
affyPLM: Fitting Probe Level Models

Ben Bolstad
bmb@bmbolstad.com

http://bmbolstad.com

April 25, 2006

Contents

1 Introduction 2

2 Fitting Probe Level Models 2
2.1 What is a Probe Level Model and What is a PLMset? . . . . . . . . . . . 2
2.2 Getting Started with the Default Model . . . . . . . . . . . . . . . . . . 2
2.3 Getting Full Control over fitPLM . . . . . . . . . . . . . . . . . . . . . . 4

2.3.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3.2 Controlling what is Returned in the PLMset . . . . . . . . . . . . 4
2.3.3 Controlling how the model is fit . . . . . . . . . . . . . . . . . . . 5

2.4 Specifying models in fitPLM . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.2 RMA style PLM . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.3 PLM with chip-level factor and covariate variables . . . . . . . . . 8
2.4.4 Probe intensity covariate PLM . . . . . . . . . . . . . . . . . . . . 10
2.4.5 PLM with both probe types as response variables . . . . . . . . . 11
2.4.6 PLM with probe-effects estimated within levels of a chip-level fac-

tor variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.7 PLM with probe-effect estimated within probe.type . . . . . . . . 14
2.4.8 PLM without chip level effects . . . . . . . . . . . . . . . . . . . . 14
2.4.9 PLM with only probe-effects . . . . . . . . . . . . . . . . . . . . . 14
2.4.10 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 How long will it take to run the model fitting procedures? 16

4 Dealing with the PLMset object 16

A M-estimation: How fitPLM fits models 17

1

http://bmbolstad.com


B Variance Matrix and Standard error estimates for fitPLM 19

1 Introduction

This majority of this document describes the fitPLM function. Other vignettes for affy-
PLM describe quality assessment tools and the threestep function for computing ex-
pression measures. After starting R, the package should be loaded using:

> library(affyPLM)

> data(Dilution)

> options(width = 36)

this will load affyPLM as well as the affy package and its dependencies. The Dilution
dataset will serve as an example dataset for this document.

2 Fitting Probe Level Models

2.1 What is a Probe Level Model and What is a PLMset?

A probe level model (PLM) is a model that is fit to probe-intensity data. More specifi-
cally, it is where we fit a model with probe level and chip level parameters on a probeset
by probeset basis. It is easy to arrange the probe-intensity data for a probeset so that
the rows are probes and the columns are chips. In this case, our probe level parameters
could be factor variable for each probe. The chip level parameters might be a factor
variable with a level for each array, factor variables grouping the chips into treatment
groups or perhaps some sort of covariate variable (pH, temperature, etc).

A PLMset is an R object that holds the results of a fitted probe level model. Among
the items stored are parameter estimates and corresponding standard errors, weights
and residuals.

2.2 Getting Started with the Default Model

The main function for fitting PLM is the function fitPLM. The easiest way to call the
function is to call it by passing an AffyBatch object without any other arguments, this
will fit a linear model with an effect estimated for each chip and an effect for each probe.
This can be accomplished using:

> Pset <- fitPLM(Dilution)

Background correcting PM

Normalizing PM

Fitting models

2



Once you have a fitted model stored in a PLMset object the chip level parameter esti-
mates and the corresponding standard errors can be examined using the accessor func-
tions coefs and se respectively. For example, to examine the parameter estimates for
the first 5 probesets and their corresponding standard error estimates use:

> coefs(Pset)[1:5, ]

20A 20B

1000_at 7.712273 7.589297

1001_at 5.403363 5.246484

1002_f_at 6.001355 5.842824

1003_s_at 6.682987 6.369074

1004_at 6.265232 5.923743

10A 10B

1000_at 7.604220 7.553855

1001_at 5.273807 5.361618

1002_f_at 5.875274 5.901889

1003_s_at 6.497950 6.402646

1004_at 6.150849 6.088767

> se(Pset)[1:5, ]

20A 20B

1000_at 0.03799718 0.03674898

1001_at 0.05850690 0.05890020

1002_f_at 0.06684831 0.06552934

1003_s_at 0.06114872 0.05960096

1004_at 0.05008092 0.04901174

10A 10B

1000_at 0.03948395 0.03526662

1001_at 0.05918202 0.05606334

1002_f_at 0.06374240 0.06469234

1003_s_at 0.06161738 0.06088379

1004_at 0.04981303 0.04707207

Note that the default model is the RMA expression measure model. Specifically, the
default model is

log2 PMkij = βkj + αki + εkij

where βkj is the log2 gene expression value on array j for probeset k and αki are probe

effects. Note that to make the model identifiable the constraint
∑I

i=1 αki = 0 is used.
Thus, for this default model, the parameter estimates given are gene expression values.

3



2.3 Getting Full Control over fitPLM

While the default model is very useful and simple to use, the fitPLM function also
provides the user with a great deal of control. Specifically, the user has the ability to
change the preprocessing, how the model is fitted and what output is returned.

2.3.1 Pre-processing

By default, the fitPLM function will preprocess the data using the RMA preprocessing
steps. In particular, it uses the same background and normalization as the rma function
of the affy package. It is possible to turn off either of these preprocessing steps by speci-
fying that background and/or normalize are FALSE in the call to fitPLM. The arguments
background.method and normalize.method can be used to control which pre-processing
methods are used. The same preprocessing methods, as described in the threestep

vignette, may be used with the fitPLM function.

2.3.2 Controlling what is Returned in the PLMset

The PLMset that the fitPLM function returns contains a number of different quantities,
some of which are always returned such as parameter estimates and standard error
estimates and others which are more optional. The user can control whether weights,
residuals, variance-covariance matrices and residual standard deviations are returned.
By default, all of these items are returned, but in certain situations a user might find
it useful to exclude certain items to save memory. Control is via the output.param

argument which should be provided as a list. The default settings can be seen by typing

> verify.output.param()

$weights

[1] TRUE

$residuals

[1] TRUE

$varcov

[1] "none"

$resid.SE

[1] TRUE

Control of whether weights, residuals and residual standard deviations are returned is via
logical variables. There are three options varcov = "none", varcov = "chiplevel" and
varcov = "all" for variance covariance matrices. These correspond to, not returning
any variance estimates, only the portion of the variance covariance matrix related to

4



the chiplevel parameters or the entire variance covariance matrix respectively. When
each probeset has a large number of probes (or there are large numbers of parameters
in the model) the last option will return many large variance covariance matrices. The
following code returns a PLMset with no weights or residuals stored:

> Pset <- fitPLM(Dilution, output.param = list(residuals = FALSE,

+ weights = FALSE))

2.3.3 Controlling how the model is fit

fitPLM implements iteratively re-weighted least squares M-estimation regression. Con-
trol over how fitPLM carries out the model fitting procedure is given by the model.param

argument. This value of this parameter should be a list of settings. In particular, these
settings are the following:

� trans.fn which controls how the response variable is transformed. This value
should be a string. By default trans.fn="log2", but other possible options include:
"loge" or "ln" to use the natural logarithm, "log10" for logarithm base 10, "sqrt"
for square root and "cuberoot" to use a cubic root transformation.

� se.type which controls how the variance-covariance matrix is estimated in the M-
estimation procedure. Possible values are 1, 2, 3 or 4. See the Appendix for more
details.

� psi.type is a string which selects how the weights are computed in the robust
regression. By default psi.type="Huber". Other possible options include "fair",
"Cauchy", "Geman-McClure", "Welsch", "Tukey", and "Andrews". More details can
be found in the Appendix.

� psi.k is a numerical tuning constant used by psi.type. The default values are
dependent on the option chosen by psi.type. More details can be found in the
Appendix.

� max.its controls the maximum number of iterations of IRLS that will be used
in the model fitting procedure. By default max.its=20. Note, that this many
iterations may not be needed if convergence occurs.

� init.method controls how the initial parameter estimates are derived. By default
init.method="ls" ordinary least squares is used although "Huber" is also a possi-
bility.

� weights.chip are input weights for each chip in the dataset. This parameter should
be a vector of length number of arrays in the dataset. By default, every chip is
given equal weight.

5



� weights.probe are input weights for each probe in the dataset. This parameter
should be a vector of length number of probes in dataset (this length depends on
the response variable in the model). By default, every probe has equal weight.

As an example, we use model.param to control the fitting procedure so that it is fit
as a standard linear regression model (ie without robustness). This is accomplished by:

> Pset <- fitPLM(Dilution, model.param = list(max.its = 0))

2.4 Specifying models in fitPLM

Although the default model is very useful, it is by no means the only model that can be
fitted using fitPLM. In this section we describe many, but certainly not all the different
types of models which may be fitted. In the example code presented here we will use
the subset argument to restrict model fitting to the first 100 probesets for speed. In any
real analysis model fitting would be carried out to all probesets on a particular array
type.

6



2.4.1 Notation

i Index for probes i = 1, . . . , Ik
j Index for arrays j = 1, . . . , J
k Index for probeset k = 1, . . . , K
l Index for probe type l = 1, 2 where 1 is PM and 2 is MM.
m Index for level of primary treatment factor variable m = 1, . . . ,M
αki probe effect parameter for probe i

Included in the model by using probes

αkim probe effect parameter for probe i estimated only for arrays where
primary treatment factor variable is level m
Included in the model by using treatment:probes

αkil probe effect parameter for probe i estimated only for probes of
type l
Included in the model by using probe.type:probes

αkilm probe effect parameter for probe i estimated only for probes of
type l where primary treatment factor variable is level m
Included in the model by using treatment:probe.type:probes

βkj array (chip) effect.
Included in the model by using samples

φkl probe-type effect
Included in the model by using probe.types

φklm probe-type effect for probe type l estimated only for arrays where
primary treatment factor variable is level m
Included in the model by using treatment:probe.types

φklj probe-type effect for probe type l estimated only for array j
Included in the model by using samples:probe.types

θ a vector of chip-level parameters
µk an intercept parameter
γk a slope parameter
ykijl a processed probe-intensity. Typically on log2 scale.
εkijl an error term
xj measurements of chip-level factor and covariate variables for chip j

In the model descriptions below we will use treatment, trt.cov for these terms.
In practice these would be replaced with names of variables in the current
R environment or the phenoData of the supplied AffyBatch.

Since we are focusing on models that are fitted in a probeset by probeset manner for
brevity the subscript k will be omitted from further discussion. Note the terms probes,
samples and probe.types are considered reserved words when specifying a model to
fitPLM.

7



2.4.2 RMA style PLM

These are variations of the RMA model each consisting of models with chip and probe-
effects . The first, PM ∼ -1 + samples + probes, is the default model used when no
model is specified in the fitPLM call.

Model fitPLM syntax
yij1 = βj + αi + εij PM ∼ -1 + samples + probes
yij1 = µ+ βj + αi + εij PM ∼ samples + probes
yij1 = βj + εij PM ∼ -1 + samples
yij1 = µ+ βj + εij PM ∼ samples
yij2 = βj + αi + εij MM ∼ -1 + samples + probes
yij2 = µ+ βj + αi + εij MM ∼ samples + probes
yij2 = βj + εij MM ∼ -1 + samples
yij2 = µ+ βj + εij MM ∼ samples

2.4.3 PLM with chip-level factor and covariate variables

These models use treatment variables as an alternative to sample effects for the chip
level factors.

Model fitPLM syntax
yij1 = xTj θ + αi + εij PM ∼ -1 + treatment + trt.cov + probes
yij1 = xTj θ + εij PM ∼ -1 + treatment + trt.cov
yij2 = xTj θ + αi + εij MM ∼ -1 + treatment + trt.cov + probes
yij2 = xTj θ + εij MM ∼ -1 + treatment + trt.cov

For example to fit, a model with effects for both liver tissue concentration and scan-
ner along with probe effects with MM as the response variable to the first 100 probesets
of the Dilution dataset the following code would be used:

> Pset <- fitPLM(Dilution, MM ~

+ -1 + liver + scanner + probes,

+ subset = geneNames(Dilution)[1:100])

Background correcting MM

Normalizing MM

Fitting models

Examining the fitted chip-level parameter estimates for the first probeset via:

> coefs(Pset)[1, ]

liver_10 liver_20 scanner_2

6.26383108 6.41696361 -0.07148147

8



shows that the treatment effect for scanner was constrained to make the model identifi-
able. fitPLM always leaves the first factor variable unconstrained if there is no intercept
term. All other chip level factor variables are constrained. The parameter estimates for
the probe effects can be examined as follows:

> coefs.probe(Pset)[1]

$`1000_at`

Overall

probe_1 3.0225391

probe_2 0.2130968

probe_3 -2.0234654

probe_4 -0.3217059

probe_5 -2.0966787

probe_6 3.3964676

probe_7 -2.7683082

probe_8 -3.5818810

probe_9 -1.2680776

probe_10 -1.3138251

probe_11 -0.8554987

probe_12 -2.0126687

probe_13 3.0165102

probe_14 4.5956424

probe_15 1.8814205

To make a treat a variable as a covariate rather than a factor variable the vari-

able.type argument may be used. For example, to fit a model with the logarithm of
liver concentration treated as a covariate we could do the following:

> logliver <- log2(c(20, 20, 10,

+ 10))

> Pset <- fitPLM(Dilution, model = PM ~

+ -1 + probes + logliver +

+ scanner, variable.type = c(logliver = "covariate"),

+ subset = geneNames(Dilution)[1:100])

Warning: No default variable type so assuming 'factor'

Background correcting PM

Normalizing PM

Fitting models

> coefs(Pset)[1, ]

logliver scanner_1 scanner_2

0.0451768 7.4757894 7.4458805

9



2.4.4 Probe intensity covariate PLM

This class of models allows the inclusion of PM or MM probe intensities as covariate
variables in the model. Note that the fitting methods currently used by fitPLM are ro-
bust, but not resistant (ie outliers in the response variable are dealt with, but outliers
in explanatory variables are not).

Model fitPLM syntax
yij1 = γyij2 + βj + αi + εij PM ∼ -1 + MM + samples + probes
yij1 = γyij2 + µ+ βj + αi + εij PM ∼ MM + samples + probes
yij1 = γyij2 + βj + εij PM ∼ -1 + MM +samples
yij1 = γyij2 + µ+ βj + εij PM ∼ MM + samples
yij2 = γyij1 + βj + αi + εij MM ∼ -1 + PM + samples + probes
yij2 = γyij1 + µ+ βj + αi + εij MM ∼ PM + samples + probes
yij2 = γyij1 + βj + εij MM ∼ -1 + PM +samples
yij2 = γyij1 + µ+ βj + εij MM ∼ PM + samples
yij1 = xTj θ + γyij2 + αi + εij PM ∼ MM + treatment + trt.cov + probes
yij1 = xTj θ + γyij2 + εij PM ∼ MM + treatment + trt.cov
yij2 = xTj θ + γyij1 + αi + εij MM ∼ PM + treatment + trt.cov + probes
yij2 = xTj θ + γyij1 + εij MM ∼ PM + treatment + trt.cov

To fit a model with an intercept term, MM covariate variable, sample and probe ef-
fects use the following code:

> Pset <- fitPLM(Dilution, PM ~

+ MM + samples + probes, subset = geneNames(Dilution)[1:100])

Background correcting PM

Background correcting MM

Normalizing PM

Normalizing MM

Fitting models

We can examine the various parameter estimates for the model fit to the first probeset
using:

> coefs(Pset)[1, ]

20B 10A 10B

-0.01366834 -0.02595598 -0.05160295

> coefs.const(Pset)[1, ]

Intercept MM

6.9412706 0.1135005

10



> coefs.probe(Pset)[1]

$`1000_at`

Overall

probe_1 -0.09331911

probe_2 0.05099882

probe_3 -2.05468376

probe_4 1.55165697

probe_5 -1.63862912

probe_6 1.05362921

probe_7 -3.40208869

probe_8 -1.07136339

probe_9 0.18760779

probe_10 -0.52305217

probe_11 -0.85722010

probe_12 0.73573069

probe_13 2.18759956

probe_14 2.95879549

probe_15 1.31295627

As can be seen by this example code intercept and covariate parameters are accessed
using coefs.const.

2.4.5 PLM with both probe types as response variables

It is possible to fit a model that uses both PM and MM intensities as the response
variable. This is done by specifying PMMM as the response term in the model. When
both PM and MM intensities are used as the response, there is a special reserved term
probe.type which may (optionally) be used as part of the model specification. This term
designates that a probe type effect (ie whether PM or MM) should be included in the
model.

Model fitPLM syntax
yijl = βj + φj + αi + εijl PMMM ∼ -1 + samples + probe.type + probes
yijl = µ+ βj + φj + αi + εijl PMMM ∼ samples + probe.type + probes
yijl = βj + φj + εijl PMMM ∼ -1 + samples+ probe.type
yijl = µ+ βj + φj + εijl PMMM ∼ samples+ probe.type
yijl = xTj θ + φj + αi + εijl PMMM ∼ treatment + trt.cov + probe.type + probes
yijl = xTj θ + φj + εijl PMMM ∼ treatment + trt.cov + probe.types
yijl = xTj θ + φj + αi + εijl PMMM ∼ treatment + trt.cov + probe.type + probes
yijl = xTj θ + φj + εijl PMMM ∼ treatment + trt.cov + probe.type

For example to fit such a model with factor variables for liver RNA concentration, probe
type and probe effects use:

11



> Pset <- fitPLM(Dilution, PMMM ~

+ liver + probe.type + probes,

+ subset = geneNames(Dilution)[1:100])

Background correcting PM

Background correcting MM

Normalizing PM

Normalizing MM

Fitting models

Examining the parameter estimates:

> coefs(Pset)[1, ]

[1] 0.06774567

> coefs.const(Pset)[1, ]

Intercept probe.type_MM

7.597093 -1.317601

> coefs.probe(Pset)[1]

$`1000_at`

Overall

probe_1 1.6717081

probe_2 0.1413270

probe_3 -2.1780010

probe_4 0.6740207

probe_5 -2.0528806

probe_6 2.3931219

probe_7 -3.2390309

probe_8 -2.6054958

probe_9 -0.5629461

probe_10 -0.9691710

probe_11 -0.9132744

probe_12 -0.7438847

probe_13 2.7704284

probe_14 4.0352086

probe_15 1.7054127

shows that probe type estimates are also accessed by using coefs.const.

12



2.4.6 PLM with probe-effects estimated within levels of a chip-level factor
variable

It is also possible to estimate separate probe-effects for each level of a chip-level factor
variable.

Model fitPLM syntax
yij1 = xTj θ + αim + εij1 PM ∼ treatment:probes + treatment + trt.cov
yij1 = yij2γ + xTj θ + αim + εij1 PM ∼ MM + treatment + treatment:probes + trt.cov
yijl = xTj θ + φj + αim + εijl PMMM ∼ treatment + trt.cov + treatment:probes

Fitting such a model with probe effects estimated within the levels of the liver vari-
able is done with:

> Pset <- fitPLM(Dilution, PM ~

+ -1 + liver + liver:probes,

+ subset = geneNames(Dilution)[1:100])

Background correcting PM

Normalizing PM

Fitting models

Examining the estimated probe-effects for the first probeset can be done via:

> coefs.probe(Pset)[1]

$`1000_at`

liver_10: liver_20:

probe_1 0.45703118 0.18565034

probe_2 0.09857964 0.03547674

probe_3 -2.32651618 -2.26717076

probe_4 1.56725040 1.44672157

probe_5 -1.79505937 -2.21896508

probe_6 1.41365423 1.46668778

probe_7 -3.73471867 -3.50736941

probe_8 -1.66731948 -1.29969513

probe_9 -0.02369775 0.07796055

probe_10 -0.77934177 -0.47474981

probe_11 -0.95568246 -0.97153452

probe_12 0.37422678 0.60079740

probe_13 2.47025832 2.57337701

probe_14 3.54711754 3.39737415

probe_15 1.63337631 1.42037532

13



2.4.7 PLM with probe-effect estimated within probe.type

Probe effects can also be estimated within probe type or within probe type for each level
of the primary treatment factor variable.

Model fitPLM syntax
yijl = xTj θ + alphail + εij1 PMMM ∼ treatment + trt.cov + probe.type:probes
yijl = xTj θ + αilm + εij1 PMMM ∼ treatment + trt.cov + treatment:probe.type:probes

As an example, use the following code to fit such models and then examine the pos-
sible

> Pset <- fitPLM(Dilution, PMMM ~

+ -1 + liver + probe.type:probes,

+ subset = geneNames(Dilution)[1:100])

> coefs.probe(Pset)[1]

> Pset <- fitPLM(Dilution, PMMM ~

+ -1 + liver + liver:probe.type:probes,

+ subset = geneNames(Dilution)[1:100])

> coefs.probe(Pset)[1]

2.4.8 PLM without chip level effects

It is possible to fit models which do not have any chip-level variables at all. If this is the
case, then the probe type effect takes precedence over any probe effects in the model.
That is it will be unconstrained.

Model fitPLM syntax
yijl = αi + φjl + εijl PMMM ∼ -1 + probe.type + probes
yijl = µ+ φjl + αi + εijl PMMM ∼ probe.type + probes
yijl = φl + αim + εijl PMMM ∼ -1 + probe.type + treatment:probes
yijl = µ+ φl + αim + εijl PMMM ∼ probe.type + treatment:probes
yijl = µ+ φlj + αim + εijl PMMM ∼ samples:probe.type + treatment:probes
yijl = µ+ φlm + αim + εijl PMMM ∼ treatment:probe.type + treatment:probes

2.4.9 PLM with only probe-effects

It is also possible to fit models where only probe effects alone are estimated.

14



Model fitPLM syntax
yij1 = αi + εij1 PM ∼ -1 + probes
yij1 = µ+ αi + εij1 PM ∼ probes
yij1 = alphaim + εij1 PM ∼ -1 + treatment:probes
yij1 = µ+ (θα)imj

+ εij1 PM ∼ treatment:probes

yij2 = αi + εij2 MM ∼ -1 + probes
yij2 = µ+ αi + εij2 MM ∼ probes
yij2 = αim + εij2 MM ∼ -1 + treatment:probes
yij2 = µ+ αim + εij2 MM ∼ treatment:probes
yijl = αi + εijl PMMM ∼ -1 + probes
yijl = µ+ αi + εijl PMMM ∼ probes
yijl = αim + εijl PMMM ∼ -1 + treatment:probes
yijl = µ+ αim + εijl PMMM ∼ treatment:probes

2.4.10 Constraints

These are the constraints that will be imposed to make the models identifiable (when
needed):

Parameter Constraints Default
βi

∑J
j=0 βi = 0 or β1 = 0 β1 = 0

φl
∑2

l=1 φl = 0 or φ1 = 0 φ1 = 0
φlj

∑2
l=1 φlj = 0 or φ1j = 0 φ1j = 0

φlm
∑2

l=1 φlm = 0 or φ1m = 0 φ1m = 0
αi

∑I
i=0 αi = 0 or α1 = 0

∑I
i=0 αi = 0

αim
∑I

i=0 αim = 0 or α1m = 0
∑I

i=0 αim = 0
αil

∑I
i=0 αil = 0 or α1l = 0

∑I
i=0 αil = 0

αilm
∑I

i=0 αilm = 0 or α1lm = 0
∑I

i=0 αilm = 0
In general, there is a general hierarchy by which items are left unconstrained:

intercept > treatment > sample > probe.type > probes

the highest term in this hierarchy that is in a particular model is always left un-
constrained, everything else will be constrained. So for example a model containing
probe.type and probe effects will have the probe.type effects unconstrained and the
probe effects constrained.

Constraints are controlled using the constraint.type argument which is a vector
with named items should be either "contr.sum" or "contr.treatment". The names for
this vector should be names of items in the model.

> data(Dilution)

> Pset <- fitPLM(Dilution, model = PM ~

+ probes + samples, constraint.type = c(samples = "contr.sum"),

+ subset = geneNames(Dilution)[1:100])

15



Warning: No default constraint specified. Assuming 'contr.treatment'.

Background correcting PM

Normalizing PM

Fitting models

> coefs.const(Pset)[1:2]

[1] 7.633398 5.367075

> coefs(Pset)[1:2, ]

20A 20B

1000_at 0.03537718 0.008919666

1001_at -0.02175000 0.032911428

10A

1000_at -0.005310762

1001_at -0.032544179

3 How long will it take to run the model fitting pro-

cedures?

It may take considerable time to run the fitPLM function. The length of time it is going
to take to run the model fitting procedure will depend on a number of factors including:

1. CPU speed

2. Memory size of the machine (RAM and VM)

3. Array type

4. Number of arrays

5. Number of parameters in model

It is recommended that you run the fitPLM function only on machines with large
amounts of RAM. If you have a large number of arrays the number of parameters in
your model will have the greatest effect on runtime.

4 Dealing with the PLMset object

As previously mentioned, the results of a call to fitPLM are stored in a PLMset object.
There are a number of accessor functions that can be used to access values stored in a
PLMset including:

16



� coefs and se: access chip-level factor/covariate parameter and standard error
estimates.

� coefs.probe and se.probe: access probe effect parameter and standard error esti-
mates.

� coefs.const and se.const: access intercept, MM covariate and probe type effect
parameter and standard error estimates.

� weights: access final weights from M-estimation procedure. Note that you may
optionally supply a vector of probeset names as a second parameter to get weights
for only a subset of probes.

� resids: access residuals. Note that you may optionally supply a vector of probeset
names as a second parameter to get residuals for only a subset of probes.

� varcov: access variance matrices.

A M-estimation: How fitPLM fits models

Suppose we wish to fit the following model

yi = f(xi, θ) + εi (1)

where yi is a response variable, xi is a vector of explanatory variables, and θ is a vector
of parameters to be estimated. An estimator of θ is given by

minθ

N∑
i=1

(yi − f(xi, θ))
2 (2)

which is the known least squares estimator. In some situations, outliers in the response
variable can have significant effect on the estimates of the parameters. To deal with
potential problem we need a robust method of fitting the model. One such method is
known as M -estimation. An M -estimator for this regression, taking into account scale,
is the solution of

minθ

N∑
i=1

ρ

(
yi − f(xi, θ)

s

)
(3)

where ρ is a suitable function. Reasonable properties for ρ include symmetry ρ(x) =
ρ(−x), a minimum at ρ(0) = 0, positive ρ(x) ≥ 0 ∀x and increasing as the absolute value
of x increases, i.e. ρ(xi) ≥ ρ(xj) if |xi| > |xj|. Furthermore, there the need to estimate
s, where s is a scale estimate. One approach is to estimate both s and θ using a system
of equations. The approach that we use is to estimate s using the median absolute

17



Method ρ(x) ψ(x) w(x)

Huber

{
if |x|≤ k

if |x|> k

{
x2/2
k (|x|−k/2)

{
x

ksgn(x)

{
1
k
|x|

fair c2
(

|x|
c − log

(
1 + |x|

c

))
x

1+
|x|
c

1

1+
|x|
c

Cauchy c2

2 log
(
1 + (x/c)2

)
x

1+(x/c)2
1

1+(x/c)2

Geman-McClure x2/2
1+x2

x
(1+x2)2

1
(1+x2)2

Welsch c2

2

(
1− exp

(
−

(
x
c

)2
))

x exp
(
−(x/c)2

)
exp

(
−(x/c)2

)
Tukey

{
if |x|≤ c

if |x|> c

{
c2

6

(
1−

(
1− (x/c)2

)3
)

c2

6

{
x

(
1− (x/c)2

)2

0

{(
1− (x/c)2

)2

0

Andrews

{
if |x|≤ kπ

if |x|> kπ

{
k2(1− cos(x/k))
2k2

{
k sin(x/k)
0

{
sin(x/k)
x/k

0

Table 1: ρ, ψ and weight functions for some common M-estimators.

deviation (MAD) which provides a robust estimate of scale. The above equation leads
to solving

N∑
i=1

ψ

(
yi − f(xi, θ)

s

)
= 0. (4)

where ψ is the derivative of ρ. Note that strictly speaking, for robustness, ψ should
be bounded. Now define ri = yi−f(xi,θ)

s
and a weight function w (ri) = ψ(ri)

ri
. Then the

previous equation can be rewritten as

N∑
i=1

w (ri) ri = 0 (5)

which is the same as the set of equations that would be obtained if we were solving the
iteratively re-weighted least squares problem

min
N∑
i

w
(
r
(n−1)
i

)
r
(n)
i

2
(6)

where the superscript (n) represents the iteration number. More details about M-
estimation can be found in Huber (1981). Tables 1 and 2 describe the various different
weight functions and associated default constants provided by fitPLM.

18



Method Tuning Constant
Huber 1.345
fair 1.3998
Cauchy 2.3849
Welsch 2.9846
Tukey 4.6851
Andrews 1.339

Table 2: Default tuning constants (k or c) for M-estimation ρ, ψ and weight functions.

B Variance Matrix and Standard error estimates for

fitPLM

Huber (1981) gives three forms of asymptotic estimators for the variance-covariance
matrix of parameter estimates b̂.

κ2

∑
ψ2/(n− p)

(
∑
ψ′/n)2

(XTX)−1 (7)

κ

∑
ψ2/(n− p)∑

ψ′/n
V −1 (8)

1

κ

∑
ψ2

n− p
V −1

(
XTX

)
V −1 (9)

where

κ = 1 +
p

n

Var (ψ′)

Eψ′ (10)

V = XTΨ′X (11)

and Ψ′ is a diagonal matrix of ψ′ values. When using fitPLM these are selected using
se.type=1, se.type=2, or se.type=3 respectively. Treating the regression as a weighted
least squares problem would give∑

w(ri)r
2
i

n− p

(
XTWX

)−1
(12)

as the estimator for variance covariance matrix, where W is a diagonal matrix of weight
values. This option is selected by using se.type=4.

19



References

B. M. Bolstad. Low Level Analysis of High-Density Oligonucleotide Data: Background,
Normalization and Summarization. PhD thesis, University of California, Berkeley,
2004.

B. M. Bolstad, R. A. Irizarry, M. Astrand, and T. P. Speed. A comparison of normaliza-
tion methods for high density oligonucleotide array data based on variance and bias.
Bioinformatics, 19(2):185–193, Jan 2003.

P. J. Huber. Robust statistics. John Wiley & Sons, Inc, New York, New York, 1981.

R. A. Irizarry, B. M. Bolstad, F. Collin, L. M. Cope, B. Hobbs, and T. P. Speed.
Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res, 31(4):e15,
Feb 2003a.

R. A. Irizarry, B. Hobbs, F. Collin, Y. D. Beazer-Barclay, K. J. Antonellis, U. Scherf,
and T. P. Speed. Exploration, normalization, and summaries of high density
oligonucleot ide array probe level data. Biostat, 4(2):249–264, 2003b. URL http:

//biostatistics.oupjournals.org/cgi/content/abstract/4/2/249.

20

http://biostatistics.oupjournals.org/cgi/content/abstract/4/2/249
http://biostatistics.oupjournals.org/cgi/content/abstract/4/2/249

	Introduction
	Fitting Probe Level Models
	What is a Probe Level Model and What is a PLMset?
	Getting Started with the Default Model
	Getting Full Control over fitPLM
	Pre-processing
	Controlling what is Returned in the PLMset
	Controlling how the model is fit

	Specifying models in fitPLM
	Notation
	RMA style PLM
	PLM with chip-level factor and covariate variables
	Probe intensity covariate PLM
	PLM with both probe types as response variables
	PLM with probe-effects estimated within levels of a chip-level factor variable
	PLM with probe-effect estimated within probe.type
	PLM without chip level effects
	PLM with only probe-effects
	Constraints


	How long will it take to run the model fitting procedures?
	Dealing with the PLMset object
	M-estimation: How fitPLM fits models
	Variance Matrix and Standard error estimates for fitPLM

