How'To layout a pathway

Jeff Gentry
April 25, 2006

1 Overview

This article will demonstrate how you can use Rgraphviz to layout and ren-
der pathways, such as the ones available at KEGG (http://www.genome.ad.
jp/kegg/pathway/). For demonstration purposes, we will be working with the
hsa041510 pathway from KEGG (http://www.genome.ad. jp/kegg/pathway/
hsa/hsa04510.html), which is available as a graph object from the graph pack-
age as the integrinMediatedCellAdhesion dataset. This dataset contains the
graph as well as a list of attributes that can be used for plotting. The pathway
graph as rendered by KEGG is seen here:

[integrin-mediated Cell Adnesion |

[ecled

Coold Pix

Phosphatidylinosinl
nal]
- - mgsymm ECEE i

4—» P / WYO F-actin

-

T~ el proliferation

04510 51302

2 Obtaining the initial graph

At this time, there is no automated way to extract the appropriate information
from KEGG (or other sites) and construct a graph. If one wishes to layout their
own pathways, it requires manual construction of a graph, creating each node
and then recording the edges. Likewise, for any basic attributes (such as the
green/white coloration in the hsa041510 graph), they too must be collected by

http://www.genome.ad.jp/kegg/pathway/
http://www.genome.ad.jp/kegg/pathway/
http://www.genome.ad.jp/kegg/pathway/hsa/hsa04510.html
http://www.genome.ad.jp/kegg/pathway/hsa/hsa04510.html

hand. For instance, this would be a good time to take advantage of edge weights
by putting in desired values (which can be changed later, if necessary) while
constructing the edges of the graph. We have manipulated some of the weights,
such as the weight between the p85 and p110 nodes, as they are intended to be
directly next to each other. Once constructed, the graph can be saved with the
save command and stored for later use (which has been done already as part
of the integrinMediatedCellAdhesion dataset).

> library("Rgraphviz")

Loading required package: graph
Loading required package: Ruuid

> data("integrinMediatedCellAdhesion")
> IMCAGraph

A graphNEL graph with undirected edges
Number of Nodes = 52
Number of Edges = 65

3 Laying out the graph

Laying out a pathway graph is much like dealing with any other graph, except
that typically we want to as closely emulate the officially laid out graph (or at
least make it look like an actual pathway - the Graphviz layout methods were
not designed with this task in mind). A lot of experimenation comes into play,
in order to find the right combination of attributes, although there are some
general tips that can help out. The first thing to know is that we will almost
always want to use the dot layout, as that will provide the closest base to work
off. Likewise, the rankdir attribute should be set to LR, to give us the left to
right look of the graph. To see our starting point, here is the IMCAGraph with
just those settings.

> plot(IMCAGraph, attrs = list(graph = list(rankdir = "LR")))

Note that IMCA Attrs$defAtirs is simply just the rankdir attribute for graph,
so we will be using that in place of the 1ist call from now on.

This plot is not terrible, in that it conveys the proper information, but the
formatting is quite different from the layout at KEGG, and can be difficult
to get a coherent idea of what is going on. Furthermore, smaller things like
the coloration of the nodes and the shape of the phosphatidylinositol signaling
system are not being represented here.

Here is where using other attributes can start to have a positive effect. We
can set the colors of each node (another piece that is necessary to enter in man-
ually) and change the shape of the phosphyatidylinositol signaling system node
to be an ellipse. We have done this for this graph in the IMCA Attrs$nodeAttrs
data:

> IMCAAttrs$nodeAttrs$shape

Phosphatidylinositol signaling system
"ellipse"

> IMCAAttrs$nodeAttrs$width

Phosphatidylinositol signaling system
1.5

> IMCAAttrs$nodeAttrs$height

Phosphatidylinositol signaling system
0.75

> IMCAAttrs$nodeAttrs$fillcolor[1:10]

ITGB ITGA ILK CAV SHC FYN GRB2 S0S Ha-Ras

Raf

"white" "green" "green" "green" "green" '"green" "green" '"green" "green" "green"

Using these attributes to plot the graph will get us a bit closer to our goal:

> plot(IMCAGraph, attrs = IMCAAttrs$defAttrs, nodeAttrs = IMCAAttrs$nodeAttrs)

Here the color scheme is now the same as on KEGG, and using an el-
lipse helps with the rendering of the phosphatidylinositol signaling system node.
However, we're still left with the issue that the layout itself doesn’t convey the
same meaning as the original. The output nodes are scattered about, there’s
not a clear sense of where the membrane nodes are, and many nodes that are
intended to be close to each other simply are not. This is where the use of
subgraphs and clusters can help. In Graphviz, a subgraph is an organizational
method to note that a set of nodes and edges belong in the same conceptual
space, sharing attributes and the like. While there is some tendency to have
nodes be laid out near each other in a subgraph, there is no guarantee of this,
and the results can be highly dependent on the layout method (dot, neato, etc).
A Graphviz cluster is a subgraph which is laid out as a separate graph and then

introduced into the main graph. This provides a much stronger guarantee of
having the nodes clustered together visually. For a description of how to specify
subgraphs in Rgraphviz, please see the vignette HowTo Render A Graph Using
Rgraphviz.

So here we will define four subgraphs: One will be the membrane nodes,
one will be the output nodes, one will be the F-actin block and the last will be
everything else. It would be possible to specify more subgraphs to try to help
keep things more blocked together like the original graph, but for the purposes
of this document, these are what will be used.

nodes <- nodes (IMCAGraph)

sgl <- subGraph(nodes([c(2, 1, 3, 4)], IMCAGraph)

sg2 <- subGraph(c(nodes[5:14], nodes[19:48], nodes[52]), IMCAGraph)
sg3 <- subGraph(nodes[49:51], IMCAGraph)

sg4 <- subGraph(nodes[15:18], IMCAGraph)

vV V.V VvV

While we have the subgraphs defined, we still have not determined whether
to use these as subgraphs or clusters in Graphviz. Ideally, we would like to
use clusters, as that guarantees that the nodes will be laid out close together.
However, it would also be useful to utilize the rank attribute for the membrane
and output nodes, specifically using the values source and sink respectively.
That will help to get the verticle line up that we see in the KEGG graph and
create more of the left to right pathway feel. The problem is that rank only
works with subgraphs and not clusters. So for the membrane and output sub-
graphs, we will be defining them as Graphviz subgraphs, and the other two
subgraphs will be defined as clusters. We have already prepared all of this as
IMCAAttrs$subGList:

> IMCAAttrs$subGList

[[11]

[[1]1]$graph

A graphNEL graph with undirected edges
Number of Nodes = 4

Number of Edges = 3

[[1]1]$cluster
[1] FALSE

[[1]]$attrs
rank
"source"

[[21]
[[2]]$graph
A graphNEL graph with undirected edges

41
26

Number of Nodes
Number of Edges

[[311

[[31]$graph

A graphNEL graph with undirected edges
Number of Nodes = 3

Number of Edges = 0

[[3]]$cluster
[1] FALSE

[[3]]%attrs
rank
n Slnkll

[[4]]

[[4]]1$graph

A graphNEL graph with undirected edges
Number of Nodes = 4

Number of Edges = 4

You can see that subgraphs 1 and 3 have the cluster parameter set to FALSE
as well as having a rank attribute set appropriate. Subgraphs 2 and 4 simply
have the subgraph itself, and will be laid out as a cluster without any special
attributes. Using this subgraph list, we now get:

> plot(IMCAGraph, attrs = IMCAAttrs$defAttrs, nodeAttrs = IMCAAttrs$nodeAttrs,
+ subGList = IMCAAttrs$subGList)

While this is still not identical to the image on KEGG (and for most graphs,
it will be impossible given current abilities to do so), this layout is now much
closer to providing an accurate visual rendition of the pathway. We can see
the output nodes are now to the right end of the graph, and while not neatly
stacked on the left hand side the membrane nodes are to the left side of the
rest. We can also see the F-actin group in the lower left portion of the graph,
representing one of the clusters.

4 Working with the layout

One of the benefits of using Rgraphviz to perform your layout as opposed to
using the static layouts provided by sites like KEGG, is the ability to work with
outside data and visualize it using your graph. The plotExpressionGraph
function in geneplotter can be used to take expression data and then color
nodes based on the level of expression. By default, this function will color
nodes blue, green or red, corresponding to expression levels of 0-100, 101-500,
and 501+ respectively. Here we will use this function along with the fibroFset
and hgu95av2 data packages and the IMCAAttrs$IMCALocuLink data which
maps the nodes to their LocusLink ID values.

> require("geneplotter")

Loading required package: geneplotter
Loading required package: annotate
Loading required package: Biobase
Loading required package: Biobase
KernSmooth 2.22 installed

Copyright M. P. Wand 1997

(1] TRUE

> require("fibroEset")

Loading required package: fibroEset
[1] TRUE

> require("hgu95av2")

Loading required package: hgu95av2
[1] TRUE

> data("fibroEset")

> plotExpressionGraph (IMCAGraph, IMCAAttrs$LocusLink, exprs(fibroEset)[,

+ 1], hgu95av2LOCUSID, attrs = IMCAAttrs$defAttrs, subGList = IMCAAttrs$subGList,
+ nodeAttrs = IMCAAttrs$nodeAttrs)

One can also simply choose to layout the pathway based on the needs and
desires of a particular situation. For instance, the following layout could be used

in situations where the node names are the important visual cue, as opposed to
the previous example where the nodes themselves are being used to demonstrate
values:

> z <- IMCAGraph

> nodes(z) [39] <- c("phosphati.\nsign. sys.")

> nag <- agopen(z, name = "nag", attrs = list(node = list(color = "white",
+ fontcolor = "white"), edge = list(arrowsize = 2.8, minlen = 3)))

> nagxy <- getNodeXY(nag)

> plot(nag)

> text(nagxy, label = nodes(z), cex = 0.8)

phos héBu prollferatlo
D K1 ROCK MY

i)\
%

V.

cell motility cDC42

5 Conclusions

At this time, laying out a pathway can provide good visual information for
users, although it isn’t yet able to be completely automated nor is it a perfect
science. Yet with a bit of work and experimentation, one can get a fairly close
rendition of what is available on sites like KEGG and have the ability to directly
manipulate the graphs and customize the outputs to demonstrate a variety of
effects. Hopefully as time goes on, we will be able to provide more in the way

of automation in our tools, but even as it exists now, laying out pathways can
provide a valuable tool for users.

10

	Overview
	Obtaining the initial graph
	Laying out the graph
	Working with the layout
	Conclusions

