
End-to-end analysis of cell-based screens: from raw

intensity readings to the annotated hit list

Michael Boutros, Ĺıgia Brás and Wolfgang Huber

March 27, 2006

Contents

1 Introduction 2

2 Reading the intensity data 2

3 The cellHTS class and reports 4

4 Annotating the plate results 4
4.1 Format of the plate configuration file 5

4.1.1 Multiple plate configurations 6
4.2 Format of the screen log file 6

5 Normalization and summarization of replicates 6
5.1 Alternative processing strategies 7

6 Annotation 8
6.1 Adding additional annotation from public databases 9

6.1.1 Installation . 9
6.1.2 Using biomaRt to annotate the target genes online . . 10

7 Report 12

8 Category analysis 14

9 Appendix: Data transformation 15

1

1 Introduction

This is a technical report that demonstrates the use of the cellHTS package.
It accompanies the paper Analysis of cell-based RNAi screens by Michael
Boutros, Ligia Bras and Wolfgang Huber. This report explains all the steps
necessary to run a complete analysis of a cell-based high-throughput screen
(HTS), from raw intensity readings to an annotated hit list.

This text has been produced as a reproducible document [5]. It contains
the actual computer instructions for the method it describes, and these in
turn produce all results, including the figures and tables that are shown
here. The computer instructions are given in the language R, thus, in order
to reproduce the computations shown here, you will need an installation of
R (version 2.2 or greater) together with the package cellHTS and some other
add-on packages.

To reproduce the computations shown here, you do not need to type
them or copy-paste them from the PDF file; rather, you can take the file
cellhts.Rnw in the doc/Rnw directory of the package, open it in a text editor,
run it using the R command Sweave, and modify it to your needs.

First, we load the package.

> library("cellHTS")

2 Reading the intensity data

We consider a cell-based screen that was conducted in microtiter plate for-
mat, where a library of double-stranded RNAs was used to target the cor-
responding genes in cultured Drosophila Kc167 cells [2]. Each of the wells
in the plates contains either a gene-specific probe, a control, or it can be
empty. The experiments were done in duplicate, and the viability of the
cells after treatment was recorded by a plate reader measuring luciferase
activity, which is indicative of ATP levels. Although this set of example
data corresponds to a single-channel screening assay, the cellHTS package
can also deal with cases where there are readings from more color channels,
corresponding to different reporters. Usually, the measurements from each
replicate and each color channel come in individual result files. The set of
available result files and the information about them (which plate, which
replicate, which channel) is contained in a spreadsheet, which we call the
plate list file. The first few lines of an example plate list file are shown in
Table 1.

2

Filename Plate Replicate
FT01-G01.txt 1 1
FT01-G02.txt 1 2
FT02-G01.txt 2 1
FT02-G02.txt 2 2
FT03-G01.txt 3 1

...

Table 1: Selected lines from the example plate list file Platelist.txt.

The first step of the analysis is to read the plate list file, to read all
the intensity files, and to assemble the data into a single R object that is
suitable for subsequent analyses. The main component of that object is one
big table with the intensity readings of all plates, channels, and replicates.
We demonstrate the R instructions for this step. First we define the path
where the input files can be found.

> experimentName = "KcViab"

> dataPath = system.file(experimentName, package = "cellHTS")

In this example, the input files are in the KcViab directory of the cellHTS
package. To read your own data, modify dataPath to point to the directory
where they reside. We show the names of 12 files from our example directory:

> dataPath

[1] "/home/ligia/R/Rpackages/cellHTS/KcViab"

> rev(dir(dataPath))[1:12]

[1] "Screenlog.txt" "Platelist.txt" "Plateconf.txt" "GeneIDs.txt"
[5] "FT57-G02.txt" "FT57-G01.txt" "FT56-G02.txt" "FT56-G01.txt"
[9] "FT55-G02.txt" "FT55-G01.txt" "FT54-G02.txt" "FT54-G01.txt"

and read the data into the object x

> x = readPlateData("Platelist.txt", name = experimentName, path = dataPath)

> x

cellHTS object of name 'KcViab'
57 plates with 384 wells, 2 replicates, 1 channel. State:
configured normalized scored annotated

FALSE FALSE FALSE FALSE

3

Batch Position Well Content
1 25 B01 neg
1 26 B02 pos
1 27 B03 sample
1 28 B04 sample
...

Table 2: Selected lines from the example plate configuration file Plate-
conf.txt.

3 The cellHTS class and reports

The basic data structure of the package is the class cellHTS. In the previous
section, we have created the object x, which is an instance of this class. All
subsequent analyses, such as normalization, gene selection and annotation,
will add their results into this object. Thus, the complete analysis project
is contained in this object, and a complete dataset can be shared with oth-
ers and stored for subsequent computational analyses in the form of such
an object. In addition, the package offers export functions for generating
human-readable reports, which consist of linked HTML pages with tables
and plots. The final scored hit list is written as a tab-delimited format
suitable for reading by spreadsheet programs.

To create a report, use the function writeReport. It will create a directory
of the name given by x$name in the working directory. Alternatively, the
argument outdir can be specified to direct the output to another directory.

> writeReport(x)

It can take a while to run this function, since it writes a large number of
graphics files. After this function has finished, the index page of the report
will be in the file KcViab/index.html, and you can view it by directing a
web browser to it.

> browseURL(file.path(out, "index.html"))

4 Annotating the plate results

The next step of the analysis is to annotate the measured data with infor-
mation on controls and to flag invalid measurements. The software expects
the information on the controls in a so-called plate configuration file (see
Section 4.1). This is a tab-delimited file with one row per well.

4

Filename Well Flag Comment
FT06-G01.txt A01 NA Contamination
FT06-G02.txt A01 NA Contamination
FT06-G01.txt A02 NA Contamination

...

Table 3: Selected lines from the example screen log file Screenlog.txt.

> confFile = file.path(dataPath, "Plateconf.txt")

Selected lines of this file are shown in Table 2. Individual measurements can
be flagged as invalid in the so-called screen log file (see Section 4.2).

> logFile = file.path(dataPath, "Screenlog.txt")

The first 5 lines of this file are shown in Table 3. The screen description
file contains a general description of the screen, its goal, the conditions
under which it was performed, references, and any other information that is
pertinent to the biological interpretation of the experiments.

> descripFile = file.path(dataPath, "Description.txt")

We now apply this information to the data object x.

> x = configure(x, confFile, logFile, descripFile)

Note that the function configure1 takes x, the result from Section 2, as an
argument, and we then overwrite x with the result of this function.

4.1 Format of the plate configuration file

The software expects this to be a rectangular table in a tabulator delimited
text file, with mandatory columns Batch, Position, Well, Content. The
Position column runs from 1 to the number of wells in the plate (in the
example, 384), and Well is the name of the corresponding well in letter-
number format (in this case, A01 to P24). The Content column can contain
one of the following: sample (for wells that contain genes of interest), pos
(for positive controls), neg (for negative controls), empty (for empty wells),
and other (for anything that does not fit into the four other categories).
Note that these annotations are used by the software in the normalization,

1More precisely, configure is a method for the S3 class cellHTS.

5

quality control, and gene selection calculations. Data from wells that are
annotated as empty are ignored, i. e. they are set to NA. Here we look at the
frequency of each well annotation in the example data:

> table(x$plateConf$Content)

neg other pos sample
1 2 1 380

4.1.1 Multiple plate configurations

Although it is good practice to use the same plate configuration for the whole
experiment, sometimes this does not work out, and there are different parts
of the experiment with different plate configurations. It is possible to specify
multiple plate configurations simply by appending them to each other in the
plate configuration file, and marking them with different numbers in the
column Batch.

Note that replicated experiments per plate have to use the same plate
configuration.

4.2 Format of the screen log file

The screen log file is a tabulator delimited file with mandatory columns
Filename, Well, Flag. In addition, it can contain arbitrary optional columns.
Each row corresponds to one flagged measurement, identified by the filename
and the well identifier. The type of flag is specified in the column Flag. Most
commonly, this will have the value “NA”, indicating that the measurement
should be discarded and regarded as missing.

5 Normalization and summarization of replicates

The function normalizePlateMedian adjusts for plate effects by dividing each
value in each plate by the median of values in the plate:

x′
ki =

xki

Mi
∀k, i (1)

Mi = median
m∈ samples

xmi (2)

where xki is the raw intensity for the k-th well in the i-th replicate file,
and x′

ki is the corresponding normalized intensity. The median is calculated
across the wells annotated as sample in the i-th result file. This is achieved
by calling

6

> x = normalizePlateMedian(x)

after which the normalized intensities are stored in the slot x$xnorm. This
is an array of the same size as x$xraw.

We can now summarize the replicates, calculating a single score for each
gene. One option is to take the minimum of the z-scores from the two
replicates:

zki = ±
x′

ki − µ̂

σ̂
(3)

zk = min
i

zki. (4)

Here µ̂ and σ̂ are estimators of location and scale of the distribution of
x′

ki. We use robust estimators, namely, median and median absolute devi-
ation (mad). As the values x′

ki were obtained using plate median normal-
ization (1), it holds that µ̂ = 1. The symbol ± indicates that we allow for
either plus or minus sign in equation (3); the minus sign can be useful in
the application to an inhibitor assay, where an effect results in a decrease
of the signal and we may want to see this represented by a large z-score.
Then, in Equation (4), the summary is taken over all replicates for probe
k. By using the minimun as the summary function, the analysis is particu-
larly conservative: all replicate values have to be high in order for zk to be
high. Depending on the intended stringency of the analysis, other plausible
choices of summary function are the mean and the maximum.

> x = summarizeReplicates(x, zscore = "-", summary = "min")

The resulting single z-score value per probe will be stored in the slot x$score.
Boxplots of the z-scores for the different types of probes are shown in Fig-
ure 1.

> ylim = quantile(x$score, c(0.001, 0.999), na.rm = TRUE)

> boxplot(x$score ~ x$wellAnno, col = "lightblue", outline = FALSE,

+ ylim = ylim)

5.1 Alternative processing strategies

The HTML quality report will consider the values in the slot x$xnorm for
the calculation of its quality metrics. In the example above, x$xnorm con-
tains the data after plate median normalization, but before calculation of
the z-scores and the multiplication by −1. The package cellHTS allows some

7

other sample neg pos

−
5

0
5

10

Figure 1: Boxplots of z-scores for the different types of probes.

flexibility with respect to these steps. We can already calculate the z-scores
and multiply by −1 in the function normalizePlateMedian, and then do the
summarization between replicates, by calling the function summarizeRepli-
cates without the argument zscore.

> xalt = normalizePlateMedian(x, zscore = "-")

> xalt = summarizeReplicates(xalt, summary = "min")

It is easy to define alternative normalization methods, for example, to adjust
for additional experimental biases besides the plate effect. You might want
to start by taking the source code of normalizePlateMedian as a template.

6 Annotation

Up to now, the assayed genes have been identified solely by the identifiers
of the plate and the well that contains the probe for them. The annotation
file contains additional annotation, such as the probe sequence, references
to the probe sequence in public databases, the gene name, gene ontology
annotation, and so forth. Mandatory columns of the annotation file are
Plate, Well, and GeneID, and it has one row for each well. The content of

8

Plate Well HfaID GeneID
1 A03 HFA00274 CG11371
1 A04 HFA00646 CG31671
1 A05 HFA00307 CG11376
1 A06 HFA00324 CG11723
...

Table 4: Selected lines from the example gene ID file GeneIDs.txt.

the GeneID column will be species- or project-specific. The first 5 lines of
the example file are shown in Table 4, where we have associated each probe
with CG-identifiers for the genes of Drosophila melanogaster.

> geneIDFile = file.path(dataPath, "GeneIDs.txt")

> x = annotate(x, geneIDFile)

6.1 Adding additional annotation from public databases

The package biomaRt can be used to obtain additional annotation from pub-
lic databases [3]. You will need version 1.5.3 or later of the biomaRt package.
This is currently (March 2006) in the development branch of Bioconductor
and will be in the release 1.8.

6.1.1 Installation

The installation of the biomaRt package can be a little bit tricky, since
it relies on the two packages RCurl and XML, which in turn rely on the
presence of the system libraries libcurl and libxml2 on your computer. If you
are installing the precompiled R packages (for example, this is what most
people do on Windows), then you need to make sure that the system libraries
on your computer are version-compatible with those on the computer where
the R packages were compiled, and that they are found. If you are installing
the R packages from source, then you need to make sure that the library
header files are available and that the headers as well as the actual library is
found by the compiler and linker. Please refer to the Writing R Extensions
manual and to the FAQ lists on www.r-project.org.

Naturally, before facing an extensive installation struggle, you will want
to explore the cellHTS package and see whether it is worthwhile. We have
made available the result of the annotation with biomaRt, described below,
as a precomputed R object:

9

> data("bdgpbiomart")

> x$geneAnno = bdgpbiomart

6.1.2 Using biomaRt to annotate the target genes online

The commands in this section are optional, you can move on to Section 7
if you do not have the biomaRt package or do not want to use it. In the
remainder of this section, we will demonstrate how to obtain the dataframe
bdgpbiomart by querying the online webservice BioMart and through it the
Ensembl genome annotation database [1].

> library("biomaRt")

By default, the biomaRt package will query the webservice at
http://www.ebi.ac.uk/biomart/martservice. Let’s check which BioMart databases
it covers:

> listMarts()

$biomart
[1] "dicty" "ensembl" "snp" "vega" "uniprot" "msd" "wormbase"

$version
[1] "DICTYBASE (NORTHWESTERN)" "ENSEMBL 37 (SANGER)"
[3] "SNP 37 (SANGER)" "VEGA 37 (SANGER)"
[5] "UNIPROT 4-5 (EBI)" "MSD 4 (EBI)"
[7] "WORMBASE CURRENT (CSHL)"

$host
[1] "www.dictybase.org" "www.biomart.org" "www.biomart.org"
[4] "www.biomart.org" "www.biomart.org" "www.biomart.org"
[7] "www.biomart.org"

In this example, we use the Ensembl database [1], from which we select the
D. melanogaster dataset.

> mart = useMart("ensembl")

> listDatasets(mart = mart)

dataset version
1 rnorvegicus_gene_ensembl RGSC3.4

10

2 scerevisiae_gene_ensembl SGD1
3 celegans_gene_ensembl CEL150
4 cintestinalis_gene_ensembl JGI2
5 ptroglodytes_gene_ensembl CHIMP1A
6 frubripes_gene_ensembl FUGU4
7 agambiae_gene_ensembl AgamP3
8 hsapiens_gene_ensembl NCBI35
9 ggallus_gene_ensembl WASHUC1
10 xtropicalis_gene_ensembl JGI4
11 drerio_gene_ensembl ZFISH5
12 tnigroviridis_gene_ensembl TETRAODON7
13 mmulatta_gene_ensembl MMUL_0_1
14 mdomestica_gene_ensembl BROADO2
15 amellifera_gene_ensembl AMEL2.0
16 dmelanogaster_gene_ensembl BDGP4
17 mmusculus_gene_ensembl NCBIM34
18 btaurus_gene_ensembl Btau_2.0
19 cfamiliaris_gene_ensembl BROADD1

> mart = useDataset("dmelanogaster_gene_ensembl", mart)

We can query the available gene attributes and filters for the selected dataset
using the following functions.

> attrs = listAttributes(mart)

> filts = listFilters(mart)

In the BioMart system [8], a filter is a property that can be used to select
a gene or a set of genes (like the “where” clause in an SQL query), and an
attribute is a property that can be queried (like the“select” clause in an SQL
query). We use the getBM function of the package biomaRt to obtain the
gene annotation from Ensembl.

> myGetBM = function(att) getBM(attributes = c("gene_stable_id",

+ att), filter = "gene_stable_id", values = unique(x$geneAnno$GeneID),

+ mart = mart)

For performance reasons, we split up our query in three subqueries, which
corresponds to different areas in the BioMart schema, and then assemble the
results together in R. Alternatively, it would also be possible to submit a sin-
gle query for all of the attributes, but then the result table will be enormous
due to the 1:many mapping especially from gene ID to GO categories [6].

11

> bm1 = myGetBM(c("chr_name", "chrom_start", "chrom_end", "description"))

> bm2 = myGetBM(c("flybase_name"))

> bm3 = myGetBM(c("go_id", "go_description"))

There are only a few CG-identifiers for which we were not able to obtain
chromosomal locations:

> unique(setdiff(x$geneAnno$GeneID, bm1$gene_stable_id))

[1] NA "CG33715" "CG33949" "CG32904" "CG33926" "CG33696" "CG33768"
[8] "CG33769" "CG33770" "CG33936" "CG33937" "CG33630" "CG33950" "CG33653"
[15] "CG33635" "CG33922" "CG33673" "CG33640" "CG33642" "CG33697" "CG33681"
[22] "CG33911" "CG33648" "CG33679" "CG33704" "CR33655" "CG33914" "CG33758"
[29] "CG33757" "CG33800" "CG33919" "CG33627" "CG33752" "CG33775" "CG33792"
[36] "CG33777" "CG33702" "CG33725" "CG33924" "CG33796" "CG33689" "CG33631"
[43] "CG33784" "CG33779" "CG33698" "CG33773" "CR33945" "CG33651" "CR33939"
[50] "CG33639"

Below, we add the results to the dataframe x$geneAnno. Since the tables
bm1, bm2, and bm3 contain zero, one or several rows for each gene ID, but in
x$geneAnno we want exactly one row per gene ID, the function oneRowPerId
does the somewhat tedious task of reformatting the tables: multiple entries
are collapsed into a single comma-separated string, and empty rows are
inserted where necessary.

> id = x$geneAnno$GeneID

> bmAll = cbind(oneRowPerId(bm1, id), oneRowPerId(bm2, id), oneRowPerId(bm3,

+ id))

This is indeed the same as we loaded previously in Section 6.1.1:

> identical(bdgpbiomart[, 5:11], bmAll)

[1] TRUE

7 Report

We have now completed the analysis tasks: the dataset has been read, con-
figured, normalized, scored, and annotated:

> x

12

cellHTS object of name 'KcViab'
57 plates with 384 wells, 2 replicates, 1 channel. State:
configured normalized scored annotated

TRUE TRUE TRUE TRUE

We can now save the data set to a file.

> save(x, file = paste(experimentName, ".rda", sep = ""), compress = TRUE)

The dataset can be loaded again for subsequent analysis, or passed on to oth-
ers. To produce a comprehensive report, we can call the function writeReport
again,

> writeReport(x, force = TRUE, plotPlateArgs = list(xrange = c(0.5,

+ 1.5)), imageScreenArgs = list(zrange = c(-2, 6.5), ar = 1))

and use a web browser to view the resulting report

> browseURL(file.path(x$name, "index.html"))

Now, the report contains a quality report for each plate, and also for the
whole screening assays. The experiment-wide report presents the Z ′-factor
determined for each experiment (replicate) using the positive and negative
controls [9], the boxplots with raw and normalized intensities for the different
plates, and the screen-wide plot with the z-scores in every well position of
each plate. The latter image plot can also be produced separately using the
function imageScreen given in the cellHTS package. This might be useful
if we want to select the best display for our data, namely, the aspect ratio
for the plot and/or the range of z-score values to be mapped into the color
scale. These can be passed to the function’s arguments ar and zrange,
respectively. For example,

> imageScreen(x, ar = 1, zrange = c(-3, 4))

It should be noted that the per-plate and per-experiment quality reports
are constructed based on the content of x$xnorm, if it is present in the x
object. Otherwise, it uses the content given in the slot x$xraw. In the case
of dual-channel experiments, the x$xnorm slot could also contain the ratio
between the intensities in two different channels, etc. The main point that
we want to highlight is that x$xnorm should contain the data that we want
to visualize in the HTML quality reports. On the other hand, x$score
should always contain the final list of scored probes (one value per probe).

13

At this point we are finished with the basic analysis of the screen. As
one example for how one could continue to further mine the screen results
for biologically relevant patterns, we demonstrate an application of category
analysis.

8 Category analysis

We would like to see whether there are Gene Ontology categories [6] overrep-
resented among the probes with a high score. For this we use the category
analysis from Robert Gentleman’s Category package [4]. Similar analyses
could be done for other categorizations, for example chromosome location,
pathway membership, or categorical phenotypes from other studies.

You will need version 1.3.2 or later of the Category package. This is
currently (March 2006) in the development branch of Bioconductor and will
be in the release 1.8.

> library("Category")

> stopifnot(package.version("Category") >= package_version("1.3.2"))

Now we can create the category matrix. This a matrix with one column for
each probe and one row for each category. The matrix element [i,j] is 1
if probe j belongs to the j-th category, and 0 if not.

> names(x$score) = x$geneAnno$GeneID

> sel = !is.na(x$score) & (!is.na(x$geneAnno$go_id))

> goids = strsplit(x$geneAnno$go_id[sel], ", ")

> genes = rep(x$geneAnno$GeneID[sel], listLen(goids))

> categs = cache("categs", cateGOry(genes, unlist(goids, use.names = FALSE)))

We will selected only those categories that contain at least 3 and no more
than 1000 genes.

> remGO = which(regexpr("^GO:", nodes(categs)) > 0)

> nrMem = listLen(edges(categs)[remGO])

> remGO = remGO[nrMem > 1000 | nrMem < 3]

> categs = subGraph(nodes(categs)[-remGO], categs)

As the statistic for the category analysis we use the z-score. After selecting
the subset of genes that actually have GO annotation,

> stats = x$score[sel & (names(x$score) %in% nodes(categs))]

we are ready to call the category summary functions:

14

n zmean p GOID Ontology description
119 2.1 1.8e-18 GO:0005840 CC ribosome
184 1.4 1.7e-17 GO:0030529 CC ribonucleoprotein complex
87 1.5 1.6e-09 GO:0005829 CC cytosol
45 2.6 7.5e-09 GO:0000502 CC proteasome complex (sensu Eukaryota)
19 3.7 2.4e-06 GO:0005838 CC proteasome regulatory particle (sensu Eu-

karyota)
24 1.9 0.00021 GO:0005839 CC proteasome core complex (sensu Eukary-

ota)
15 2.2 0.00046 GO:0015934 CC large ribosomal subunit

294 0.87 5.8e-17 GO:0006412 BP protein biosynthesis
336 0.71 7.8e-16 GO:0009059 BP macromolecule biosynthesis
129 1.9 6e-18 GO:0003735 MF structural constituent of ribosome
305 0.64 3.7e-12 GO:0005198 MF structural molecule activity
24 1.9 0.00021 GO:0004298 MF threonine endopeptidase activity
58 0.53 0.00068 GO:0008135 MF translation factor activity, nucleic acid

binding

Table 5: Top 13 Gene Ontology categories with respect to z-score.

> acMean = applyByCategory(stats, categs)

> acTtest = applyByCategory(stats, categs, FUN = function(v) t.test(v,

+ stats)$p.value)

> acNum = applyByCategory(stats, categs, FUN = length)

> isEnriched = (acTtest <= 0.001) & (acMean > 0.5)

A volcano plot of the − log10 of the p-value acTtest versus the per category
mean z-score acMean is shown in Figure 2. For a given category, the p-value
is calculated from the t-test against the null hypothesis that there is no
difference between the mean z-score of all probes and the mean z-score of
the probes in that category. To select the enriched categories (isEnriched),
we considered a significance level of 0.1% for the t-test, and a per category
mean z-score greater than 0.5. This led to the 13 categories marked in red
in Figure 2 are listed in Table 5.

9 Appendix: Data transformation

An obvious question is whether to do the statistical analyses on the orig-
inal intensity scale or on a transformed scale such as the logarithmic one.
Many statistical analysis methods, as well as visualizations work better if
(to sufficient approximation)

15

−2 0 1 2 3

0
5

10
15

zmean

−
lo

g 1
0 p

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 2: Volcano plot of the t-test p-values and the mean z-values of the cat-
egory analysis for Gene Ontology categories. The top categories are shown
in red.

� replicate values are normally distributed,

� the data are evenly distributed along their dynamic range,

� the variance is homogeneous along the dynamic range [7].

Figure 3 compares these properties for untransformed and log-transformed
normalized data, showing that the difference is small. Intuitively, this can
be explained by the fact that for small x,

log(1 + x) ≈ x

and that indeed the range of the untransformed data is mostly not far from
1. Hence, for the data examined here, the choice between original scale and
logarithmic scale is one of taste, rather than necessity.

> library("vsn")

> par(mfcol = c(3, 2))

> myPlots = function(z, ...) {

+ hist(z[, 1], 100, col = "lightblue", xlab = "", ...)

+ meanSdPlot(z, ylim = c(0, quantile(abs(z[, 2] - z[, 1]),

+ 0.95, na.rm = TRUE)), ...)

16

untransformed
F

re
qu

en
cy

0.5 1.0 1.5

0
50

0
10

00
20

00

0 5000 10000 15000 20000

0.
00

0.
04

0.
08

0.
12

untransformed

rank(mean)

sd

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

−4 −2 0 2 4

0.
5

1.
0

1.
5

untransformed

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s
log2

F
re

qu
en

cy

−4 −3 −2 −1 0

0
10

00
20

00
30

00
40

00

0 5000 10000 15000 20000

0.
00

0.
05

0.
10

0.
15

0.
20

log2

rank(mean)

sd

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

−4 −2 0 2 4

−
4

−
3

−
2

−
1

0

log2

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 3: Comparison between untransformed (left) and logarithmically
(base 2) transformed (right), normalized data. Upper: histogram of inten-
sity values of replicate 1. Middle: scatterplots of standard deviation versus
mean of the two replicates. Bottom: Normal quantile-quantile plots.

17

+ qqnorm(z[, 1], pch = ".", ...)

+ qqline(z[, 1], col = "blue")

+ }

> dv = matrix(x$xnorm, nrow = prod(dim(x$xnorm)[1:2]), ncol = dim(x$xnorm)[3])

> myPlots(dv, main = "untransformed")

> xlog = normalizePlateMedian(x, transform = log2)

> dvlog = matrix(xlog$xnorm, nrow = prod(dim(xlog$xnorm)[1:2]),

+ ncol = dim(xlog$xnorm)[3])

> myPlots(dvlog, main = "log2")

References

[1] E Birney, D Andrews, M Caccamo, Y Chen, L Clarke, G Coates, T Cox,
F Cunningham, V Curwen, T Cutts, T Down, R Durbin, X M Fernandez-
Suarez, P Flicek, S Graf, M Hammond, J Herrero, K Howe, V Iyer,
K Jekosch, A Kahari, A Kasprzyk, D Keefe, F Kokocinski, E Kulesha,
D London, I Longden, C Melsopp, P Meidl, B Overduin, A Parker,
G Proctor, A Prlic, M Rae, D Rios, S Redmond, M Schuster, I Sealy,
S Searle, J Severin, G Slater, D Smedley, J Smith, A Stabenau, J Stalker,
S Trevanion, A Ureta-Vidal, J Vogel, S White, C Woodwark, and T J P
Hubbard. Ensembl 2006. Nucleic Acids Res, 34(Database issue):556–561,
Jan 2006. 10

[2] Michael Boutros, Amy A Kiger, Susan Armknecht, Kim Kerr, Marc Hild,
Britta Koch, Stefan A Haas, Heidelberg Fly Array Consortium, Renato
Paro, and Norbert Perrimon. Genome-wide RNAi analysis of growth
and viability in Drosophila cells. Science, 303(5659):832–835, Feb 2004.
2

[3] Steffen Durinck, Yves Moreau, Arek Kasprzyk, Sean Davis, Bart
De Moor, Alvis Brazma, and Wolfgang Huber. BioMart and Biocon-
ductor: a powerful link between biological databases and microarray
data analysis. Bioinformatics, 21(16):3439–3440, Aug 2005. 9

[4] R. Gentleman. Category: Category Analysis, 2006. R package version
1.3.3. 14

[5] Robert Gentleman. Reproducible research: A bioinformatics case study.
Statistical Applications in Genetics and Molecular Biology, 3, 2004. 2

[6] M A Harris, J Clark, A Ireland, J Lomax, M Ashburner, R Foulger,
K Eilbeck, S Lewis, B Marshall, C Mungall, J Richter, G M Rubin,

18

J A Blake, C Bult, M Dolan, H Drabkin, J T Eppig, D P Hill, L Ni,
M Ringwald, R Balakrishnan, J M Cherry, K R Christie, M C Costanzo,
S S Dwight, S Engel, D G Fisk, J E Hirschman, E L Hong, R S Nash,
A Sethuraman, C L Theesfeld, D Botstein, K Dolinski, B Feierbach,
T Berardini, S Mundodi, S Y Rhee, R Apweiler, D Barrell, E Camon,
E Dimmer, V Lee, R Chisholm, P Gaudet, W Kibbe, R Kishore, E M
Schwarz, P Sternberg, M Gwinn, L Hannick, J Wortman, M Berriman,
V Wood, N de la Cruz, P Tonellato, P Jaiswal, T Seigfried, and R White.
The Gene Ontology (GO) database and informatics resource. Nucleic
Acids Res, 32(Database issue):258–261, Jan 2004. 11, 14

[7] Wolfgang Huber, Anja von Heydebreck, Holger Sültmann, Annemarie
Poustka, and Martin Vingron. Variance stabilization applied to microar-
ray data calibration and to the quantification of differential expression.
Bioinformatics, 18 Suppl. 1:S96–S104, 2002. 16

[8] Arek Kasprzyk, Damian Keefe, Damian Smedley, Darin London, William
Spooner, Craig Melsopp, Martin Hammond, Philippe Rocca-Serra, Tony
Cox, and Ewan Birney. EnsMart: a generic system for fast and flexible
access to biological data. Genome Res, 14(1):160–169, Jan 2004. 11

[9] JH Zhang, TD Chung, and KR Oldenburg. A Simple Statistical Param-
eter for Use in Evaluation and Validation of High Throughput Screening
Assays. J Biomol Screen, 4(2):67–73, 1999. 13

19

	Introduction
	Reading the intensity data
	The cellHTS class and reports
	Annotating the plate results
	Format of the plate configuration file
	Multiple plate configurations

	Format of the screen log file

	Normalization and summarization of replicates
	Alternative processing strategies

	Annotation
	Adding additional annotation from public databases
	Installation
	Using biomaRt to annotate the target genes online

	Report
	Category analysis
	Appendix: Data transformation

