
Introduction to gff3Plotter

Oleg Sklyar

April 25, 2006

1 Introduction

The package is designed to provide plotting routines for tiling array experi-
ments. Data of tiling array experiments is plotted alongside with a genomic
layout and the results of further selected experiments. The name of the pack-
age originates from the data file format used to represent tiling array data,
GFF version 3. However, the plotting routines are virtually independent
from routines for reading and parsing GFF3 files.

2 Installation and Start-up

The package was designed for Unix/Linux or MacOS platform and was tested
on such. However, it is written purely in R using only standard R packages.
Therefore, the package is likely to work on Windows as well. It is not com-
putationally extensive and should run on any modern hardware. Plotting
routines that ouput PNG and JPG graphic files may be used together with
the gd graphic library. In this case, the gd library itself and GDD R pack-
age must be installed before, which determine the platform dependence of
gff3Plotter.

Follow the standard installation procedure for R packages to install
gff3Plotter.

After installing the gff3Plotter and starting R, the package can be
loaded by issuing

> library("gff3Plotter")

3 Loading and Parsing GFF3 Files

Reading and parsing GFF3 files is performed by function read.gff of gff3Plotter.
It is assumed that files contain infromation about tiling array experiments

1



(coded as genomic_DNA in the column TYPE), however the function will work
even if this information is missing, The following example demonstrates the
usage:

> dataDir = system.file("extData", package = "gff3Plotter")

> gff3File = paste(dataDir, "test.gff3", sep = "/")

> data = read.gff(gff3File)

gffLoad# LOADING < /tmp/Rinst1551283428/gff3Plotter/extData/test.gff3 >
gffLoad# Removing Extra Data
gffLoad# Splitting Types
done
gffLoad# Splitting <gene> Attributes: Name-done; ID-done
gffLoad# Removing ATTRIBUTES Field From <gene>: done
gffLoad# Splitting <genomic_DNA> Attributes: expNames-done; scoreType-done; coeff-done; coeffType-done; sticky-done
gffLoad# Removing ATTRIBUTES Field From <genomic_DNA>: done
gffLoad# Splitting <expro> Attributes: expNames-done; scoreType-done; coeff-done; coeffType-done
gffLoad# Removing ATTRIBUTES Field From <expro>: done
gffLoad# Splitting <insitu> Attributes: anatomy-done; devStage-done
gffLoad# Removing ATTRIBUTES Field From <insitu>: done
gffLoad# Removing ATTRIBUTES Field From Other Types: exon-done; complete
gffLoad# Sorting START of genomic_DNA: complete
gffLoad# Removing <expro> Records matching no Genes - done
gffLoad# Updating <expro> START,END,STRAND Fields from <gene> - done
gffLoad# Splitting <expro> by <expName> - done
gffLoad# Removing <insitu> Records matching no Genes - done
gffLoad# Updating <insitu> START,END,STRAND Fields from <gene> - done
gffLoad# Splitting <genomic_DNA> by <expName> - done
gffLoad# LOAD COMPLETE

Further help on this function is available by typing ?read.gff in R
session after loding the package.

read.gff requires that a GFF3 file contains a header of the following
tab-separated structure: SEQ_ID SOURCE TYPE START END SCORE STRAND
PHASE ATTRIBUTES. All fields must be present. Comments are allowed on
top of the file. It is not necessary to have all possible types of information,
but read.gff will automatically search for the following definitions in the
TYPE field: gene, exon, insitu (in situ data for genes), regulatory_region,
genomic_DNA - (tiling array experiment data), and expro (data of further
experiments). Other types are ommitted and not parsed.

2



read.gff returns a list, elements of which are named by the above men-
tioned types. Apart from genomic_DNA and expro, which are further repre-
sented by lists, all other fields are data.frame-s. genomic_DNA and expro
are in turn lists of data.frame-s with elements named by experiment names.

The package contains two more functions to help in parsing and organ-
ising data from GFF3 files: getAttr and gffGetSubset defined as:

getAttr <- function (x, field, splitter = ";[[:space:]]?") gf-
fGetSubset <- function(data, range)

The latter one is used to subset data obtained by a call to read.gff
down to a given region of interest:

> xrange = c(50000, 1e+05)

> subdata = gffGetSubset(data, xrange)

The function getAttr was adapted from the tilingArray package by W.
Huber and is used to extract values of attributes from character vectors as
in the following example for attribute width:

> attributes = c("height= 25; width= 30; depth=40;", "depth=18;height= 21;width= 16",

+ "width= 0.45;height=-10;depth= 34")

> getAttr(attributes, "width")

[1] " 30" " 16" " 0.45"

4 Plotting Tiling Array Data on the Genomic Lay-
out

The package provides two routines to plot tiling array data, plot.gff and
plot.gff.toFile. Selfexplanatory, plot.gff.toFile outputs the plot into a file,
which can be either of a PNG or a JPG type, whereas plot.gff one outputs
the plot onto a standard device - screen. As any other plot, the standard
device can be changed prior to calls to this function.

plot.gff is defined as follows:
plot.gff <- function(x, xrange, coco.tresholds, expro.tresholds,

par.devstage, par.anatomy, h, nlevels = 8, coco.ramp = TRUE)
Detailed help on arguments can be found by issuing ?plot.gff in R ses-

sion after loading the package. Briefly, it requires the data structure, x to
be plotted (created for example by a call to read.gff), plotting range as in
the above example for gffGetSubset, named character vectors of tresholds

3



for tiling array (coco) and further experiments (names determine which ex-
periments and in which order are to be plotted and the tresholds define
coloring), character vectors listing development stages and anatomy to de-
fine gene coloring. Argument h is a numeric vector that defines proportions
of plot elements in vertical direction as well as distances between those. It
has a predefined value obtained by a call to def.h.

plot.gff.toFile has the following defition and requires all the same param-
eters as plot.gff (hidden in . . . in the function definition) in addition to those
that determine the parameters of the graphic file:

plot.gff.toFile <- function(x, file, type = "jpg", width = 1024,
height = 768, use.GDD = FALSE, ...)

Available types are ”jpg” and ”png”. Argument use.GDD determines if
gd library and GDD package are to be used for file output. Its default value is
false meaning that standard X11 or (standard Windows device) will be used
to generate file outputs. Setting this parameter to TRUE might be necessary
if this routine is called from the shell in older version or R: X11 was not
loaded if R was activated in the command line mode.

5 Further help

Start R session, load gff3Plotter and type ?gff3Plotter as well as ex-
ample(gff3Plotter).

6 Acknowledgements

Special thanks to Sophie Grosz for further development of the package during
her time at the EMBL, Heidelberg.

7 Under Development

Parts of the package modified by Sophie enabled creating image maps for
plots and coding for the integration of the package into a JavaServlet/JSP
web server in order to enable interactive data browsing. Because much of
the code was modified it requires extensive structuring and updating and
will be added to the released package shortly. Interfaces of existing functions
will not be changed (but extended by some ommittable parameters).

4


	Introduction
	Installation and Start-up
	Loading and Parsing GFF3 Files
	Plotting Tiling Array Data on the Genomic Layout
	Further help
	Acknowledgements
	Under Development

