and a titration series of whole-library-pool spots which should not be differentially
expressed. Then one might use

> w <- modifyWeights(RG$weights, RG$genes$Status, c("spikein","titration"), c(0,2))
> MA <- normalizeWithinArrays(RG, weights=w)

to give zero weight to the spike-in spots and double weight to the titration spots. The idea of
up-weighting the titration spots is in the same spirit as the composite normalization method
proposed by [28] but is more flexible and generally applicable. The above code assumes that
RG already contains spot quality weights. If not, one could use
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> w <- modifyWeights(array(1,dim(RG)), RG$genes$Status, c("spikein","titration"), c(0,2))
> MA <- normalizeWithinArrays(RG, weights=w)

instead.
Limma contains some more sophisticated normalization methods. In particular, some

between-array normalization methods are discussed in Section 6.3 of this guide.

6.3 Between-Array Normalization

This section explores some of the methods available for between-array normalization of two-
color arrays. A feature which distinguishes most of these methods from within-array normal-
ization is the focus on the individual red and green intensity values rather than merely on the
log-ratios. These methods might therefore be called individual channel or separate channel
normalization methods. Individual channel normalization is typically a prerequisite to indi-
vidual channel analysis methods such as that provided by lmscFit(). Further discussion of
the issues involved is given by [31]. This section shows how to reproduce some of the results
given in [31]. The ApoAI data set from Section 11.2 will be used to illustrate these methods.
We assume that the the ApoAI data has been loaded and background corrected as follows:

> load("ApoAI.RData")

An important issue to consider before normalizing between arrays is how background
correction has been handled. For between-array normalization to be effective, it is important to
avoid missing values in log-ratios which might arise from negative or zero corrected intensities.
The function backgroundCorrect() gives a number of useful options. For the purposes of this
section, the data has been corrected using the "minimum" method:

> RG.b <- backgroundCorrect(RG,method="minimum")

plotDensities displays smoothed empirical densities for the individual green and red chan-
nels on all the arrays. Without any normalization there is considerable variation between both
channels and between arrays:

> plotDensities(RG.b)
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After loess normalization of the M-values for each array the red and green distributions be-
come essentially the same for each array, although there is still considerable variation between
arrays:

> MA.p <-normalizeWithinArrays(RG.b)
> plotDensities(MA.p)

Loess normalization doesn’t affect the A-values. Applying quantile normalization to the
A-values makes the distributions essentially the same across arrays as well as channels:
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> MA.pAq <- normalizeBetweenArrays(MA.p, method="Aquantile")
> plotDensities(MA.pAq)

Applying quantile normalization directly to the individual red and green intensities pro-
duces a similar result but is somewhat noisier:

> MA.q <- normalizeBetweenArrays(RG.b, method="quantile")
> plotDensities(MA.q, col="black")

Warning message:
number of groups=2 not equal to number of col in: plotDensities(MA.q, col = "black")
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There are other between-array normalization methods not explored here. For example
normalizeBetweenArrays with method="vsn" gives an interface to the variance-stabilizing nor-
malization methods of the vsn package.

6.4 Using Objects from the marray Package

The package marray is a well known R package for pre-processing of two-color microarray
data. Marray provides functions for reading, normalization and graphical display of data.
Marray and limma are both descendants of the earlier and path-breaking SMA package avail-
able from http://www.stat.berkeley.edu/users/terry/zarray/Software/smacode.html

but limma has maintained and built upon the original data structures whereas marray has
converted to a fully formal data class representation. For this reason, Limma is backwardly
compatible with SMA while marray is not.

Normalization functions in marray focus on a flexible approach to location and scale nor-
malization of M-values, rather than the within and between-array approach of limma. Marray
provides some normalization methods which are not in limma including 2-D loess normaliza-
tion and print-tip-scale normalization. Although there is some overlap between the normal-
ization functions in the two packages, both providing print-tip loess normalization, the two
approaches are largely complementary. Marray also provides highly developed functions for
graphical display of two-color microarray data.

Read functions in marray produce objects of class marrayRaw while normalization produces
objects of class marrayNorm. Objects of these classes may be converted to and from limma data
objects using the convert package. marrayRaw objects may be converted to RGList objects
and marrayNorm objects to MAList objects using the as function. For example, if Data is an
marrayNorm object then

> library(convert)
> MA <- as(Data, "MAList")

converts to an MAList object.
marrayNorm objects can also be used directly in limma without conversion, and this is

generally recommended. If Data is an marrayNorm object, then

> fit <- lmFit(Data, design)

fits a linear model to Data as it would to an MAList object. One difference however is that the
marray read functions tend to populate the maW slot of the marrayNorm object with qualitative
spot quality flags rather than with quantitative non-negative weights, as expected by limma.
If this is so then one may need

> fit <- lmFit(Data, design, weights=NULL)

to turn off use of the spot quality weights.
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Chapter 7

Linear Models Overview

7.1 Introduction

The package limma uses an approach called linear models to analyse designed microarray
experiments. This approach allows very general experiments to be analysed just as easily as
a simple replicated experiment. The approach is outlined in [21, 30]. The approach requires
one or two matrices to be specified. The first is the design matrix which indicates in effect
which RNA samples have been applied to each array. The second is the contrast matrix which
specifies which comparisons you would like to make between the RNA samples. For very
simple experiments, you may not need to specify the contrast matrix.

The philosophy of the approach is as follows. You have to start by fitting a linear model
to your data which fully models the systematic part of your data. The model is specified by
the design matrix. Each row of the design matrix corresponds to an array in your experiment
and each column corresponds to a coefficient which is used to describe the RNA sources in
your experiment. With Affymetrix or single-channel data, or with two-color with a common
reference, you will need as many coefficients as you have distinct RNA sources, no more
and no less. With direct-design two-color data you will need one fewer coefficient than you
have distinct RNA sources, unless you wish to estimate a dye-effect for each gene, in which
case the number of RNA sources and the number of coefficients will be the same. Any set
of independent coefficients will do, providing they describe all your treatments. The main
purpose of this step is to estimate the variability in the data, hence the systematic part needs
to modelled so it can be distinguished from random variation.

In practice the requirement to have exactly as many coefficients as RNA sources is too
restrictive in terms of questions you might want to answer. You might be interested in more
or fewer comparisons between the RNA source. Hence the contrasts step is provided so that
you can take the initial coefficients and compare them in as many ways as you want to answer
any questions you might have, regardless of how many or how few these might be.

If you have data from Affymetrix experiments, from single-channel spotted microarrays
or from spotted microarrays using a common reference, then linear modeling is the same as
ordinary analysis of variance or multiple regression except that a model is fitted for every
gene. With data of this type you can create design matrices as one would do for ordinary
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modeling with univariate data. If you have data from spotted microarrays using a direct
design, i.e., a connected design with no common reference, then the linear modeling approach
is very powerful but the creation of the design matrix may require more statistical knowledge.

For statistical analysis and assessing differential expression, limma uses an empirical Bayes
method to moderate the standard errors of the estimated log-fold changes. This results in
more stable inference and improved power, especially for experiments with small numbers
of arrays [21]. For arrays with within-array replicate spots, limma uses a pooled correlation
method to make full use of the duplicate spots [19].

7.2 Affymetrix and Other Single-Channel Designs

Affymetrix data will usually be normalized using the affy package. We will assume here
that the data is available as an exprSet object called eset. Such an object will have an
slot containing the log-expression values for each gene on each array which can be extracted
using exprs(eset). Affymetrix and other single-channel microarray data may be analysed
very much like ordinary linear models or anova models. The difference with microarray data
is that it is almost always necessary to extract particular contrasts of interest and so the
standard parametrizations provided for factors in R are not usually adequate.

There are many ways to approach the analysis of a complex experiment in limma. A
straightforward strategy is to set up the simplest possible design matrix and then to extract
from the fit the contrasts of interest.

Suppose that there are three RNA sources to be compared. Suppose that the first three
arrays are hybridized with RNA1, the next two with RNA2 and the next three with RNA3.
Suppose that all pair-wise comparisons between the RNA sources are of interest. We assume
that the data has been normalized and stored in an exprSet object, for example by

> data <- ReadAffy()
> eset <- rma(data)

An appropriate design matrix can be created and a linear model fitted using

> design <- model.matrix(~ -1+factor(c(1,1,1,2,2,3,3,3)))
> colnames(design) <- c("group1", "group2", "group3")
> fit <- lmFit(eset, design)

To make all pair-wise comparisons between the three groups the appropriate contrast matrix
can be created by

> contrast.matrix <- makeContrasts(group2-group1, group3-group2, group3-group1, levels=design)
> fit2 <- contrasts.fit(fit, contrast.matrix)
> fit2 <- eBayes(fit2)

A list of top genes differential expressed in group2 versus group1 can be obtained from

> topTable(fit2, coef=1, adjust="BH")

The outcome of each hypothesis test can be assigned using
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> results <- decideTests(fit2)

A Venn diagram showing numbers of genes significant in each comparison can be obtained
from

> vennDiagram(results)

7.3 Common Reference Designs

Now consider two-color microarray experiments in which a common reference has been used
on all the arrays. Such experiments can be analysed very similarly to Affymetrix experiments
except that allowance must be made for dye-swaps. The simplest method is to setup the design
matrix using the modelMatrix() function and the targets file. As an example, we consider part
of an experiment conducted by Joëlle Michaud, Catherine Carmichael and Dr Hamish Scott at
the Walter and Eliza Hall Institute to compare the effects of transcription factors in a human
cell line. The targets file is as follows:

> targets <- readTargets("runxtargets.txt")
> targets

SlideNumber Cy3 Cy5
1 2144 EGFP AML1
2 2145 EGFP AML1
3 2146 AML1 EGFP
4 2147 EGFP AML1.CBFb
5 2148 EGFP AML1.CBFb
6 2149 AML1.CBFb EGFP
7 2158 EGFP CBFb
8 2159 CBFb EGFP
9 2160 EGFP AML1.CBFb
10 2161 AML1.CBFb EGFP
11 2162 EGFP AML1.CBFb
12 2163 AML1.CBFb EGFP
13 2166 EGFP CBFb
14 2167 CBFb EGFP

In the experiment, green fluorescent protein (EGFP) has been used as a common reference.
An adenovirus system was used to transport various transcription factors into the nuclei of
HeLa cells. Here we consider the transcription factors AML1, CBFbeta or both. A simple
design matrix was formed and a linear model fit:

> design <- modelMatrix(targets,ref="EGFP")
> design

AML1 AML1.CBFb CBFb
1 1 0 0
2 1 0 0
3 -1 0 0
4 0 1 0
5 0 1 0
6 0 -1 0
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7 0 0 1
8 0 0 -1
9 0 1 0
10 0 -1 0
11 0 1 0
12 0 -1 0
13 0 0 1
14 0 0 -1
> fit <- lmFit(MA, design)

It is of interest to compare each of the transcription factors to EGFP and also to compare
the combination transcription factor with AML1 and CBFb individually. An appropriate
contrast matrix was formed as follows:

> contrast.matrix <- makeContrasts(AML1,CBFb,AML1.CBFb,AML1.CBFb-AML1,AML1.CBFb-CBFb,
+ levels=design)
> contrast.matrix

AML1 CBFb AML1.CBFb AML1.CBFb - AML1 AML1.CBFb - CBFb
AML1 1 0 0 -1 0
AML1.CBFb 0 0 1 1 1
CBFb 0 1 0 0 -1

The linear model fit can now be expanded and empirical Bayes statistics computed:

> fit2 <- contrasts.fit(fit, contrasts.matrix)
> fit2 <- eBayes(fit2)

7.4 Direct Two-Color Designs

Two-colour designs without a common reference require the most statistical knowledge to
choose the appropriate design matrix. A direct design is one in which there is no single
RNA source which is hybridized to every array. As an example, we consider an experiment
conducted by Dr Mireille Lahoud at the Walter and Eliza Hall Institute to compare gene
expression in three different populations of dendritric cells (DC).

This experiment involved six cDNA microarrays in three dye-swap pairs, with each pair used
to compare two DC types. The design is shown diagrammatically above. The targets file was
as follows:
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> targets
SlideNumber FileName Cy3 Cy5

ml12med 12 ml12med.spot CD4 CD8
ml13med 13 ml13med.spot CD8 CD4
ml14med 14 ml14med.spot DN CD8
ml15med 15 ml15med.spot CD8 DN
ml16med 16 ml16med.spot CD4 DN
ml17med 17 ml17med.spot DN CD4

There are many valid choices for a design matrix for such an experiment and no single
correct choice. We chose to setup the design matrix as follows:

> design <- modelMatrix(targets, ref="CD4")
Found unique target names:
CD4 CD8 DN
> design

CD8 DN
ml12med 1 0
ml13med -1 0
ml14med 1 -1
ml15med -1 1
ml16med 0 1
ml17med 0 -1

In this design matrix, the CD8 and DN populations have been compared back to the CD4
population. The coefficients estimated by the linear model will correspond to the log-ratios of
CD8 vs CD4 (first column) and DN vs CD4 (second column). After appropriate normalization
of the expression data, a linear model was fit using

> fit <- lmFit(MA, design, ndups=2)

The use of ndups is to specify that the arrays contained duplicates of each gene, see Sec-
tion 11.6.

The linear model can now be interrogated to answer any questions of interest. For this
experiment it was of interest to make all pairwise comparisons between the three DC popula-
tions. This was accomplished using the contrast matrix

> contrast.matrix <- cbind("CD8-CD4"=c(1,0),"DN-CD4"=c(0,1),"CD8-DN"=c(1,-1))
> rownames(contrast.matrix) <- colnames(design)
> contrast.matrix

CD8-CD4 DN-CD4 CD8-DN
CD8 1 0 1
DN 0 1 -1

The contrast matrix can be used to expand the linear model fit and then to compute empirical
Bayes statistics:

> fit2 <- constrast.fit(fit, contrast.matrix)
> fit2 <- eBayes(fit2)
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Chapter 8

Specific Designs

8.1 Simple Comparisons

8.1.1 Replicate Arrays

The simplest possible microarray experiment is one with a series of replicate two-color arrays
all comparing the same two RNA sources. For a three-array experiment comparing wild type
(wt) and mutant (mu) RNA, the targets file might contain the following entries:

FileName Cy3 Cy5
File1 wt mu
File2 wt mu
File3 wt mu

A list of differentially expressed genes might be found for this experiment by

> fit <- lmFit(MA)
> fit <- eBayes(fit)
> topTable(fit)

where MA holds the normalized data. The default design matrix used here is just a single
column of ones. The experiment here measures the fold change of mutant over wild type.
Genes which have positive M-values are more highly expressed in the mutant RNA while genes
with negative M-values are more highly expressed in the wild type. The analysis is analogous
to the classical single-sample t-test except that we have used empirical Bayes methods to
borrow information between genes.

8.1.2 Dye Swaps

A simple modification of the above experiment would be to swap the dyes for one of the arrays.
The targets file might now be

FileName Cy3 Cy5
File1 wt mu
File2 mu wt
File3 wt mu
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Now the analysis would be

> design <- c(1,-1,1)
> fit <- lmFit(MA, design)
> fit <- eBayes(fit)
> topTable(fit)

Alternatively the design matrix could be set, replacing the first of the above code lines, by

> design <- modelMatrix(targets, ref="wt")

where targets is the data frame holding the targets file information.
If there are at least two arrays with each dye-orientation, then it is possible to estimate

and adjust for any probe-specific dye effects. The dye-effect is estimated by an intercept term.
If the experiment was

FileName Cy3 Cy5
File1 wt mu
File2 mu wt
File3 wt mu
File4 mu wt

then we could set

> design <- cbind(DyeEffect=1,MUvsWT=c(1,-1,1,-1))
> fit <- lmFit(MA, design)
> fit <- eBayes(fit)

The genes which show dye effects can be seen by

> topTable(fit, coef="DyeEffect")

The genes which are differentially expressed in the mutant are obtained by

> topTable(fit, coef="MUvsWT")

The fold changes and significant tests in this list are corrected for dye-effects. Including the
dye-effect in the model in this way uses up one degree of freedom which might otherwise be
used to estimate the residual variability, but it is valuable if many genes show non-negligible
dye-effects.

8.2 Technical Replication

In the previous sections we have assumed that all arrays are biological replicates. Now consider
an experiment in which two wild-type and two mice from the same mutant strain are compared
using two arrays for each pair of mice. The targets might be
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FileName Cy3 Cy5
File1 wt1 mu1
File2 wt1 mu1
File3 wt2 mu2
File4 wt2 mu2

The first and second and third and fourth arrays are technical replicates. It would not be
correct to treat this experiment as comprising four replicate arrays because the technical
replicate pairs are not independent, in fact they are likely to be positively correlated.

One way to analyze these data is the following:

> biolrep <- c(1, 1, 2, 2)
> corfit <- duplicateCorrelation(MA, ndups = 1, block = biolrep)
> fit <- lmFit(MA, block = biolrep, cor = corfit$consensus)
> fit <- eBayes(fit)
> topTable(fit, adjust = "BH")

The vector biolrep indicates the two blocks corresponding to biological replicates. The value
cofit$consensus estimates the average correlation within the blocks and should be positive.
This analysis is analogous to mixed model analysis of variance [12, Chapter 18] except that
information has been borrowed between genes. Information is borrowed by constraining the
within-block correlations to be equal between genes and by using empirical Bayes methods to
moderate the standard deviations between genes [19].

If the technical replicates were in dye-swap pairs as

FileName Cy3 Cy5
File1 wt1 mu1
File2 mu1 wt1
File3 wt2 mu2
File4 mu2 wt2

then one might use

> design <- c(1, -1, 1, -1)
> corfit <- duplicateCorrelation(MA, design, ndups = 1, block = biolrep)
> fit <- lmFit(MA, design, block = biolrep, cor = corfit$consensus)
> fit <- eBayes(fit)
> topTable(fit, adjust = "BH")

In this case the correlation corfit$consensus should be negative because the technical repli-
cates are dye-swaps and should vary in opposite directions.

This method of handling technical replication using duplicateCorrelation() is somewhat
limited. If for example one techical replicate was dye-swapped and the other not,

FileName Cy3 Cy5
File1 wt1 mu1
File2 mu1 wt1
File3 wt2 mu2
File4 wt2 mu2
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then there is no way to use duplicateCorrelation() because the technical replicate correlation
will be negative for the first pair but positive for the second. An alternative strategy is to
include a coefficient in the design matrix for each of the two biological blocks. This could be
accomplished by defining

> design <- cbind(MU1vsWT1 = c(1,-1,0,0), MU2vsWT2 = c(0,0,1,1))
> fit <- lmFit(MA, design)

This will fit a linear model with two coefficients, one estimating the mutant vs wild-type
comparison for the first pair of mice and the other for the second pair of mice. What we
want is the average of the two mutant vs wild-type comparisons, and this is extracted by the
contrast (MU1vsWT1+MU2vsWT2)/2:

> cont.matrix <- makeContrasts(MUvsWT = (MU1vsWT1 + MU2vsWT2)/2,
+ levels = design)
> fit2 <- contrasts.fit(fit, cont.matrix)
> fit2 <- eBayes(fit2)
> topTable(fit2, adjust = "BH")

The technique of including an effect for each biological replicate is well suited to situations
with a lot of technical replication. Here is a larger example from a real experiment. Three
mutant mice are to be compared with three wild-type mice. Eighteen two-color arrays were
used with each mouse appearing on six different arrays:

> targets

FileName Cy3 Cy5
1391 1391.spot wt1 mu1
1392 1392.spot mu1 wt1
1340 1340.spot wt2 mu1
1341 1341.spot mu1 wt2
1395 1395.spot wt3 mu1
1396 1396.spot mu1 wt3
1393 1393.spot wt1 mu2
1394 1394.spot mu2 wt1
1371 1371.spot wt2 mu2
1372 1372.spot mu2 wt2
1338 1338.spot wt3 mu2
1339 1339.spot mu2 wt3
1387 1387.spot wt1 mu3
1388 1388.spot mu3 wt1
1399 1399.spot wt2 mu3
1390 1390.spot mu3 wt2
1397 1397.spot wt3 mu3
1398 1398.spot mu3 wt3

The comparison of interest is the average difference between the mutant and wild-type mice.
duplicateCorrelation() could not be used here because the arrays do not group neatly into
biological replicate groups. In any case, with six arrays on each mouse it is much safer and
more conservative to fit an effect for each mouse. We could proceed as
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> design <- modelMatrix(targets, ref = "wt1")
> design <- cbind(Dye = 1, design)
> colnames(design)

[1] "Dye" "mu1" "mu2" "mu3" "wt2" "wt3"

The above code treats the first wild-type mouse as a baseline reference so that columns of the
design matrix represent the difference between each of the other mice and wt1. The design
matrix also includes an intercept term which represents the dye effect of Cy5 over Cy3 for
each gene. If no dye effect is expected then the second line of code can be omitted.

> fit <- lmFit(MA, design)
> cont.matrix <- makeContrasts(muvswt = (mu1+mu2+mu3-wt2-wt3)/3,
+ levels = design)
> fit2 <- contrasts.fit(fit, cont.matrix)
> fit2 <- eBayes(fit2)
> topTable(fit2, adjust = "BH")

The contrast defined by the function makeContrasts represents the average difference between
the mutant and wild-type mice, which is the comparison of interest.

This general approach is applicable to many studies involving biological replicates. Here is
another example based on a real example conducted by the Scott Lab at the Walter and Eliza
Hall Institute (WEHI). RNA is collected from four human subjects from the same family,
two affected by a leukemia-inducing mutation and two unaffected. Each of the two affected
subjects (A1 and A2) is compared with each of the two unaffected subjects (U1 and U2):

FileName Cy3 Cy5
File1 U1 A1
File2 A1 U2
File3 U2 A2
File4 A2 U1

Our interest is to find genes which are differentially expressed between the affected and un-
affected subjects. Although all four arrays compare an affected with an unaffected subject,
the arrays are not independent. We need to take account of the fact that RNA from each
subject appears on two different arrays. We do this by fitting a model with a coefficient for
each subject and then extracting the contrast between the affected and unaffected subjects:

> design <- modelMatrix(targets, ref = "U1")
> fit <- lmFit(MA, design)
> cont.matrix <- makeContrasts(AvsU = (A1+A2-U2)/2, levels = design)
> fit2 <- contrasts.fit(fit, cont.matrix)
> fit2 <- eBayes(fit2)
> topTable(fit2, adjust = "BH")
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8.3 Paired Samples

Paired samples occur when we compare two treatments and each sample given one treatment
is naturally paired with a particular sample given the other treatment. This is a special case
of blocking with blocks of size two. The classical test associated with this situation is the
paired t-test.

Suppose an experiment is conducted with Affymetrix or single-channel arrays to compare
a new treatment (T) with a control (C). Six dogs are used from three sib-ships. For each
sib-pair, one dog is given the treatment while the other dog is a control. This produces the
targets frame:

FileName SibShip Treatment
File1 1 C
File2 1 T
File3 2 C
File4 2 T
File5 3 C
File6 3 T

A moderated paired t-test can be computed by allowing for sib-pair effects in the linear model:

> SibShip <- factor(targets$SibShip)
> Treat <- factor(targets$Treatment, levels=c("C","T"))
> design <- model.matrix(~SibShip+Treat)
> fit <- lmFit(eset, design)
> fit <- eBayes(fit)
> topTable(fit, coef="TreatT")

8.4 Two Groups: Common Reference

Suppose now that we wish to compare two wild type (Wt) mice with three mutant (Mu) mice
using arrays hybridized with a common reference RNA (Ref):

FileName Cy3 Cy5
File1 Ref WT
File2 Ref WT
File3 Ref Mu
File4 Ref Mu
File5 Ref Mu

The interest here is in the comparison between the mutant and wild type mice. There are two
major ways in which this comparison can be made. We can

1. create a design matrix which includes a coefficient for the mutant vs wild type difference,
or
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2. create a design matrix which includes separate coefficients for wild type and mutant
mice and then extract the difference as a contrast.

For the first approach, the design matrix should be as follows

> design

WTvsREF MUvsWT
Array1 1 0
Array2 1 0
Array3 1 1
Array4 1 1
Array5 1 1

Here the first coefficient estimates the difference between wild type and the reference for each
probe while the second coefficient estimates the difference between mutant and wild type.
For those not familiar with model matrices in linear regression, it can be understood in the
following way. The matrix indicates which coefficients apply to each array. For the first
two arrays the fitted values will be just the WTvsREF coefficient, which is correct. For the
remaining arrays the fitted values will be WTvsREF + MUvsWT, which is equivalent to mutant vs
reference, also correct. For reasons that will be apparent later, this is sometimes called the
treatment-contrasts parametrization. Differentially expressed genes can be found by

> fit <- lmFit(MA, design)
> fit <- eBayes(fit)
> topTable(fit, coef="MUvsWT", adjust="BH")

There is no need here to use contrasts.fit() because the comparison of interest is already
built into the fitted model. This analysis is analogous to the classical pooled two-sample t-test
except that information has been borrowed between genes.

For the second approach, the design matrix should be

WT MU
Array1 1 0
Array2 1 0
Array3 0 1
Array4 0 1
Array5 0 1

The first coefficient now represents wild-type vs the reference and the second represents mutant
vs the reference. Our comparison of interest is the difference between these two coefficients.
We will call this the group-means parametrization. Differentially expressed genes can be found
by

> fit <- lmFit(MA, design)
> cont.matrix <- makeContrasts(MUvsWT=WT-MU, levels=design)
> fit2 <- contrasts.fit(fit, cont.matrix)
> fit2 <- eBayes(fit2)
> topTable(fit2, adjust="BH")
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The results will be exactly the same as for the first approach.
The design matrix can be constructed

1. manually,

2. using the limma function modelMatrix(), or

3. using the built-in R function model.matrix().

Let Group be the factor defined by

> Group <- factor(c("WT","WT","Mu","Mu","Mu"), levels=c("WT","Mu"))

For the first approach, the treatment-contrasts parametrization, the design matrix can be
computed by

> design <- cbind(WTvsRef=1,MUvsWT=c(0,0,1,1,1))

or by

> param <- cbind(WTvsRef=c(-1,1,0),MUvsWT=c(0,-1,1))
> rownames(param) <- c("Ref","WT","Mu")
> design <- modelMatrix(targets, parameters=param)

or by

> design <- model.matrix(~Group)
> colnames(design) <- c("WTvsRef","MUvsWT")

all of which produce the same result. For the second approach, the group-means parametriza-
tion, the design matrix can be computed by

> design <- cbind(WT=c(1,1,0,0,0),MU=c(0,0,1,1,1))

or by

> param <- cbind(WT=c(-1,1,0),MU=c(-1,0,1))
> rownames(param) <- c("Ref","WT","Mu")
> design <- modelMatrix(targets, parameters=param)

or by

> design <- model.matrix(~0+Group)
> colnames(design) <- c("WT","Mu")

all of which again produce the same result.
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8.5 Two Groups: Affymetrix

Suppose now that we wish to compare two wild type (Wt) mice with three mutant (Mu) mice
using Affymetrix arrays or any other single-channel array technology:

FileName Target
File1 WT
File2 WT
File3 Mu
File4 Mu
File5 Mu

Everything is exactly as in the previous section, except that the function modelMatrix() would
not be used. We can either

1. create a design matrix which includes a coefficient for the mutant vs wild type difference,
or

2. create a design matrix which includes separate coefficients for wild type and mutant
mice and then extract the difference as a contrast.

For the first approach, the treatment-contrasts parametrization, the design matrix should be
as follows:

> design

WT MUvsWT
Array1 1 0
Array2 1 0
Array3 1 1
Array4 1 1
Array5 1 1

Here the first coefficient estimates the mean log-expression for wild type mice and plays the
role of an intercept. The second coefficient estimates the difference between mutant and wild
type. Differentially expressed genes can be found by

> fit <- lmFit(eset, design)
> fit <- eBayes(fit)
> topTable(fit, coef="MUvsWT", adjust="BH")

where eset is an exprSet or matrix object containing the log-expression values. For the second
approach, the design matrix should be

WT MU
Array1 1 0
Array2 1 0
Array3 0 1
Array4 0 1
Array5 0 1
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Differentially expressed genes can be found by

> fit <- lmFit(eset, design)
> cont.matrix <- makeContrasts(MUvsWT=WT-MU, levels=design)
> fit2 <- contrasts.fit(fit, cont.matrix)
> fit2 <- eBayes(fit2)
> topTable(fit2, adjust="BH")

For the first approach, the treatment-contrasts parametrization, the design matrix can be
computed by

> design <- cbind(WT=1,MUvsWT=c(0,0,1,1,1))

or by

> design <- model.matrix(~Group)
> colnames(design) <- c("WT","MUvsWT")

For the second approach, the group-means parametrization, the design matrix can be com-
puted by

> design <- cbind(WT=c(1,1,0,0,0,MU=c(0,0,1,1,1))

or by

> design <- model.matrix(~0+Group)
> colnames(design) <- c("WT","MU")

8.6 Several Groups

The above approaches for two groups extend easily to any number of groups. Suppose that
three RNA targets to be compared using AffymetrixTM arrays. Suppose that the three targets
are called “RNA1”, “RNA2” and “RNA3” and that the column targets$Target indicates
which one was hybridized to each array. An appropriate design matrix can be created using

> f <- factor(targets$Target, levels=c("RNA1","RNA2","RNA3"))
> design <- model.matrix(~0+f)
> colnames(design) <- c("RNA1","RNA2","RNA3")

To make all pair-wise comparisons between the three groups one could proceed

> fit <- lmFit(eset, design)
> contrast.matrix <- makeContrasts(RNA2-RNA1, RNA3-RNA2, RNA3-RNA1,
+ levels=design)
> fit2 <- contrasts.fit(fit, contrast.matrix)
> fit2 <- eBayes(fit2)

A list of top genes for RNA2 versus RNA1 can be obtained from

> topTable(fit2, coef=1, adjust="BH")

The outcome of each hypothesis test can be assigned using
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> results <- decideTests(fit2)

A Venn diagram showing numbers of genes significant in each comparison can be obtained
from

> vennDiagram(results)

The statistic fit2$F and the corresponding fit2$F.p.value combine the three pair-wise
comparisons into one F -test. This is equivalent to a one-way ANOVA for each gene except
that the residual mean squares have been moderated between genes. To find genes which vary
between the three RNA targets in any way, look for genes with small p-values. To find the
top 30 genes:

> o <- order(fit2$F.p.value}
> fit2$genes[o[1:30],]

Now suppose that the experiment had been conducted using two-color arrays with a com-
mon reference instead of AffymetrixTM arrays. For example the targets frame might be

FileName Cy3 Cy5
File1 Ref RNA1
File2 RNA1 Ref
File3 Ref RNA2
File4 RNA2 Ref
File5 Ref RNA3

For this experiment the design matrix could be formed by

> design <- modelMatrix(targets, ref="Ref")

and everything else would be as for the AffymetrixTM experiment.

8.7 Factorial Designs

Factorial designs are those where more than one experimental dimension is being varied and
each combination of treatment conditions is observed. Suppose that cells are extracted from
wild type and mutant mice and these cells are either stimulated (S) or unstimulated (U). RNA
from the treated cells is then extracted and hybridized to a microarray. We will assume for
simplicity that the arrays are single-color arrays such as Affymetrix. Consider the following
targets frame:

FileName Strain Treatment
File1 WT U
File2 WT S
File3 Mu U
File4 Mu S
File5 Mu S
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The two experimental dimensions or factors here are Strain and Treatment. Strain specifies
the genotype of the mouse from which the cells are extracted and Treatment specifies whether
the cells are stimulated or not. All four combinations of Strain and Treatment are observed,
so this is a factorial design. It will be convenient for us to collect the Strain/Treatment
combinations into one vector as follows:

> TS <- paste(targets$Strain, targets$Treatment, sep=".")
> TS

[1] "WT.U" "WT.S" "Mu.U" "Mu.S" "Mu.S"

It is especially important with a factorial design to decide what are the comparisons of
interest. We will assume here that the experimenter is interested in

1. which genes respond to stimulation in wild-type cells,

2. which genes respond to stimulation in mutant cells, and

3. which genes respond differently in mutant compared to wild-type cells.

as these are the questions which are most usually relevant in a molecular biology context.
The first of these questions relates to the WT.S vs WT.U comparison and the second to Mu.S vs
Mu.U. The third relates to the difference of differences, i.e., (Mu.S-Mu.U)-(WT.S-WT.U), which
is called the interaction term.

We describe first a simple way to analyse this experiment using limma commands in a
similar way to that in which two-sample designs were analyzed. Then we will go on to describe
the more classical statistical approaches using factorial model formulas. All the approaches
considered are equivalent and yield identical bottom-line results. The most basic approach is
to fit a model with a coefficient for each of the four factor combinations and then to extract
the comparisons of interest as contrasts:

> TS <- factor(TS, levels=c("WT.U","WT.S","Mu.U","Mu.S"))
> design <- model.matrix(~0+TS)
> colnames(design) <- levels(TS)
> fit <- lmFit(eset, design)

This fits a model with four coefficients corresponding to WT.U, WT.S, Mu.U and Mu.S respectively.
Our three contrasts of interest can be extracted by

> cont.matrix <- makeContrasts(
+ WT.SvsU=WT.S-WT.U,
+ Mu.SvsU=Mu.S-Mu.U,
+ Diff=(Mu.S-Mu.U)-(WT.S-WT.U),
+ levels=design)
> fit2 <- contrasts.fit(fit, cont.matrix)
> fit2 <- eBayes(fit2)

We can use topTable() to look at lists of differentially expressed genes for each of three
contrasts, or else
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> results <- decideTests(fit2)
> vennDiagram(results)

to look at all three contrasts simultaneously.
The analysis of factorial designs has a long history in statistics and a system of factorial

model formulas has been developed to facilitate the analysis of complex designs. It is important
to understand though that the above three molecular biology questions do not correspond to
any of the usual parametrizations used in statistics for factorial designs. Suppose for example
that we proceed in the usual statistical way,

> Strain <- factor(targets$Strain, levels=c("WT","Mu"))
> Treatment <- factor(targets$Treatment, levels=c("U","S"))
> design <- model.matrix(~Strain*Treatment)

This creates a design matrix which defines four coefficients with the following interpretations:

Coefficient Comparison Interpretation
Intercept WT.U Baseline level of unstimulated WT
StrainMu Mu.U-WT.U Difference between unstimulated strains
TreatmentS WT.S-WT.U Stimulation effect for WT
StrainMu:TreatmentS (Mu.S-Mu.U)-(WT.S-WT.U) Interaction

This is called the treatment-contrast parametrization. Notice that one of our comparisons of
interest, Mu.S-Mu.U, is not represented and instead the comparison Mu.U-WT.U, which might
not be of direct interest, is included. We need to use contrasts to extract all the comparisons
of interest:

> fit <- lmFit(eset, design)
> cont.matrix <- cbind(WT.SvsU=c(0,0,1,0),Mu.SvsU=c(0,0,1,1),Diff=c(0,0,0,1))
> fit2 <- contrasts.fit(fit, cont.matrix)
> fit2 <- eBayes(fit2)

This extracts the WT stimulation effect as the third coefficient and the interaction as the
fourth coefficient. The mutant stimulation effect is extracted as the sum of the third and
fourth coefficients of the original model. This analysis yields exactly the same results as the
previous analysis.

An even more classical statistical approach to the factorial experiment would be to use the
sum to zero parametrization. In R this is achieved by

> contrasts(Strain) <- contr.sum(2)
> contrasts(Treatment) <- contr.sum(2)
> design <- model.matrix(~Strain*Treatment)

This defines four coefficients with the following interpretations:

Coefficient Comparison Interpretation
Intercept (WT.U+WT.S+Mu.U+Mu.S)/4 Grand mean
Strain1 (WT.U+WT.S-Mu.U-Mu.S)/4 Strain main effect
Treatment1 (WT.U-WT.S+Mu.U-Mu.S)/4 Treatment main effect
Strain1:Treatment1 (WT.U-WT.S-Mu.U+Mu.S)/4 Interaction
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This parametrization has many appealing mathematical properties and is the classical para-
metrization used for factorial designs in much experimental design theory. However it defines
only one coefficient which is directly of interest to us, namely the interaction. Our three
contrasts of interest could be extracted using

> fit <- lmFit(eset, design)
> cont.matrix <- cbind(WT.SvsU=c(0,0,-2,-2),Mu.SvsU=c(0,0,-2,2),Diff=c(0,0,0,4))
> fit2 <- contrasts.fit(fit, cont.matrix)
> fit2 <- eBayes(fit2)

The results will be identical to those for the previous two approaches.
The three approaches described here for the 2 × 2 factorial problem are equivalent and

differ only in the parametrization chosen for the linear model. The three fitted model objects
fit will differ only in the coefficients and associated components. The residual standard
deviations fit$sigma, residual degrees of freedom fit$df.residual and all components of
fit2 will be identical for the three approaches. Since the three approaches are equivalent,
users are free to choose whichever one is most convenient or intuitive.

8.8 Time Course Experiments

Time course experiments are those in which RNA is extracted at several time points after the
onset of some treatment or stimulation. Simple time course experiments are similar to exper-
iments with several groups covered in Section 8.6. Here we consider a two-way experiment in
which time course profiles are to be compared for two genotypes. Consider the targets frame

FileName Target
File1 wt.0hr
File2 wt.0hr
File3 wt.6hr
File4 wt.24hr
File5 mu.0hr
File6 mu.0hr
File7 mu.6hr
File8 mu.24hr

The targets are RNA samples collected from wild-type and mutant animals at 0, 6 and 24
hour time points. This can be viewed as a factorial experiment but a simpler approach is to
use the group-mean parametrization.

> lev <- c("wt.0hr","wt.6hr","wt.24hr","mu.0hr","mu.6hr","mu.24hr")
> f <- factor(targets$Target, levels=lev)
> design <- model.matrix(~0+f)
> colnames(design) <- lev
> fit <- lmFit(eset, design)

Which genes respond at either the 6 hour or 24 hour times in the wild-type? We can find
these by extracting the contrasts between the wild-type times.

46



> cont.wt <- makeContrasts(
+ "wt.6hr-wt.0hr",
+ "wt.24hr-wt.6hr",
+ levels=design)
> fit2 <- contrasts.fit(fit, cont.wt)
> fit2 <- eBayes(fit2)

Choose genes so that the expected false discovery rate is less than 5%.

> selected.wt <- p.adjust(fit2$F.p.value, method="BH") < 0.05

Any two contrasts between the three times would give the same result. The same gene list
would be obtained had "wt.24hr-wt.0hr" been used in place of "wt.24hr-wt.6hr" for example.

Which genes respond in the mutant?

> cont.mu <- makeContrasts(
+ "mu.6hr-mu.0hr",
+ "mu.24hr-wt.6hr",
+ levels=design)
> fit2 <- contrasts.fit(fit, cont.mu)
> fit2 <- eBayes(fit2)
> selected.mu <- p.adjust(fit2$F.p.value, method="BH") < 0.05

Which genes respond differently in the mutant relative to the wild-type?

> cont.dif <- makeContrasts(
+ Dif6hr =(mu.6hr-mu.0hr)-(wt.6hr-wt.0hr),
+ Dif24hr=(mu.24hr-mu.6hr)-(wt.24hr-wt.6hr),
+ levels=design)
> fit2 <- contrasts.fit(fit, cont.dif)
> fit2 <- eBayes(fit2)
> selected.dif <- p.adjust(fit2$F.p.value, method="BH") < 0.05

The method of analysis described in this section was used for a six-point time course
experiment on histone deacetylase inhibitors [13].
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Chapter 9

Separate Channel Analysis of
Two-Color Data

Consider an experiment comparing young and old animals for both both wild-type and mutant
genotypes.

FileName Cy3 Cy5
File1 wt.young wt.old
File2 wt.old wt.young
File3 mu.young mu.old
File4 mu.old mu.young

Each of the arrays in this experiment makes a direct comparison between young and old RNA
targets. There are no arrays which compare wild-type and mutant animals. This is an example
of an unconnected design in that there are no arrays linking the wild-type and mutant targets.
It is not possible to make comparisons between wild-type and mutant animals on the basis of
log-ratios alone. So to do this it is necessary to analyse the red and green channels intensities
separately, i.e., to analyze log-intensities instead of log-ratios. It is possible to do this using
a mixed model representation which treats each spot as a randomized block [26, 18]. Limma
implements mixed model methods for separate channel analysis which make use of shrinkage
methods to ensure stable and reliable inference with small numbers of arrays [18]. Limma also
provides between-array normalization to prepare for separate channel analysis, for example

> MA <- normalizeBetweenArrays(MA, method="Aquantile")

scales the intensities so that A-values have the same distribution across arrays.
The first step in the differential expression analysis is to convert the targets frame to be

channel rather than array orientated.

> targets2 <- targetsA2C(targets)
> targets2

channel.col FileName Target
File1.1 1 File1 wt.young
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File1.2 2 File1 wt.old
File2.1 1 File2 wt.old
File2.2 2 File2 wt.young
File3.1 1 File3 mu.young
File3.2 2 File3 mu.old
File4.1 1 File4 mu.old
File4.2 2 File4 mu.young

The following code produces a design matrix with eight rows and four columns:

> u <- unique(targets2$Target)
> f <- factor(targets2$Target, levels=u)
> design <- model.matrix(~0+f)
> colnames(design) <- u

Inference proceeds as for within-array replicate spots except that the correlation to be es-
timated is that between the two channels for the same spot rather than between replicate
spots.

> corfit <- intraspotCorrelation(MA, design)
> fit <- lmscFit(MA, design, correlation=corfit$consensus)

Subsequent steps proceed as for log-ratio analyses. For example if we want to campare wild-
type young to mutant young animals, we could extract this contrast by

> cont.matrix <- makeContrasts("mu.young-wt.young",levels=design)
> fit2 <- contrasts.fit(fit, cont.matrix)
> fit2 <- eBayes(fit2)
> topTable(fit2, adjust="BH")
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Chapter 10

Statistics for Differential Expression

10.1 Output from eBayes

A number of summary statistics are computed by the eBayes() function for each gene and
each contrast. The M-value (M) is the contrast estimate. For example, if the contrast compares
two treatment conditions, the M-value is the log2-fold-change between those two conditions.
The A-value (A) is the the mean log-expression level for that gene across all channels and all
arrays in the linear model fit. Note that the A-value is the mean log-expression over all arrays
in the experiment, even if only a smaller number of arrays are involved in the contrast of
interest. The moderated t-statistic (t) is the ratio of the M-value to its standard error. This
has the same interpretation as an ordinary t-statistic except that the standard errors have
been moderated across genes, i.e., shrunk towards a common value [21]. This has the effect of
borrowing information from the ensemble of genes to aid with inference about each individual
gene. The ordinary t-statistics are not recommended, but they can be recovered by

> tstat.ord <- fit$coef / fit$stdev.unscaled / fit$sigma

after fitting a linear model. The ordinary t-statistic is on fit$df.residual degrees of freedom
while the moderated t-statistic is on fit$df.residual+fit$df.prior degrees of freedom. The
p-value (p-value) is obtained from the distribution of the moderated t-statistic.

The B-statistic (lods or B) is the log-odds that that gene is differentially expressed. Sup-
pose for example that B=1.5. The odds of differential expression is exp(1.5)=4.48, i.e,
about four and a half to one. The probability that the gene is differentially expressed is
4.48/(1+4.48)=0.82, i.e., the probability is about 82% that this gene is differentially ex-
pressed. A B-statistic of zero corresponds to a 50-50 chance that the gene is differentially
expressed. The B-statistic is automatically adjusted for multiple testing by assuming that 1%
of the genes, or some other percentage specified by the user, are expected to be differentially
expressed. If there are no missing values in your data, then the moderated t and B statistics
will rank the genes in exactly the same order. Even you do have spot weights or missing data,
the p-values and B-statistics will usually provide a very similar ranking of the genes.

Please keep in mind that the moderated t-statistic p-values and the B-statistic probabil-
ities depend on various sorts of mathematical assumptions which are never exactly true for
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microarray data. The B-statistics also depend on a prior guess for the proportion of differ-
entially expressed genes. Therefore they are intended to be taken as a guide rather than
as a strict measure of the probability of differential expression. Of the three statistics, the
moderated-t, the associated p-value and the B-statistics, we usually base our gene selections
on the p-value. All three measures are closely related, but the moderated-t and its p-value do
not require a prior guess for the number of differentially expressed genes.

The above mentioned statistics are computed for every contrast for each gene. The
eBayes() function computes one more useful statistic. The moderated F-statistic (F) com-
bines the t-statistics for all the contrasts into an overall test of significance for that gene.
The moderated F-statistic tests whether any of the contrasts are non-zero for that gene, i.e.,
whether that gene is differentially expressed on any contrast. The moderated-F has numerator
degrees of freedom equal to the number of contrasts and denominator degrees of freedom the
same as the moderated-t. Its p-value is stored as fit$F.p.value. It is similar to the ordinary
F-statistic from analysis of variance except that the denominator mean squares are moderated
across genes.

In a complex experiment with many contrasts, it may be desirable to select genes firstly on
the basis of their moderated F -statistics, and subsequently to decide which of the individual
contrasts are significant for the selected genes. This cuts down on the number of tests which
need to be conducted and therefore on the amount of adjustment for multiple testing. The
function decideTests() with method="nestedF" is able to conduct such tests.

10.2 Adjusting for Multiple Testing

The p-values computed by eBayes() are not adjusted for multiple testing. Such adjustment
is done by the functions topTable() and decideTests(). The functions give access to the
methods implemented in the R function p.adjust(), notably to Holm’s step-down Bonferroni
method (adjust="holm") and to Benjamini and Hochberg’s (1995) step-up method for con-
trolling the false discovery rate (adjust="BH"). Benjamini and Hochberg’s method is the most
popular in the microarray context. The approach adopted by p.adjust() and by limma is to
implement the adjustment methods through adjusted p-values. The meaning of the adjusted
p-value is as follows. If you wish to control the false discovery rate to be less than a certain
value q, say 0.05, then select as differentially expressed all those genes which have adjusted
p-value less than q. This procedure is equivalent to the procedure of Benjamini and Hochberg
(1995), although that procedure is not formulated in terms of adjusted p-values in the original
paper.

Note that Benjamini and Hochberg’s method assumes that the p-values are independent
across probes, whereas they are likely to be somewhat dependent as a result of being based on
observations made on the same set of arrays. Reiner et al [14] have argued that Benjamini and
Hochberg’s method does continue to control the false discovery rate for a range of dependence
structures including positive dependence.

It may be found in some cases that none of the adjusted p-values are small even though
many of the raw p-values seem highly significant. If none of the raw p-value are less than 1/G,
where G is the number of genes included in the fit, then all of the adjusted p-values will the
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equal to 1. (if fit is an MArrayLM object, then G is given by nrow(fit).) This is true for any
of the adjustment methods except for adjust="none". Since 1/G is about the expected size
of the smallest p-values given purely random variation and uniform p-values, this means that
there is no overall evidence of differential expression. If G is large this may be true even if
many of the raw p-values would be highly significant taken as individual values.
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Chapter 11

Case Studies

11.1 Swirl Zebrafish: A Single-Sample Experiment

In this section we consider a case study in which two RNA sources are compared directly on a
set of replicate or dye-swap arrays. The case study includes reading in the data, data display
and exploration, as well as normalization and differential expression analysis. The analysis of
differential expression is analogous to a classical one-sample test of location for each gene.

In this example we assume that the data is provided as a GAL file called fish.gal and
raw SPOT output files and that these files are in the current working directory. The data
used for this case study can be downloaded from http://bioinf.wehi.edu.au/limmaGUI/

DataSets.html.

> dir()

[1] "fish.gal" "swirl.1.spot" "swirl.2.spot" "swirl.3.spot" "swirl.4.spot"
[6] "SwirlSample.txt"

Background. The experiment was carried out using zebrafish as a model organism to study
the early development in vertebrates. Swirl is a point mutant in the BMP2 gene that affects
the dorsal/ventral body axis. The main goal of the Swirl experiment is to identify genes with
altered expression in the Swirl mutant compared to wild-type zebrafish.

The hybridizations. Two sets of dye-swap experiments were performed making a total of
four replicate hybridizations. Each of the arrays compares RNA from swirl fish with RNA
from normal (“wild type”) fish. The experimenters have prepared a tab-delimited targets file
called SwirlSamples.txt which describes the four hybridizations:

> library(limma)
> targets <- readTargets("SwirlSample.txt")
> targets

SlideNumber FileName Cy3 Cy5 Date
swirl.1 81 swirl.1.spot swirl wild type 2001/9/20
swirl.2 82 swirl.2.spot wild type swirl 2001/9/20
swirl.3 93 swirl.3.spot swirl wild type 2001/11/8
swirl.4 94 swirl.4.spot wild type swirl 2001/11/8
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We see that slide numbers 81, 82, 93 and 94 were used to make the arrays. On slides 81 and
93, swirl RNA was labelled with green (Cy3) dye and wild type RNA was labelled with red
(Cy5) dye. On slides 82 and 94, the labelling was the other way around.

Each of the four hybridized arrays was scanned on an Axon scanner to produce a TIFF
image, which was then processed using the image analysis software SPOT. The data from the
arrays are stored in the four output files listed under FileName. Now we read the intensity
data into an RGList object in R. The default for SPOT output is that Rmean and Gmean are
used as foreground intensities and morphR and morphG are used as background intensities:

> RG <- read.maimages(targets$FileName, source="spot")
Read swirl.1.spot
Read swirl.2.spot
Read swirl.3.spot
Read swirl.4.spot
> RG
An object of class "RGList"
$R

swirl.1 swirl.2 swirl.3 swirl.4
[1,] 19538.470 16138.720 2895.1600 14054.5400
[2,] 23619.820 17247.670 2976.6230 20112.2600
[3,] 21579.950 17317.150 2735.6190 12945.8500
[4,] 8905.143 6794.381 318.9524 524.0476
[5,] 8676.095 6043.542 780.6667 304.6190
8443 more rows ...

$G
swirl.1 swirl.2 swirl.3 swirl.4

[1,] 22028.260 19278.770 2727.5600 19930.6500
[2,] 25613.200 21438.960 2787.0330 25426.5800
[3,] 22652.390 20386.470 2419.8810 16225.9500
[4,] 8929.286 6677.619 383.2381 786.9048
[5,] 8746.476 6576.292 901.0000 468.0476
8443 more rows ...

$Rb
swirl.1 swirl.2 swirl.3 swirl.4

[1,] 174 136 82 48
[2,] 174 133 82 48
[3,] 174 133 76 48
[4,] 163 105 61 48
[5,] 140 105 61 49
8443 more rows ...

$Gb
swirl.1 swirl.2 swirl.3 swirl.4

[1,] 182 175 86 97
[2,] 171 183 86 85
[3,] 153 183 86 85
[4,] 153 142 71 87
[5,] 153 142 71 87
8443 more rows ...
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The arrays. The microarrays used in this experiment were printed with 8448 probes (spots),
including 768 control spots. The array printer uses a print head with a 4x4 arrangement of
print-tips and so the microarrays are partitioned into a 4x4 grid of tip groups. Each grid
consists of 22x24 spots that were printed with a single print-tip. The gene name associated
with each spot is recorded in a GenePix array list (GAL) file:

> RG$genes <- readGAL("fish.gal")
> RG$genes[1:30,]

Block Row Column ID Name
1 1 1 1 control geno1
2 1 1 2 control geno2
3 1 1 3 control geno3
4 1 1 4 control 3XSSC
5 1 1 5 control 3XSSC
6 1 1 6 control EST1
7 1 1 7 control geno1
8 1 1 8 control geno2
9 1 1 9 control geno3
10 1 1 10 control 3XSSC
11 1 1 11 control 3XSSC
12 1 1 12 control 3XSSC
13 1 1 13 control EST2
14 1 1 14 control EST3
15 1 1 15 control EST4
16 1 1 16 control 3XSSC
17 1 1 17 control Actin
18 1 1 18 control Actin
19 1 1 19 control 3XSSC
20 1 1 20 control 3XSSC
21 1 1 21 control 3XSSC
22 1 1 22 control 3XSSC
23 1 1 23 control Actin
24 1 1 24 control Actin
25 1 2 1 control ath1
26 1 2 2 control Cad-1
27 1 2 3 control DeltaB
28 1 2 4 control Dlx4
29 1 2 5 control ephrinA4
30 1 2 6 control FGF8

Because we are using SPOT output, the 4x4x22x24 print layout also needs to be set. The
easiest way to do this is to infer it from the GAL file:

> RG$printer <- getLayout(RG$genes)

Image plots. It is interesting to look at the variation of background values over the array.
Consider image plots of the red and green background for the first array:

> imageplot(log2(RG$Rb[,1]), RG$printer, low="white", high="red")
> imageplot(log2(RG$Gb[,1]), RG$printer, low="white", high="green")
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Image plot of the un-normalized log-ratios or M-values for the first array:

> MA <- normalizeWithinArrays(RG, method="none")
> imageplot(MA$M[,1], RG$printer, zlim=c(-3,3))
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The imageplot function lies the slide on its side, so the first print-tip group is bottom left
in this plot. We can see a red streak across the middle two grids of the 3rd row caused by
a scratch or dust on the array. Spots which are affected by this artefact will have suspect
M-values. The streak also shows up as darker regions in the background plots.

MA-plots. An MA-plot plots the log-ratio of R vs G against the overall intensity of each
spot. The log-ratio is represented by the M-value, M = log2(R) − log2(G), and the overall
intensity by the A-value, A = (log2(R)+log2(G))/2. Here is the MA-plot of the un-normalized
values for the first array:

> plotMA(MA)

The red streak seen on the image plot can be seen as a line of spots in the upper right of
this plot. Now we plot the individual MA-plots for each of the print-tip groups on this array,
together with the loess curves which will be used for normalization:
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> plotPrintTipLoess(MA)

Normalization. Print-tip loess normalization:

> MA <- normalizeWithinArrays(RG)
> plotPrintTipLoess(MA)

We have normalized the M-values with each array. A further question is whether normalization
is required between the arrays. The following plot shows overall boxplots of the M-values for
the four arrays.

> boxplot(MA$M~col(MA$M),names=colnames(MA$M))
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There is evidence that the different arrays have different spreads of M-values, so we will
scale normalize between the arrays. (Note this is not done routinely for all two-color data
sets. It should only be done when there is good evidence of a scale difference.)

> MA <- normalizeBetweenArrays(MA,method="scale")
> boxplot(MA$M~col(MA$M),names=colnames(MA$M))

Linear model. Now estimate the average M-value for each gene. We do this by fitting a
simple linear model for each gene. The negative numbers in the design matrix indicate the
dye-swaps.
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> design <- c(-1,1,-1,1)
> fit <- lmFit(MA,design)
> fit
An object of class "MArrayLM"
$coefficients
[1] -0.3943421 -0.3656843 -0.3912506 -0.2505729 -0.3432590
8443 more rows ...

$rank
[1] 1

$assign
NULL

$qr
$qr

[,1]
[1,] 2.0
[2,] -0.5
[3,] 0.5
[4,] -0.5

$qraux
[1] 1.5

$pivot
[1] 1

$tol
[1] 1e-07

$rank
[1] 1

attr(,"class")
[1] "qr"

$df.residual
[1] 3 3 3 3 3
8443 more elements ...

$sigma
[1] 0.3805154 0.4047829 0.4672451 0.3206071 0.2838043
8443 more elements ...

$cov.coefficients
[,1]

[1,] 0.25

$stdev.unscaled
[1] 0.5 0.5 0.5 0.5 0.5
8443 more rows ...
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$pivot
[1] 1

$method
[1] "ls"

$design
[,1]

[1,] -1
[2,] 1
[3,] -1
[4,] 1

$genes
Block Row Column ID Name

1 1 1 1 control geno1
2 1 1 2 control geno2
3 1 1 3 control geno3
4 1 1 4 control 3XSSC
5 1 1 5 control 3XSSC
8443 more rows ...

$Amean
[1] 13.51784 13.72765 13.48607 10.89367 10.97615
8443 more elements ...

In the above fit object, coefficients is the average M-value for each gene and sigma is the
sample standard deviations for each gene. Ordinary t-statistics for comparing mutant to wt
could be computed by

> ordinary.t <- fit$coef / fit$stdev.unscaled / fit$sigma

We prefer though to use empirical Bayes moderated t-statistics which are computed below.
Now create an MA-plot of the average M and A-values for each gene.

> plotMA(fit)
> abline(0,0,col="blue")
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Empirical Bayes analysis. We will now go on and compute empirical Bayes statistics for
differential expression. The moderated t-statistics use sample standard deviations which have
been shrunk towards a pooled standard deviation value.

> fit <- eBayes(fit)
> qqt(fit$t,df=fit$df.prior+fit$df.residual,pch=16,cex=0.2)
> abline(0,1)

Visually there seems to be plenty of genes which are differentially expressed. We will obtain
a summary table of some key statistics for the top genes.

62



> options(digits=3)
> topTable(fit,number=30,adjust="BH")

Block Row Column ID Name M A t P.Value B
3721 8 2 1 control BMP2 -2.21 12.1 -21.0 0.000333 8.02
1609 4 2 1 control BMP2 -2.30 13.1 -20.3 0.000333 7.84
3723 8 2 3 control Dlx3 -2.18 13.3 -20.0 0.000333 7.77
1611 4 2 3 control Dlx3 -2.18 13.5 -19.6 0.000333 7.68
8295 16 16 15 fb94h06 20-L12 1.27 12.0 14.0 0.001993 5.81
7036 14 8 4 fb40h07 7-D14 1.35 13.8 13.5 0.001993 5.57
515 1 22 11 fc22a09 27-E17 1.27 13.2 13.4 0.001993 5.52
5075 10 14 11 fb85f09 18-G18 1.28 14.4 13.3 0.001993 5.51
7307 14 19 11 fc10h09 24-H18 1.20 13.4 13.2 0.001993 5.43
319 1 14 7 fb85a01 18-E1 -1.29 12.5 -13.0 0.001993 5.36
2961 6 14 9 fb85d05 18-F10 -2.69 10.3 -13.0 0.001993 5.35
4032 8 14 24 fb87d12 18-N24 1.27 14.2 12.8 0.001993 5.25
6903 14 2 15 control Vox -1.26 13.4 -12.8 0.001993 5.23
4546 9 14 10 fb85e07 18-G13 1.23 14.2 12.7 0.001993 5.21
683 2 7 11 fb37b09 6-E18 1.31 13.3 12.4 0.002087 5.06
1697 4 5 17 fb26b10 3-I20 1.09 13.3 12.3 0.002087 4.99
7491 15 5 3 fb24g06 3-D11 1.33 13.6 12.3 0.002087 4.99
4188 8 21 12 fc18d12 26-F24 -1.25 12.1 -12.2 0.002122 4.93
4380 9 7 12 fb37e11 6-G21 1.23 14.0 12.0 0.002133 4.84
3726 8 2 6 control fli-1 -1.32 10.3 -11.9 0.002133 4.80
2679 6 2 15 control Vox -1.25 13.4 -11.8 0.002133 4.75
2151 5 2 15 control vent -1.40 12.7 -11.7 0.002133 4.67
7602 15 9 18 fb50g12 9-L23 1.16 14.0 11.7 0.002133 4.66
5931 12 6 3 fb32f06 5-C12 -1.10 13.0 -11.7 0.002133 4.66
3790 8 4 22 fb23d08 2-N16 1.16 12.5 11.6 0.002144 4.61
7542 15 7 6 fb36g12 6-D23 1.12 13.5 11.0 0.002900 4.29
4263 9 2 15 control vent -1.41 12.7 -10.8 0.003160 4.18
6375 13 2 15 control vent -1.37 12.5 -10.5 0.003829 3.96
157 1 7 13 fb38a01 6-I1 -1.82 10.8 -10.2 0.004124 3.81
1146 3 4 18 fb22a12 2-I23 1.05 13.7 10.2 0.004124 3.78

The top gene is BMP2 which is significantly down-regulated in the Swirl zebrafish, as it should
be because the Swirl fish are mutant in this gene. Other positive controls also appear in the
top 30 genes in terms.

In the table, t is the empirical Bayes moderated t-statistic, the corresponding P-values
have been adjusted to control the false discovery rate and B is the empirical Bayes log odds
of differential expression.

> plotMA(fit)
> ord <- order(fit$lods,decreasing=TRUE)
> top30 <- ord[1:30]
> text(fit$Amean[top30],fit$coef[top30],labels=fit$genes[top30,"Name"],cex=0.8,col="blue")

63



11.2 ApoAI Knockout Data: A Two-Sample Experi-

ment

In this section we consider a case study where two RNA sources are compared through a
common reference RNA. The analysis of the log-ratios involves a two-sample comparison of
means for each gene.

In this example we assume that the data is available as an RGList in the data file
ApoAI.RData. The data used for this case study can be downloaded from http://bioinf.

wehi.edu.au/limmaGUI/DataSets.html.

Background. The data is from a study of lipid metabolism by [3]. The apolipoprotein AI
(ApoAI) gene is known to play a pivotal role in high density lipoprotein (HDL) metabolism.
Mice which have the ApoAI gene knocked out have very low HDL cholesterol levels. The
purpose of this experiment is to determine how ApoAI deficiency affects the action of other
genes in the liver, with the idea that this will help determine the molecular pathways through
which ApoAI operates.

Hybridizations. The experiment compared 8 ApoAI knockout mice with 8 normal C57BL/6
(”black six”) mice, the control mice. For each of these 16 mice, target mRNA was obtained
from liver tissue and labelled using a Cy5 dye. The RNA from each mouse was hybridized to
a separate microarray. Common reference RNA was labelled with Cy3 dye and used for all
the arrays. The reference RNA was obtained by pooling RNA extracted from the 8 control
mice.

Number of arrays Red Green
8 Normal “black six” mice Pooled reference
8 ApoAI knockout Pooled reference

64



This is an example of a single comparison experiment using a common reference. The fact
that the comparison is made by way of a common reference rather than directly as for the
swirl experiment makes this, for each gene, a two-sample rather than a single-sample setup.

> load("ApoAI.RData")
> objects()
[1] "RG"
> names(RG)
[1] "R" "G" "Rb" "Gb" "printer" "genes" "targets"
> RG$targets

FileName Cy3 Cy5
c1 a1koc1.spot Pool C57BL/6
c2 a1koc2.spot Pool C57BL/6
c3 a1koc3.spot Pool C57BL/6
c4 a1koc4.spot Pool C57BL/6
c5 a1koc5.spot Pool C57BL/6
c6 a1koc6.spot Pool C57BL/6
c7 a1koc7.spot Pool C57BL/6
c8 a1koc8.spot Pool C57BL/6
k1 a1kok1.spot Pool ApoAI-/-
k2 a1kok2.spot Pool ApoAI-/-
k3 a1kok3.spot Pool ApoAI-/-
k4 a1kok4.spot Pool ApoAI-/-
k5 a1kok5.spot Pool ApoAI-/-
k6 a1kok6.spot Pool ApoAI-/-
k7 a1kok7.spot Pool ApoAI-/-
k8 a1kok8.spot Pool ApoAI-/-
> MA <- normalizeWithinArrays(RG)
> cols <- MA$targets$Cy5
> cols[cols=="C57BL/6"] <- "blue"
> cols[cols=="ApoAI-/-"] <- "yellow"
> boxplot(MA$M~col(MA$M),names=rownames(MA$targets),col=cols,xlab="Mouse",ylab="M-values")

Since the common reference here is a pool of the control mice, we expect to see more differences
from the pool for the knock-out mice than for the control mice. In terms of the above plot,
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this should translate into a wider range of M-values for the knock-out mice arrays than for
the control arrays, and we do see this. Since the different arrays are not expected to have the
same range of M-values, between-array scale normalization of the M-values is not appropriate
here.

Now we can go on to estimate the fold change between the two groups. In this case the
design matrix has two columns. The coefficient for the second column estimates the parameter
of interest, the log-ratio between knockout and control mice.

> design <- cbind("Control-Ref"=1,"KO-Control"=MA$targets$Cy5=="ApoAI-/-")
> design

Control-Ref KO-Control
[1,] 1 0
[2,] 1 0
[3,] 1 0
[4,] 1 0
[5,] 1 0
[6,] 1 0
[7,] 1 0
[8,] 1 0
[9,] 1 1
[10,] 1 1
[11,] 1 1
[12,] 1 1
[13,] 1 1
[14,] 1 1
[15,] 1 1
[16,] 1 1
> fit <- lmFit(MA, design)
> fit$coef[1:5,]

Control-Ref KO-Control
[1,] -0.6595 0.6393
[2,] 0.2294 0.6552
[3,] -0.2518 0.3342
[4,] -0.0517 0.0405
[5,] -0.2501 0.2230
> fit <- eBayes(fit)
> options(digits=3)

Normally at this point one would just type

> topTable(fit,coef=2)

However, the gene annotation is a bit wide for the printed page, so we will tell codetopTable()
to show just one column of the annotation information:

> topTable(fit,coef=2,number=15,genelist=fit$genes$NAME)
ProbeID M A t P.Value B

2149 ApoAI,lipid-Img -3.166 12.47 -23.98 2.98e-11 14.939
540 EST,HighlysimilartoA -3.049 12.28 -12.97 4.93e-07 10.825
5356 CATECHOLO-METHYLTRAN -1.848 12.93 -12.44 6.42e-07 10.457
4139 EST,WeaklysimilartoC -1.027 12.61 -11.75 1.21e-06 9.928
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1739 ApoCIII,lipid-Img -0.933 13.74 -9.83 1.57e-05 8.192
2537 ESTs,Highlysimilarto -1.010 13.63 -9.01 4.21e-05 7.307
1496 est -0.977 12.23 -9.00 4.21e-05 7.292
4941 similartoyeaststerol -0.955 13.29 -7.44 5.59e-04 5.314
947 EST,WeaklysimilartoF -0.571 10.54 -4.55 1.77e-01 0.563
5604 -0.366 12.71 -3.96 5.27e-01 -0.558
4140 APXL2,5q-Img -0.420 9.79 -3.93 5.27e-01 -0.621
6073 estrogenrec 0.421 9.79 3.91 5.27e-01 -0.654
1337 psoriasis-associated -0.838 11.66 -3.89 5.27e-01 -0.683
954 Caspase7,heart-Img -0.302 12.14 -3.85 5.29e-01 -0.765
563 FATTYACID-BINDINGPRO -0.637 11.62 -3.81 5.29e-01 -0.837

Notice that the top gene is ApoAI itself which is heavily down-regulated. Theoretically the
M-value should be minus infinity for ApoAI because it is the knockout gene. Several of the
other genes are closely related. The top eight genes here were confirmed by independent assay
subsequent to the microarray experiment to be differentially expressed in the knockout versus
the control line.

> volcanoplot(fit,coef=2,highlight=8,names=fit$genes$NAME,main="KO vs Control")

11.3 Ecoli Lrp Data: Affymetrix Data with Two Tar-

gets

The data are from experiments reported in [8] and are available from the www site http:

//visitor.ics.uci.edu/genex/cybert/tutorial/index.html. The data is also available
from the ecoliLeucine data package available from the Bioconductor www site under ”Exper-
imental Data”. Hung et al [8] state that
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The purpose of the work presented here is to identify the network of genes that are
differentially regulated by the global E. coli regulatory protein, leucine-responsive
regulatory protein (Lrp), during steady state growth in a glucose supplemented
minimal salts medium. Lrp is a DNA-binding protein that has been reported to
affect the expression of approximately 55 genes.

Gene expression in two E. coli bacteria strains, labelled lrp+ and lrp-, were compared using
eight Affymetrix ecoli chips, four chips each for lrp+ and lrp-.

The following code assumes that the data files for the eight chips are in your current
working directory.

> dir()
[1] "Ecoli.CDF" "nolrp_1.CEL" "nolrp_2.CEL"
[4] "nolrp_3.CEL" "nolrp_4.CEL" "wt_1.CEL"
[7] "wt_2.CEL" "wt_3.CEL" "wt_4.CEL"

The data is read and normalized using the affy package. The package ecolicdf must
also be installed, otherwise the rma() function will attempt to download and install it for
you—without giving you to opportunity to veto the download.

> library(limma)
> library(affy)
Welcome to Bioconductor

Vignettes contain introductory material. To view,
simply type: openVignette()
For details on reading vignettes, see
the openVignette help page.

> Data <- ReadAffy()
> eset <- rma(Data)
Background correcting
Normalizing
Calculating Expression
> pData(eset)

sample
nolrp_1.CEL 1
nolrp_2.CEL 2
nolrp_3.CEL 3
nolrp_4.CEL 4
wt_1.CEL 5
wt_2.CEL 6
wt_3.CEL 7
wt_4.CEL 8

Now we consider differential expression between the lrp+ and lrp- strains.

> strain <- c("lrp-","lrp-","lrp-","lrp-","lrp+","lrp+","lrp+","lrp+")
> design <- model.matrix(~factor(strain))
> colnames(design) <- c("lrp-","lrp+vs-")
> design
lrp- lrp+vs-

1 1 0
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2 1 0
3 1 0
4 1 0
5 1 1
6 1 1
7 1 1
8 1 1
attr(,"assign")
[1] 0 1
attr(,"contrasts")
attr(,"contrasts")$"factor(strain)"
[1] "contr.treatment"

The first coefficient measures log2-expression of each gene in the lrp- strain. The second
coefficient measures the log2-fold change of lrp+ over lrp-, i.e., the log-fold change induced by
lrp.

> fit <- lmFit(eset, design)
> fit <- eBayes(fit)
> options(digits=2)
> topTable(fit, coef=2, n=40, adjust="BH")

ProbeSetID M A t P.Value B
4282 IG_821_1300838_1300922_fwd_st -3.32 12.4 -23.1 5.3e-05 8.017
5365 serA_b2913_st 2.78 12.2 15.8 6.0e-04 6.603
1389 gltD_b3213_st 3.03 10.9 13.3 1.6e-03 5.779
4625 lrp_b0889_st 2.30 9.3 11.4 4.0e-03 4.911
1388 gltB_b3212_st 3.24 10.1 11.1 4.0e-03 4.766
4609 livK_b3458_st 2.35 9.9 10.8 4.0e-03 4.593
4901 oppB_b1244_st -2.91 10.7 -10.6 4.0e-03 4.504
4903 oppD_b1246_st -1.94 10.4 -10.5 4.0e-03 4.434
5413 sodA_b3908_st 1.50 10.3 9.7 6.5e-03 3.958
4900 oppA_b1243_st -2.98 13.0 -9.1 9.2e-03 3.601
5217 rmf_b0953_st -2.71 13.6 -9.0 9.3e-03 3.474
7300 ytfK_b4217_st -2.64 11.1 -8.9 9.3e-03 3.437
5007 pntA_b1603_st 1.58 10.1 8.3 1.4e-02 3.019
4281 IG_820_1298469_1299205_fwd_st -2.45 10.7 -8.1 1.6e-02 2.843
4491 ilvI_b0077_st 0.95 10.0 7.4 2.9e-02 2.226
5448 stpA_b2669_st 1.79 10.0 7.4 2.9e-02 2.210
611 b2343_st -2.12 10.8 -7.1 3.4e-02 2.028
5930 ybfA_b0699_st -0.91 10.5 -7.0 3.5e-02 1.932
1435 grxB_b1064_st -0.91 9.8 -6.9 3.8e-02 1.810
4634 lysU_b4129_st -3.30 9.3 -6.9 3.9e-02 1.758
4829 ndk_b2518_st 1.07 11.1 6.7 4.3e-02 1.616
2309 IG_1643_2642304_2642452_rev_st 0.83 9.6 6.7 4.3e-02 1.570
4902 oppC_b1245_st -2.15 10.7 -6.3 5.9e-02 1.238
4490 ilvH_b0078_st 1.11 9.9 5.9 8.8e-02 0.820
1178 fimA_b4314_st 3.40 11.7 5.9 8.8e-02 0.743
6224 ydgR_b1634_st -2.35 9.8 -5.8 8.8e-02 0.722
4904 oppF_b1247_st -1.46 9.9 -5.8 8.8e-02 0.720
792 b3914_st -0.77 9.5 -5.7 1.0e-01 0.565
5008 pntB_b1602_st 1.47 12.8 5.6 1.0e-01 0.496
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4610 livM_b3456_st 1.04 8.5 5.5 1.1e-01 0.376
5097 ptsG_b1101_st 1.16 12.2 5.5 1.1e-01 0.352
4886 nupC_b2393_st 0.79 9.6 5.5 1.1e-01 0.333
4898 ompT_b0565_st 2.67 10.5 5.4 1.2e-01 0.218
5482 tdh_b3616_st -1.61 10.5 -5.3 1.3e-01 0.092
1927 IG_13_14080_14167_fwd_st -0.55 8.4 -5.3 1.3e-01 0.076
6320 yeeF_b2014_st 0.88 9.9 5.3 1.3e-01 0.065
196 atpG_b3733_st 0.60 12.5 5.2 1.4e-01 -0.033
954 cydB_b0734_st -0.76 11.0 -5.0 1.8e-01 -0.272
1186 fimI_b4315_st 1.15 8.3 5.0 1.8e-01 -0.298
4013 IG_58_107475_107629_fwd_st -0.49 10.4 -4.9 2.0e-01 -0.407

The column M gives the log2-fold change while the column A gives the average log2-intensity
for the probe-set. Positive M-values mean that the gene is up-regulated in lrp+, negative
values mean that it is repressed.

It is interesting to compare this table with Tables III and IV in [8]. Note that the top-
ranked gene is an intergenic region (IG) tRNA gene. The knock-out gene itself is in position
four. Many of the genes in the above table, including the ser, glt, liv, opp, lys, ilv and fim
families, are known targets of lrp.

11.4 Estrogen Data: A 2x2 Factorial Experiment with

Affymetrix Arrays

This data is from the estrogen package on Bioconductor. A subset of the data is also analysed
in the factDesign package vignette. To repeat this case study you will need to have the R
packages affy, estrogen and hgu95av2cdf installed.

The data gives results from a 2x2 factorial experiment on MCF7 breast cancer cells using
Affymetrix HGU95av2 arrays. The factors in this experiment were estrogen (present or absent)
and length of exposure (10 or 48 hours). The aim of the study is the identify genes which
respond to estrogen and to classify these into early and late responders. Genes which respond
early are putative direct-target genes while those which respond late are probably downstream
targets in the molecular pathway.

First load the required packages:

> library(limma)
> library(affy)
Welcome to Bioconductor

Vignettes contain introductory material. To view,
simply type: openVignette()
For details on reading vignettes, see
the openVignette help page.

> library(hgu95av2cdf)

The data files are contained in the extdata directory of the estrogen package:

> datadir <- file.path(.find.package("estrogen"),"extdata")
> dir(datadir)
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[1] "00Index" "bad.cel" "high10-1.cel" "high10-2.cel" "high48-1.cel"
[6] "high48-2.cel" "low10-1.cel" "low10-2.cel" "low48-1.cel" "low48-2.cel"
[11] "phenoData.txt"

The targets file is called phenoData.txt. We see there are two arrays for each experimental
condition, giving a total of 8 arrays.

> targets <- readTargets("phenoData.txt",path=datadir,sep="",row.names="filename")
> targets

filename estrogen time.h
low10-1 low10-1.cel absent 10
low10-2 low10-2.cel absent 10
high10-1 high10-1.cel present 10
high10-2 high10-2.cel present 10
low48-1 low48-1.cel absent 48
low48-2 low48-2.cel absent 48
high48-1 high48-1.cel present 48
high48-2 high48-2.cel present 48

Now read the cel files into an AffyBatch object and normalize using the rma() function
from the affy package:

> ab <- ReadAffy(filenames=targets$filename, celfile.path=datadir)
> eset <- rma(ab)
Background correcting
Normalizing
Calculating Expression

There are many ways to construct a design matrix for this experiment. Given that we are
interested in the early and late estrogen responders, we can choose a parametrization which
includes these two contrasts.

> treatments <- factor(c(1,1,2,2,3,3,4,4),labels=c("e10","E10","e48","E48"))
> contrasts(treatments) <- cbind(Time=c(0,0,1,1),E10=c(0,1,0,0),E48=c(0,0,0,1))
> design <- model.matrix(~treatments)
> colnames(design) <- c("Intercept","Time","E10","E48")

The second coefficient picks up the effect of time in the absence of estrogen. The third
and fourth coefficients estimate the log2-fold change for estrogen at 10 hours and 48 hours
respectively.

> fit <- lmFit(eset,design)

We are only interested in the estrogen effects, so we choose a contrast matrix which picks
these two coefficients out:

> cont.matrix <- cbind(E10=c(0,0,1,0),E48=c(0,0,0,1))
> fit2 <- contrasts.fit(fit, cont.matrix)
> fit2 <- eBayes(fit2)
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We can examine which genes respond to estrogen at either time using the moderated F-
statistics on 2 degrees of freedom. The moderated F p-value is stored in the component
fit2$F.p.value.

What p-value cutoff should be used? One way to decide which changes are significant for
each gene would be to use Benjamini and Hochberg’s method to control the false discovery
rate across all the genes and both tests:

> results <- decideTests(fit2, method="global")

Another method would be to adjust the F-test p-values rather than the t-test p-values:

> results <- decideTests(fit2, method="nestedF")

Here we use a more conservative method which depends far less on distributional assumptions,
which is to make use of control and spike-in probe-sets which theoretically should not be
differentially-expressed. The smallest p-value amongst these contols turns out to be about
0.00014:

> i <- grep("AFFX",geneNames(eset))
> summary(fit2$F.p.value[i])

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0001391 0.1727000 0.3562000 0.4206000 0.6825000 0.9925000

So a cutoff p-value of 0.0001, say, would conservatively avoid selecting any of the control
probe-sets as differentially expressed:

> results <- classifyTestsF(fit2, p.value=0.0001)
> summary(results)

E10 E48
-1 40 76
0 12469 12410
1 116 139

> table(E10=results[,1],E48=results[,2])

E48
E10 -1 0 1
-1 29 11 0
0 47 12370 52
1 0 29 87

> vennDiagram(results,include="up")
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> vennDiagram(results,include="down")

We see that 87 genes were up regulated at both 10 and 48 hours, 29 only at 10 hours and 52
only at 48 hours. Also, 29 genes were down-regulated throughout, 11 only at 10 hours and 47
only at 48 hours. No genes were up at one time and down at the other.

topTable gives a detailed look at individual genes. The leading genes are clearly significant,
even using the default p-value adjustment method, which is the highly conservative Holm’s
method.

> options(digits=3)
> topTable(fit2,coef="E10",n=20)

ID M A t P.Value B
9735 39642_at 2.94 7.88 23.7 5.99e-05 9.97
12472 910_at 3.11 9.66 23.6 6.26e-05 9.94
1814 31798_at 2.80 12.12 16.4 1.29e-03 7.98
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11509 41400_at 2.38 10.04 16.2 1.41e-03 7.92
10214 40117_at 2.56 9.68 15.7 1.86e-03 7.70
953 1854_at 2.51 8.53 15.2 2.46e-03 7.49
9848 39755_at 1.68 12.13 15.1 2.59e-03 7.45
922 1824_s_at 1.91 9.24 14.9 2.86e-03 7.37
140 1126_s_at 1.78 6.88 13.8 5.20e-03 6.89
580 1536_at 2.66 5.94 13.3 7.30e-03 6.61
12542 981_at 1.82 7.78 13.1 8.14e-03 6.52
3283 33252_at 1.74 8.00 12.6 1.12e-02 6.25
546 1505_at 2.40 8.76 12.5 1.20e-02 6.19
4405 34363_at -1.75 5.55 -12.2 1.44e-02 6.03
985 1884_s_at 2.80 9.03 12.1 1.59e-02 5.95
6194 36134_at 2.49 8.28 11.8 1.90e-02 5.79
7557 37485_at 1.61 6.67 11.4 2.50e-02 5.55
1244 239_at 1.57 11.25 10.4 5.14e-02 4.90
8195 38116_at 2.32 9.51 10.4 5.16e-02 4.90
10634 40533_at 1.26 8.47 10.4 5.31e-02 4.87

> topTable(fit2,coef="E48",n=20)

ID M A t P.Value B
12472 910_at 3.86 9.66 29.2 1.04e-05 11.61
1814 31798_at 3.60 12.12 21.1 1.62e-04 9.89
953 1854_at 3.34 8.53 20.2 2.29e-04 9.64
8195 38116_at 3.76 9.51 16.9 1.02e-03 8.48
8143 38065_at 2.99 9.10 16.2 1.42e-03 8.21
9848 39755_at 1.77 12.13 15.8 1.72e-03 8.05
642 1592_at 2.30 8.31 15.8 1.76e-03 8.03
11509 41400_at 2.24 10.04 15.3 2.29e-03 7.81
3766 33730_at -2.04 8.57 -15.1 2.48e-03 7.74
732 1651_at 2.97 10.50 14.8 3.02e-03 7.57
8495 38414_at 2.02 9.46 14.6 3.36e-03 7.48
1049 1943_at 2.19 7.60 14.0 4.69e-03 7.18
10214 40117_at 2.28 9.68 14.0 4.79e-03 7.16
10634 40533_at 1.64 8.47 13.5 6.24e-03 6.93
9735 39642_at 1.61 7.88 13.0 8.46e-03 6.65
4898 34851_at 1.96 9.96 12.8 9.47e-03 6.55
922 1824_s_at 1.64 9.24 12.8 1.00e-02 6.50
6053 35995_at 2.76 8.87 12.7 1.05e-02 6.46
12455 893_at 1.54 10.95 12.7 1.06e-02 6.45
10175 40079_at -2.41 8.23 -12.6 1.09e-02 6.42

11.5 Weaver Mutant Data: A 2x2 Factorial Experiment

with Two-Color Data

This case study considers a more involved analysis in which the sources of RNA have a factorial
structure.

Background. This is a case study examining the development of certain neurons in wild-type
and weaver mutant mice from [5]. The weaver mutant affects cerebellar granule neurons, the
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most numerous cell-type in the central nervous system. Weaver mutant mice are characterized
by a weaving gait. Granule cells are generated in the first postnatal week in the external
granule layer of the cerebellum. In normal mice, the terminally differentiated granule cells
migrate to the internal granule layer but in mutant mice the cells die before doing so, meaning
that the mutant mice have strongly reduced numbers of cells in the internal granule layer.
The expression level of any gene which is specific to mature granule cells, or is expressed in
response to granule cell derived signals, is greatly reduced in the mutant mice.

Tissue dissection and RNA preparation. At each time point (P11 = 11 days postnatal
and P21 = 21 days postnatal) cerebella were isolated from two wild-type and two mutant
littermates and pooled for RNA isolation. RNA was then divided into aliquots and labelled
before hybridizing to the arrays. (This means that different hybridizations are biologically
related through using RNA from the same mice, although we will ignore this here. See Yang
and Speed (2002) for a detailed discussion of this issue in the context of this experiment.)

Hybridizations. There are four different treatment combinations, P11wt, P11mt, P21wt
and P21mt, which might think of as a 2x2 factorial structure. We consider ten arrays in
total. There are six arrays comparing the four different RNA sources to a common reference,
which was a pool of RNA from all the time points, and four arrays making direct comparisons
between the four treatment combinations.

First read in the data. We assume that the data is an directory called c:/Weaver. The
data used for this case study can be downloaded from http://bioinf.wehi.edu.au/limma/

data/weaver.zip. We first read in the targets frame, and then read the intensity data using
file names recorded in the targets file. The data was produced using SPOT image analysis
software and is stored in the subdirectory /spot. Notice that a spot quality weight function
as been set. For these arrays the median spot area is just over 50 pixels. The spot quality
function has been set so that any spot with an area less than 50 pixels will get reduced weight,
so that a hypothetical spot of zero area would get zero weight.

> library(limma)
> targets <- readTargets("targets.txt")
> targets

FileName Tissue Mouse Cy5 Cy3
cbmut.3 cbmut.3.spot Cerebellum Weaver P11wt Pool
cbmut.4 cbmut.4.spot Cerebellum Weaver P11mt Pool
cbmut.5 cbmut.5.spot Cerebellum Weaver P21mt Pool
cbmut.6 cbmut.6.spot Cerebellum Weaver P21wt Pool
cbmut.15 cbmut.15.spot Cerebellum Weaver P21wt Pool
cbmut.16 cbmut.16.spot Cerebellum Weaver P21mt Pool
cb.1 cb.1.spot Cerebellum Weaver P11wt P11mt
cb.2 cb.2.spot Cerebellum Weaver P11mt P21mt
cb.3 cb.3.spot Cerebellum Weaver P21mt P21wt
cb.4 cb.4.spot Cerebellum Weaver P21wt P11wt

> wtfun <- function(x) pmin(x$area/50, 1)
> RG <- read.maimages(targets$FileName, source = "spot", path = "spot", wt.fun = wtfun)
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Read spot/cbmut.3.spot
Read spot/cbmut.4.spot
Read spot/cbmut.5.spot
Read spot/cbmut.6.spot
Read spot/cbmut.15.spot
Read spot/cbmut.16.spot
Read spot/cb.1.spot
Read spot/cb.2.spot
Read spot/cb.3.spot
Read spot/cb.4.spot

The SPOT software does not store probe IDs in the output files, so we need to read in the
ID and annotation information separately. We also read in a spottypes file and set a range of
control spots.

> RG$genes <- read.delim("genelist.txt", header = TRUE, as.is = TRUE)
> RG$printer <- list(ngrid.r = 8, ngrid.c = 4, nspot.r = 25, nspot.c = 24)
> spottypes <- readSpotTypes("spottypes.txt")

Note for R 2.1.0 or 2.1.1. There is a bug in the read.table function of R 2.1 which
prevents readSpotTypes() from reading in the backslashes in the Name column of the file
spottypes.txt correctly. If you are reproducing this data example in R 2.1, you should insert
the commands

> spottypes$Name <- gsub("\\(","\\\\(",spottypes$Name)
> spottypes$Name <- gsub("\\)","\\\\)",spottypes$Name)

at this point as a work-around.

> spottypes

SpotType ID Name col cex
1 Riken * * black 0.2
2 Custom Control * black 1.0
3 Buffer Control 3x SSC yellow 1.0
4 CerEstTitration Control cer est \\(* lightblue 1.0
5 LysTitration Control Lys \\(* orange 1.0
6 PheTitration Control Phe \\(* orange 1.0
7 RikenTitration Control Riken est \\(* blue 1.0
8 ThrTitration Control Thr \\(* orange 1.0
9 18S Control 18S \\(0.15ug/ul\\) pink 1.0
10 GAPDH Control GAPDH \\(0.15 ug/ul\\) red 1.0
11 Lysine Control Lysine \\(0.2 ug/ul\\) magenta 1.0
12 Threonine Control Threonine \\(0.2ug/ul\\) lightgreen 1.0
13 Tubulin Control Tubulin \\(0.15 ug/ul\\) green 1.0

> RG$genes$Status <- controlStatus(spottypes, RG)

Matching patterns for: ID Name
Found 19200 Riken
Found 2304 Custom
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Found 710 Buffer
Found 192 CerEstTitration
Found 224 LysTitration
Found 260 PheTitration
Found 160 RikenTitration
Found 224 ThrTitration
Found 64 18S
Found 64 GAPDH
Found 32 Lysine
Found 32 Threonine
Found 64 Tubulin
Setting attributes: values col cex

> plotMA(RG,array=9,xlim=c(4,15.5))

Here Buffer is an obvious negative control while 18S, GAPDH, Lysine, Threonine and Tubulin
are single-gene positive controls, sometime called house-keeping genes. RikenTitration is a
titration series of a pool of the entire Riken library, and can be reasonably expected to be
non-differentially expressed. CerEstTitration is a titration of a pool of a cerebellum EST
library. This will show higher expression in later mutant tissues. The Lys, Phe and Thr
series are single-gene titration series which were not spike-in in this case and can be treated
as negative controls.

Now normalize the data. Because the Riken titration library, being based on a pool of a
large number of non-specific genes, should not be differentially expressed, we up-weight these
spots in the print-tip normalization step:

> w <- modifyWeights(RG$weights, RG$genes$Status, "RikenTitration", 2)
> MA <- normalizeWithinArrays(RG, weights = w)

Now fit a linear model to the data. Because of the composite design, with some common
reference arrays and some direct comparison arrays, the simplest method is to use a group-
mean parametrization with all RNA samples compared back to the Pool.
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> design <- modelMatrix(targets, ref = "Pool")

Found unique target names:
P11mt P11wt P21mt P21wt Pool

> design

P11mt P11wt P21mt P21wt
cbmut.3 0 1 0 0
cbmut.4 1 0 0 0
cbmut.5 0 0 1 0
cbmut.6 0 0 0 1
cbmut.15 0 0 0 1
cbmut.16 0 0 1 0
cb.1 -1 1 0 0
cb.2 1 0 -1 0
cb.3 0 0 1 -1
cb.4 0 -1 0 1

All the control spots are removed before fitting the linear model:

> isGene <- MA$genes$Status == "Riken"
> fit <- lmFit(MA[isGene, ], design)

We now extract all possible comparisons of interest as contrasts. We look for the mutant
vs wt comparisons at 11 and 21 days, the time effects for mutant and wt, and the interaction
terms:

> cont.matrix <- makeContrasts(
+ WT11.MT11=P11mt-P11wt,
+ WT21.MT21=P21mt-P21wt,
+ WT11.WT21=P21wt-P11wt,
+ MT11.MT21=P21mt-P11mt,
+ Int=(P21mt-P11mt)-(P21wt-P11wt),
+ levels=design)
> fit2 <- contrasts.fit(fit, cont.matrix)
> fit2 <- eBayes(fit2)

Adjustment for multiple testing, with Benjamini and Hochberg’s method applied to the F-test
p-values across genes with 5% false discovery rate, and nesting F-testing used within contrasts,
leads to the following:

> results <- decideTests(fit2, method = "nestedF")
> summary(results)

WT11.MT11 WT21.MT21 WT11.WT21 MT11.MT21 Int
-1 3 29 132 136 14
0 16884 16788 16653 16571 16846
1 9 79 111 189 36
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There are 187 genes up and 136 genes down in mutant at 21 days vs 11 days. There are 36
genes which respond more up in the mutant than the wt, and 14 genes which respond more
down in the mutant than the wt. A heatdiagram shows that the genes are mostly responding
in the same direction in the mutant and wt, but to different degrees:

> heatDiagram(results, fit2$coef, primary = "Int")
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11.6 Bob Mutant Data: Within-Array Replicate Spots

In this section we consider a case study in which all genes (ESTs and controls) are printed
more than once on the array. This means that there is both within-array and between-array
replication for each gene. The structure of the experiment is therefore essentially a randomized
block experiment for each gene. The approach taken here is to estimate a common correlation
for all the genes for between within-array duplicates. The theory behind the approach is
explained in [19]. This approach assumes that all genes are replicated the same number of
times on the array and that the spacing between the replicates is entirely regular.

In this example we assume that the data is available as an RG list.

Background. This data is from a study of transcription factors critical to B cell maturation
by Lynn Corcoran and Wendy Dietrich at the WEHI. Mice which have a targeted mutation in
the Bob (OBF-1) transcription factor display a number of abnormalities in the B lymphocyte
compartment of the immune system. Immature B cells that have emigrated from the bone
marrow fail to differentiate into full fledged B cells, resulting in a notable deficit of mature B
cells.

Arrays. Arrays were printed with expressed sequence tags (ESTs) from the National Institute
of Aging 15k mouse clone library, plus a range of positive, negative and calibration controls.
The arrays were printed using a 48 tip print head and 26x26 spots in each tip group. Data
from 24 of the tip groups are given here. Every gene (ESTs and controls) was printed twice
on each array.

Hybridizations. A retrovirus was used to add Bob back to a Bob deficient cell line. Two
RNA sources were compared using 2 dye-swap pairs of microarrays. One RNA source was
obtained from the Bob deficient cell line after the retrovirus was used to add GFP (”green
fluorescent protein”, a neutral protein). The other RNA source was obtained after adding
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both GFP and Bob protein. RNA from Bob+GFP was labelled with Cy5 in arrays 2 and 4,
and with Cy3 in arrays 1 and 4.

The data used for this case study can be downloaded from http://bioinf.wehi.edu.au/

limmaGUI/DataSets.html.

> objects()
[1] "design" "gal" "layout" "RG"
> design
[1] -1 1 -1 1
> gal[1:40,]

Library Name
1 Control cDNA1.500
2 Control cDNA1.500
3 Control Printing.buffer
4 Control Printing.buffer
5 Control Printing.buffer
6 Control Printing.buffer
7 Control Printing.buffer
8 Control Printing.buffer
9 Control cDNA1.500
10 Control cDNA1.500
11 Control Printing.buffer
12 Control Printing.buffer
13 Control Printing.buffer
14 Control Printing.buffer
15 Control Printing.buffer
16 Control Printing.buffer
17 Control cDNA1.500
18 Control cDNA1.500
19 Control Printing.buffer
20 Control Printing.buffer
21 Control Printing.buffer
22 Control Printing.buffer
23 Control Printing.buffer
24 Control Printing.buffer
25 Control cDNA1.500
26 Control cDNA1.500
27 NIA15k H31
28 NIA15k H31
29 NIA15k H32
30 NIA15k H32
31 NIA15k H33
32 NIA15k H33
33 NIA15k H34
34 NIA15k H34
35 NIA15k H35
36 NIA15k H35
37 NIA15k H36
38 NIA15k H36
39 NIA15k H37
40 NIA15k H37
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Although there are only four arrays, we have a total of eight spots for each gene, and
more for the controls. Naturally the two M-values obtained from duplicate spots on the same
array are highly correlated. The problem is how to make use of the duplicate spots in the
best way. The approach taken here is to estimate the spatial correlation between the adjacent
spots using REML and then to conduct the usual analysis of the arrays using generalized least
squares.

First normalize the data using print-tip loess regression.

> MA <- normalizeWithinArrays(RG,layout)

Now estimate the spatial correlation. We estimate a correlation term by REML for each
gene, and then take a trimmed mean on the atanh scale to estimate the overall correlation.
This command takes a lot of time, perhaps as much as an hour for a series of arrays.

> cor <- duplicateCorrelation(MA,design,ndups=2) # A slow computation!
> cor$consensus.correlation
[1] 0.571377
> boxplot(cor$all.correlations)

> fit <- lmFit(MA,design,ndups=2,correlation=0.571377)
> fit <- eBayes(fit)
> topTable(fit,n=30,adjust="BH")

Name M t P.Value B
1 H34599 0.4035865 13.053838 0.0004860773 7.995550
2 H31324 -0.5196599 -12.302094 0.0004860773 7.499712
3 H33309 0.4203320 12.089742 0.0004860773 7.352862
4 H3440 0.5678168 11.664229 0.0004860773 7.049065
5 H36795 0.4600335 11.608550 0.0004860773 7.008343
6 H3121 0.4408640 11.362917 0.0004860773 6.825927
7 H36999 0.3806754 11.276571 0.0004860773 6.760715
8 H3132 0.3699805 11.270201 0.0004860773 6.755881
9 H32838 1.6404839 11.213454 0.0004860773 6.712681
10 H36207 -0.3930972 -11.139510 0.0004860773 6.656013
11 H37168 0.3909476 10.839880 0.0005405097 6.421932
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12 H31831 -0.3738452 -10.706775 0.0005405097 6.315602
13 H32014 0.3630416 10.574797 0.0005405097 6.208714
14 H34471 -0.3532587 -10.496483 0.0005405097 6.144590
15 H37558 0.5319192 10.493157 0.0005405097 6.141856
16 H3126 0.3849980 10.467091 0.0005405097 6.120389
17 H34360 -0.3409371 -10.308779 0.0005852911 5.988745
18 H36794 0.4716704 10.145670 0.0006399135 5.850807
19 H3329 0.4125222 10.009042 0.0006660758 5.733424
20 H35017 0.4337911 9.935639 0.0006660758 5.669656
21 H32367 0.4092668 9.765338 0.0006660758 5.519781
22 H32678 0.4608290 9.763809 0.0006660758 5.518423
23 H31232 -0.3717084 -9.758581 0.0006660758 5.513778
24 H3111 0.3693533 9.745794 0.0006660758 5.502407
25 H34258 0.2991668 9.722656 0.0006660758 5.481790
26 H32159 0.4183633 9.702614 0.0006660758 5.463892
27 H33192 -0.4095032 -9.590227 0.0007130533 5.362809
28 H35961 -0.3624470 -9.508868 0.0007205823 5.288871
29 H36025 0.4265827 9.503974 0.0007205823 5.284403
30 H3416 0.3401763 9.316136 0.0008096722 5.111117

> volcanoplot(fit)
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Conventions

Where possible, limma tries to use the convention that class names are in upper CamelCase,
i.e., the first letter of each word is capitalized, while function names are in lower camelCase,
i.e., first word is lowercase. When periods appear in function names, the first word should be
an action while the second word is the name of a type of object on which the function acts.

Software Projects Using limma

The limma package is used as a building block or as the underlying computational engine
by a number of software projects designed to provide user-interfaces for microarray data
analysis including [6, 23, 24, 2], the KTH Package [17], and SKCC WebArray [27]. The LCB-
BASE project provides a limma plug-in for the BASE database [11]. The Stanford Microarray
Database http://genome-www5.stanford.edu calls out to limma for background correction
options.
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