1 Analysis of bead-level Bead Array data

There are two methods for describing the results of a BeadArray experiment.
Firstly, we can use bead-level data whereby the position and intensity of each
individual bead on an array is known. Bead summary data can also be used
whereby a summary intensity for each bead type on an array is given. The
summarised values for a particular bead type can then be compared between
different arrays within an experiment.

Whilst the beadarray package includes methods for processing data of both
kinds, bead summary data is far more widely available at the present time. Data
can be data obtained using either the BeadChip (6 or 8 arrays on a slide) or
SAM (arrays organised in 96 well plates) technologies. This document uses a
SAM experiment as an example although BeadChip can be read in the same
manner.

The purpose of this document is to give an outline of the R functions for
analysing bead-level data. Descriptions of how to read and analyse bead sum-
mary data are provided in a separate Vignette. Those who are familiar with the
R statistical language, and in particular the limma package, should be able to
adapt easily to our new methods of analysis. Wherever possible we used objects
that are similar to those used by limma. Example files to read bead-level data
are provided at

http://www.damtp.cam.ac.uk/user/jcm68/beadarray.html

See References for further reading on BeadArray technology. In particular,
the paper by Dunning et al Quality Control and Low-level Statistical Analysis of
Illumina Beadarrays, Revstat 4, 1-30, describes the analysis of bead-level data
in more detail than this Vignette.

1.1 Reading bead-level data

There are two sets of files that are required by our package in order to create
bead-level data.

e TIFF images - These are the raw images scanned directly from each indi-
vidual array on a 96-well SAM. These are provided by Illumina.

e csv files - These define the location and bead type of each individual bead
on a particular array on a 96-well SAM.

Before these files can be read into R, we first convert the TIFF files into
PGM files. This can be done be using the ImageMagick utility *. A batch file
is included with this library to convert automatically all the TIFF files in a
directory.

If the correct csv and pgm files are available we can read these data into R
using readBeadImages. This function requires a beadTargets object that can
be read directly from a beadTargets.txt file. This beadTargets object specifies
the filename of each image and csv file to be read.

In our example dataset we have two single-channel BeadArray hybridisations.
Since the arrays are hybridised with one target only (one-colour), we need only to
specify one image file for each array. The beadTargets.txt file, pgm and csv files

Lavailable from www.imagemagick.org - version 6.2.2 or later is required.

are provided at http://www.damtp.cam.ac.uk/user/jcm68/beadarray.html.
Once downloaded, these files can be read into R. The R working directory can be
set to the folder containing these files using the setwd function or the file menu
(GUI implementation only). Alternatively the path argument in readBeadIm-
ages can be set to the current directory. The commands to read the data into
R are then as follows:

> library(beadarray)
> beadTargets = readBeadTargets ()
> beadTargets

Imagel xyInfo SAMPLE
1 1269941 _R0O01_CO01_Grn.pgm 1269941_R001_C001.csv 6
2 1269941_R001_C002_Grn.pgm 1269941_R001_C002.csv 6

> BLData = readBeadImages (beadTargets)

Calculating foreground intensities for 1269941_R001_C001_Grn.pgm
Calculating background intensities.
Calculating foreground intensities for 1269941_R001_CO02_Grn.pgm
Calculating background intensities.

The default setting for readBeadImages is to recreate the foreground and
background intensities for each bead in the same way in which they are cal-
culated by Illumina. However, the use of sharpening and local background
correction are optional (see Dunning et al for description of sharpening and lo-
cal background correction). To create unsharpened bead intensities one would
use:

> BLData.ns = readBeadImages (beadTargets, sharpen = FALSE)

Calculating foreground intensities for 1269941_R001_CO01_Grn.pgm
Calculating background intensities.
Calculating foreground intensities for 1269941_R001_C002_Grn.pgm
Calculating background intensities.

Data which does not include the coordinates of bead centres may still be
read into the library. It will not be possible to perform any image processing
without the bead centre coordinates. Files of this type may not always have the
same number of bead present so we have to specify the maximum length of any
of the files to be read.

> files = dir()
> BLData.nonXY = readNonXYData(files, max_length = 49777)

1.2 The BeadLevelList Object

The data object (BLData) is in fact a list object but behaves like a complex sort
of matrix. It can be subsetted or treated like a matrix in lots of ways. We can
use the names command to see what items can be found in the list. BLData is an
BeadLevelList object and like the RGList object in limma can contain R, Rb, G
and Gb objects (i.e. foreground and background intensities of two colour data).

> is(BLData)
[1] "BeadLevelList" "list" "LargeDataObject" "vector"

> names (BLData)

[1] "Rll |lel| ||X|l
[4] "y" "ProbeID" "targets"
[7] "sharpened" "backgroundSize" "normalised"

[10] "backgroundCorrected"

Individual items in the list can then be accessed by using the $ operator
in R. In our example we have the matrices R and Rb which are the foreground
and background intensities for each bead (row) and each array (column). The
example shown here is for a single channel experiment, hence we only have a
foreground intensity value in the red channel and the green channel is not used.
If we had two channel data then BLData$R and BLData$G would be the red and
green channels respectively. The number of rows in the matrix is the same as
the number of beads present on the array and the number of columns is the
same as the number of arrays. In this example we only read in two arrays, so we
only have two columns. In other words, each column of the matrix represents
intensities of all beads on the same array. However, due to the random placement
of beads on the array, each row of the matrix does not relate to intensities of
a bead of the same type (as one might expect having dealt with conventional
microarray data).

Since BeadArray technology uses randomly assembled beads it is important
to know the location and identity of every bead on the array. Therefore the
BeadLevelList we are using in this library also contains the x and y co-ordinates
for each bead and an identifier (ProbelD) for the bead type of each bead.

An example BeadLevelList is included with the library. However, due to
space constraints, the object only contains a single array with 25000 beads on.
The object may be loaded at any time with the command.

> data(BLData)

1.3 Background correction and normalisation

Using the boxplot function in R allows boxplots of foreground and background
intensities to be compared (see Figure 7).

> boxplot(as.data.frame(cbind(log2(BLData$R), log2(BLData$Rb))),
+ names = c("Fgl", "Fg2", "Bgl", "Bg2"), las = 2)

T

Fgl —
Fg2
Bgl
Bg2

Local background correction can be be performed on the data by:

> BLData.c = backgroundCorrectBeads (BLData)
> boxplot(log2(BLData.c$R) ~ col(BLData.c$R), main = "Background Correcte

Background Corrected Foreground Intensities

By default, the backgroundCorrectBeads function subtracts the values in
BLData$Rb from BLData$R and stores the result in the R matrix of the resulting
BeadLevelList object. Other methods are available such as minimum which
ensures that no negative values are produced. The only normalisation methods
currently supported for bead-level data are median and quantile normalisation.
Compatibility with the limma and affy libraries means that other methods can
easily be used.

> BLData.med = medianNormalise(BLData)
> BLData.q = quantileNormalise(BLData)

1.4 Numbers of beads

We can see which bead types are represented less than 24 times (the 5th per-
centile for the appropriate Poisson distribution) on the array using findLow-
estCounts. For the first array that we use:

> findLowestCounts (BLData, 1)[1:10]
[11 10 23 30 42 87 119 182 185 585 607

The result is a list of ProbelDs.

d Foreground Intensities")

1.5 Outliers for each bead type

The plotBeadIntensities function can be used to assess variation within a
particular bead type. This function shows the intensity of every bead of a
particular type against the distance of the bead from the centre of the array.
Any outliers which exist for the bead type are marked on the plot by a red cross.
As an example we can plot the intensities of all beads with probelD 2 on array 1
and determine outliers using unlogged or logs intensities. This function also has
the option of changing the number of MADs from the mean used to determine
outliers by changing the n parameter.

> par(mfrow = c(1, 2))
> plotBeadIntensities(BLData, ProbelDs = 2, array = 1)
> plotBeadIntensities(BLData, ProbeIDs = 2, array = 1, log = TRUE)

<
—
o 4+ +
o
O —
o o
— R
o 00 o © %8o%® §
o _| o _| W% UPO 0De
o —
[ee]
2 8 | 2 9
2 3 2
))
— —
£ = © -
o
o _|
o
<
< -
o
8]
N 000 o © 030% Q N
-5 oy —outhg
o o

1T 1T 17T T 1 1T 1T 17T T 1
200 400 600 200 400 600

Distance Distance

We can find all the beads on an array which are outliers for their bead type
by using the findAl10utliers function. The output of the function is an index
which refers to a particular row in the BeadLevelList where a bead is located.

> o = findAllOutliers(BLData, array = 1)
> o[1:10]

[1] 44634 1263 8245 342 46418 6270 31023 2123 9534 4273

The length of the list can be easily found (length) and compared between
different arrays as a diagnostic measure for the quality of the array. Addi-
tionally, the location of all the outliers on an array can be plotted using the
plotBeadLocations function. described below. The function findBeadStatus
may be used for individual bead types.

> findBeadStatus(BLData, probes = 2, array = 1, outputValid = TRUE)

$outliers
[1] 44634

$valid

[1] 728 2828 6180 7591 7728 7943 8481 9417 10258 10799 12545 14432
[13] 14892 16443 17017 17261 19282 19885 21691 25684 27546 30345 30707 32370
[25] 33540 33736 35006 38074 39685 39939 40978 43626 43685 44915 45680

$nextStart
[1] 1072

Here, the result is a list of beads with ProbelD=2 which are outliers for this
bead type, along with beads which are valid beads.
1.6 Spatial plots

The plotBeadLocations function can be used to plot the location of a set of
beads on an array. Beads can be specified by ProbelDs or by a list of row indices
as returned by findBeadStatus.

> plotBeadLocations (BLData, ProbelDs = 2, array = 1)

200 400 600 800 1000 1200 1400

0
I

™

T
0 500 1000 1500

The function plots all beads on the first array with ProbelD 2. By using the
o object created above we can also plot the location of all outliers on the first
array.

> plotBeadLocations (BLData, beadIDs = o, array = 1)

200 400 600 800 1000 1200 1400

0

The plotBeadLocations provides a quick diagnostic check for the distribu-
tion of a set of beads. As described in Dunning et al., we have also implemented
a x? statistic to quantify the non-randomness of bead distributions. This x?2
test can be applied to all bead types on an array and the probelD of those with
the highest value can be returned by:

> findHighestChis (BLData, array = 1)[1:10]
[1] 213 278 606 658 791 800 936 960 961 1071

Shown above are the ProbelDs for the first 10 bead types with a x? statistic
greater than 14 (chosen because this is the 5th percentile of the appropriate x?2
distribution). Any of these bead types can be investigated further by using the
plotBeadlLocations function.

Any regions on an array found to have a high proportion of outliers can
be investigated further by the displayTIFFImage function. See Figure 3 of
Dunning et al.

> displayTIFFImage (BLData, array = 1, a = 1000:1400, b = 1200:1400)
play 8 y

[1] "1269941_R001_C001_Grn.pgm"
[1] "finding the outliers...."
[1] "<mean 14"

[1] ">mean 80"

[1] "negative intensity 1"

The example above loads the original image for array 1 (the name of which
is stored in the targets object) and displays the intensities of pixels with z in
the range from 1000 : 1400 and y in the range 1200 : 1400.

The intensity of every pixel in the plot is represented by a shade of green,
with brighter colours indicating a higher value. The blue and red spots indicate
the position of outliers in the particular region with blue indicating beads with
intensity higher than the mean for that bead type and red being beads with
intensity lower than the average for their bead type. Yellow spots on the pic-
ture represent beads which have been calculated to have a negative foreground
intensity. The black crosses show where the bead centres are located. Any
beads which failed the decoding process can also be highlighted by setting the
showUnregistered parameter.

The plot can also be made interactive by setting the locate Beads parameter
to TRUE. We can then click on any bead centre and display the foreground and
background intensities for this bead as well as a measure of the raw intensity.

We feel that displayTIFFImage gives more useful information about the raw
images than the equivalent function included in BeadStudio. In BeadStudio, the
user can explore the TIFF images and see the intensity of each individual pixel.
However, the identity of each bead on the image is not given and there is no
information about outliers.

1.7 Creating bead summary data

Bead summary data can be created using the bead level data. In producing
these summaries we must first remove outliers for each bead type as described in
Dunning et al. This averaging is done by the createBeadSummaryData function
and the method of detecting outliers can be specified by changing the log (for
unlogged or logged parameters) and n (number of MADs) parameters.

> BSData = createBeadSummaryData(BLData)

The structure of the resulting object is described in greater detail in the
Vignette Analysis of bead summary data with beadarray supplied with beadarray.

