
Model-View-Controller Package

Elizabeth Whalen

April 20, 2006

1 Overview

The purpose of the MVCClass package is to provide the definitions of classes and generic
functions that will be used by other packages to create model-view-controller applications.
Currently, the packages that use the MVCClass package are iSPlot and iSNetwork . Both
packages use the definitions from MVCClass to create linked, interactive views of data.

2 MVC Class

The MVC class represents a model-view-controller object. Basically, this class will bind the
model with its views and its controller so that an object of this class can be created each time
there is a new data set (model). Thus, there is a one-to-one relationship between a MVC object
and a model object. Because of this relationship, the MVC object and the model object are
identified by the same name, which is stored in the modelName slot of the model object (see
Section 3). The figure below shows the class definition for MVC.

Figure 1: The MVC Class.

The MVC class has five slots which are model, viewList, controller, parentMVC, and child-
MVCList. The model slot stores the model object, the viewList slot is a list of the view objects
for this model, the controller slot is an environment that stores information for this MVC, the
parentMVC slot is the name of the parent model (MVC), and the childMVCList slot is a list
of the children models (MVCs). Note that model and MVC objects use the same name so the
parentMVC slot refers to both the name of the model and the name of the MVC. Similarly,
for the childMVCList slot, the names in the list refer to both the name of the model and the
name of the MVC.

1



Thus, the MVC class not only binds the model, view, and controller objects together, but
MVC objects can be related to each through a parent-child (tree) hierarchy because of the
slots, parentMVC and childMVCList. These two slots also show that a MVC object can have
at most one parent MVC and can have as many children MVCs as it wants.

3 Model Classes

The model class is responsible for storing and updating the data. These two functions are
reflected in Figure 2, which shows the inheritance structure for the model classes. Here the
virtual class, gModel, has the slots modelData, linkData, virtualData, and modelName. These
four slots are common information that all models will need. The modelData slot is the data
set for this model, the linkData slot is a list of two functions, toParent and fromParent, which
link this model to its parent and child models, respectively (see Section 2), the virtualData
slot is data pertaining to the views that needs to be stored with the model so that it can be
shown in all views of this model, and the modelName slot is the name of the model.

Figure 2: Inheritance for Model Objects.

For specific model classes, there are dfModel, graphModel, and exprModel. The dfModel
class represents a model where the modelData has class data frame (or matrix), the graph-
Model class represents a model where the modelData has class graph, and the exprModel class
represents a model where the modelData has class exprSet.

As mentioned previously, the model classes are also responsible for updating the data so
a generic function updateModel has also been defined. The updateModel methods will be
defined in packages that use this package (i.e. the methods will be defined in iSNetwork and
iSPlot).

4 View Classes

The view classes represent the visual depictions of the model. All views will need to store some
common information and respond to certain events through methods. This consideration led
to an object model where the different view classes inherit from a view virtual class, called
genView. The object model for the view classes is shown in Figure 3.

2



Figure 3: Inheritance for View Objects.

The genView class has three slots, dataName, win, and winNum. dataName is the name
of the model that the view displays, win is the Gtk window object that holds the view, and
winNum is the number of the window so that the window can be identified in the GUI that
other packages create. All views will need to know these three pieces of information so genView
will bind the view classes together.

As for specific view classes, the spreadView class will represent a spreadsheet view of the
data. This view will only make sense for models that are a two dimensional data structure,
such as a matrix or a data frame. The information needed for this view is stored in the slot,
clist, which is the Gtk spreadsheet object.

When creating a plot of a data set, there is a general class, called plotView, that has the
slots, plotDevice, plotPar, and drArea, which store the device number of the plot, the plotting
parameters, and the Gtk drawing area object, respectively. This class is a virtual class because
it is not intended to have any objects as it just represents a general plot. The plot classes that
can have objects are the specific plot classes, sPlotView, graphView, and heatmapView, which
inherit from the plotView class.

The sPlotView class represents a scatterplot view and it has the extra slots, dfRows, xvar,
and yvar, where dfRows are the row names from the model that are shown in the plot, xvar is
the variable name (the column name if the model is a data frame) from the model that is shown
as the x variable in the plot, and yvar is the variable name (the column name if the model is a
data frame) from the model that is shown as the y variable in the plot. The graphView class
represents a graph plot view and it has the extra slot, grLayout, which holds a Ragraph object
that represents the layout of the graph plot. The heatmapView represents a heatmap view of
the data and it contains the slot, ordering, which is a list that is returned from the heatmap
function to give information about the dendrogram ordering. Note that some of these views
are only applicable for certain model types. For example, the graphView class will only make

3



sense for a view of a graph object, which would be stored in the graphModel class.
Several generic functions have been defined that refer to operations performed on views.

These generic functions are motionEvent, clickEvent, updateView, and redrawView. Meth-
ods for these generic functions will be defined in packages that use this package (in iSPlot
and iSNetwork). When these methods are defined, the motionEvent method will be used to
respond to a mouse over event on a view, the clickEvent method will be used to respond to
a click event over a view, the updateView method will be used to update only a portion of the
view, and the redrawView method will be used to completely redraw the view.

5 Message Classes

The message classes are intended to provide communication between different components of
the MVC design, such as when the model changes a message needs to be sent to the views to
let them know that they should be updated. This communication between the model, view
and controller is crucial for the pieces to work together and yet, still be independent of each
other.

The object model for the message classes was derived from the idea that all messages
must have certain methods in common, such as initialize and handleMessage, because all
messages must be created and handled in some manner so that the message is read and acted
upon. Also, since messages are sent when something has changed, either through addition,
alteration, or deletion, the message classes reflect only certain operations. These common
purposes for the messages allow the message object model to be constructed, and this model
is shown in Figure 4.

Figure 4: Inheritance for Message Objects.

The above figure shows the inheritance structure for message objects that can be passed
within one MVC object and a later figure in this section will show the inheritance structure
for messages objects that can be passed between MVC objects.

4



As with the view classes, the top message class, gMessage, is a virtual class. It contains no
slots and its purpose is to bind the other message classes together.

Currently, there are two types of messages for messaging within a model, view, controller
object: an add and an update message. Both the add message, gAddMessage, and the update
message, gUpdateMessage, contain three slots, dataName, mData, and type. dataName is the
character string that gives the name of the model, mData is a list of data needed to perform the
addition or alteration operation, and type is a character string that gives the type of addition
or alteration to perform. Both gAddMessage and gUpdateMessage are virtual classes.

Since adding a view requires different information and methods from adding a model (and
similarly with updating views versus models), it makes sense to have two separate message
classes for these operations. Thus, when messages are sent between components, they are
from one of the following classes: gAddDataMessage, gAddViewMessage, gUpdateDataMes-
sage, and gUpdateViewMessage. As shown in Figure 4, the gAddDataMessage and gAd-
dViewMessage classes inherit from the gAddMessage class, and the gUpdateDataMessage and
gUpdateViewMessage classes inherit from the gUpdateMessage class.

The gAddDataMessage class represents a message to add a model and a MVC object be-
cause whenever a model is added, a MVC object is also added that contains this model. The
gAddViewMessage class represents a message to create a view.

The gUpdateDataMessage class represents a message to update a model. This message is
crucial for linking because it is responsible for ensuring that once a model has been updated
this information must propagate to any views of the model and this information must also be
passed along to any other MVC object that is related to this model. Because this information
gets passed to other MVC objects, this message also has one new slot, from, in addition to
the slots it inherits from gUpdateMessage. The from slot is the name of the model that the
update data message came from. This slot is necessary because the update data message can
come from one of two sources: the message can occur because of user interaction with a view
of this model or the message may occur because a different model that is linked to this model
has been updated. So the update data message may come from within this MVC object or
it may come from a different MVC object that has changed its model and is related to this
MVC object. Information on passing messages between MVC objects will be given later in
this section. Finally, the gUpdateViewMessage class represents a message to update a view.

Message classes have also been defined to pass information between MVC objects. The two
main types of messages, the add and update messages, will also be used here. The inheritance
structure for messages passed between MVC objects is shown in the figure below.

5



Figure 5: Inheritance for Message Classes that are Passed Between MVCs.

The first message class that will be discussed is gAddChildMessage. A gAddChildMessage
object will be very similar to a gAddDataMessage object because they are both adding a new
model and a new MVC object. The difference with a gAddChildMessage object is that it
must fill in some extra information to tie this new MVC object to its parent MVC object.
The gAddChildMessage class inherits from the gAddMessage class, with the same slots of
dataName, mData, and type. The dataName slot is the name of the new model (and new
MVC), the mData slot is a list that contains the model data and virtual data to fill the
modelData and virtualData slots, respectively, of the new model, and the type slot gives the
type of the model (currently, the options are “exprSet”, “graph”, or “data.frame”).

The next two message classes pertain to updating MVC objects when a parent MVC or child
MVC object has changed. These classes are gSendParentMessage and gSendChildMessage
and they both inherit from the gMessage class, as shown in Figure 5. The information these
two classes need to contain is a gUpdateDataMessage object. Thus, the gSendParentMessage
class has one slot, childUpdateDataMessage, and this slot contains the gUpdateDataMessage
object that was used to update the child model. Similarly, the gSendChildMessage class has
two slots, parentUpdateDataMessage and childName, where the parentUpdateDataMessage
slot contains the gUpdateDataMessage object that was used to update the parent model and
the childName slot contains the name of the child model that is being updated (because a
parent MVC can have more than one child MVC).

A generic function, handleMessage, is defined that will be used to read message objects.
Methods for this generic function will be defined in packages that use this package (iSPlot and
iSNetwork).

6



6 Event-Callback Function Class

Linking callback functions to events, such as a button click, a mouse movement or a key press
event, is what allows users to have an interactive environment. Then when an event happens
something will occur in response depending on the callback function linked to the event. Now
to create a flexible environment we do not want a callback function that always does the same
thing when an event occurs. For example, when a left button press event occurs, we may
sometimes want a point to be colored and at other times we may want a point to be hidden.
To allow this flexibility, a class called gEventFun was created. By using this class, users will
be able to change the response to an event.

The gEventFun class stores all of the information about a potential callback function.
Having the callback function information stored in an object will allow a user to connect
events to callback functions. The class definition for gEventFun is shown in the figure below.

Figure 6: The gEventFun Class.

As shown in Fig 6, the slots in the gEventFun class are callFun, shortName, and prepro-
cessFun. The callFun slot is the name of the callback function, the shortName slot is a short
description of the function, and the preprocessFun slot is a character vector of all preprocessing
functions that must be called before the callback function.

The callback function that is stored in the callFun slot must take only one parameter and
the class of this parameter will depend on the model class in the active MVC object. For
example, for a graph model, the parameter will be of class AgNode, representing a node in the
graph. For a data frame model, the parameter will be of class character, representing a row in
the data frame.

The preprocessing functions that are stored in the preprocessFun slot will take no param-
eters. The purpose of the preprocessing functions is to set some variables that the callback
function will need. Thus, not all callback functions will need preprocessing functions and if no
preprocessing functions are needed, then this slot will be NULL. If the callback function sets
the color of a node in a graph, then a preprocessing function is needed to determine what color
this will be. So in this example, the preprocessing function will open a color browser to allow
the user to choose what the new color will be.

7 Conclusions

The inheritance structure for the classes defined in this package are intended to be extensible.
If a user needs a model of a different type that is not currently represented, then a new model

7



class can be defined that inherits from the gModel virtual class. Similarly, new view and
message classes can be created if new views or messages are needed by a user.

As mentioned in Section 1 this package is intended to be a behind the scenes package that
is used by other packages for its class and generic function definitions. Currently, this package
is used by the iSPlot and iSNetwork packages.

8


	Overview
	MVC Class
	Model Classes
	View Classes
	Message Classes
	Event-Callback Function Class
	Conclusions

