
MLInterfaces : towards uniform behavior of machine
learning tools in R

VJ Carey, J Mar, R Gentleman

April 25, 2006

1 Introduction

We define machine learning methods as data based algorithms for prediction. Given data
D, a generic machine learning procedure MLP produces a function ML = MLP(D). For
data D’ with structure comparable to D, ML(D’) is a set of predictions about elements
of D’.

To be slightly more precise, a dataset D is a set of records. Each record has the
same structure, consisting of a set of features (predictors) and one or more predictands
(classes or responses of interest, to be predicted). MLP uses features, predictands, and
tuning parameter settings to construct the function ML. ML is to be a function from
features only to predictands.

There are many packages and functions in R that provide machine learning proce-
dures. They conform to the abstract setup described above, but with great diversity in
the details of implementation and use. The input requirements and the output objects
differ from procedure to procedure.

Our objective in MLInterfaces is to simplify the use and evaluation of machine learn-
ing methods by providing specifications and implementations for a uniform interface.
(The tune procedures in e1071 also pursue more uniform interface to machine learning
procedures.) At present, we want to simplify use of machine learning with microarray
data, assumed to take the form of exprSets. The present implementation addresses the
following concerns:

� simplify the selection of the predictand from exprSet structure;

� simplify (in fact, require) decomposition of input data into training and test set,
with output emphasizing test set results;

� provide a uniform output structure.

The output structures currently supported are subclasses of a general class MLOutput ,
described in Section 3.1 below.

Several other concerns will be addressed as the project matures. Among these are:

1

� generic interfaces for cross-validation (exploiting native resources when available)

� simplified specification of criteria for outlier and doubt predictions

� appropriate visualizations.

To give a flavor of the current implementation, we perform a few runs with different
machine learning tools. We will use 60 genes drawn arbitrarily from Golub’s data.

> library(MLInterfaces)

> library(golubEsets)

> data(golubMerge)

> smallG <- golubMerge[200:259,]

> smallG

Expression Set (exprSet) with

60 genes

72 samples

phenoData object with 11 variables and 72 cases

varLabels

Samples: Sample index

ALL.AML: Factor, indicating ALL or AML

BM.PB: Factor, sample from marrow or peripheral blood

T.B.cell: Factor, T cell or B cell leuk.

FAB: Factor, FAB classification

Date: Date sample obtained

Gender: Factor, gender of patient

pctBlasts: pct of cells that are blasts

Treatment: response to treatment

PS: Prediction strength

Source: Source of sample

Here is how k-nearest neighbors is used to get predictions of ALL status, using the first
40 records as the training set:

> krun <- knnB(smallG, "ALL.AML", trainInd = 1:40)

> krun

MLOutput instance, method= knn

Call:

knnB(exprObj = smallG, classifLab = "ALL.AML", trainInd = 1:40)

predicted class distribution:

ALL AML

22 10

2

summary of class assignment quality scores:

Min. 1st Qu. Median Mean 3rd Qu. Max.

1 1 1 1 1 1

The confuMat method computes the confusion matrix resulting from applying the trained
model to the reserved test data:

> confuMat(krun)

predicted

given ALL AML

ALL 18 3

AML 4 7

Additional parameters can be supplied as accepted by the target procedure in package
class . To use a neural net in the same context (with fewer genes to simplify the summary
below)

> set.seed(1234)

> nns <- nnetB(smallG[1:10,], "ALL.AML", trainInd = 1:40, size = 2,

+ decay = 0.01, maxit = 250)

weights: 25

initial value 27.327352

iter 10 value 25.018790

iter 20 value 21.799662

iter 30 value 19.267699

iter 40 value 14.859899

iter 50 value 10.836288

iter 60 value 8.196922

iter 70 value 8.182311

iter 80 value 7.381528

iter 90 value 7.291806

iter 100 value 7.204848

iter 110 value 7.185043

iter 120 value 7.159077

iter 130 value 6.803327

iter 140 value 6.779275

iter 150 value 6.778553

iter 160 value 6.778405

iter 170 value 6.778377

iter 180 value 6.778356

iter 190 value 6.778342

iter 190 value 6.778342

3

iter 190 value 6.778342

final value 6.778342

converged

> nns

MLOutput instance, method= nnet

a 10-2-1 network with 25 weights

inputs: D13627_at D13628_at D13630_at D13633_at D13634_at D13635_at D13636_at D13637_at D13639_at D13640_at

output(s): sampLab

options were - entropy fitting decay=0.01

Call:

nnetB(exprObj = smallG[1:10,], classifLab = "ALL.AML", trainInd = 1:40,

size = 2, decay = 0.01, maxit = 250)

predicted class distribution:

ALL AML

24 8

summary of class membership probabilities:

[,1]

Min. 0.04531

1st Qu. 0.04531

Median 0.04531

Mean 0.26910

3rd Qu. 0.19470

Max. 0.99850

> confuMat(nns)

predicted

given ALL AML

ALL 18 3

AML 6 5

2 Usage

The basic call sequence for supervised learning for exprSets is

methB(eset, tag, trainInd, ...)

The parameter tag is the name of the phenoData element to be used as predictand.
Parameter trainInd is an integer sequence isolating the samples to be used for training.
For unsupervised learning,

methB(eset, k, height, ...)

4

The idea here is that one may specify a number k of clusters, or a height of a clustering
tree that will be cut to form clusters from the eset samples. Note that there is no
training/test dichotomy for clustering at this stage.

The RObject method will access the fit object from the basic procedure. Thus,
returning to the nnetB invocation above, we have

> summary(RObject(nns))

a 10-2-1 network with 25 weights

options were - entropy fitting decay=0.01

b->h1 i1->h1 i2->h1 i3->h1 i4->h1 i5->h1 i6->h1 i7->h1 i8->h1 i9->h1

0.00 0.02 -0.17 0.07 0.03 -0.02 -0.05 -0.06 -0.07 0.01

i10->h1

0.00

b->h2 i1->h2 i2->h2 i3->h2 i4->h2 i5->h2 i6->h2 i7->h2 i8->h2 i9->h2

0.00 -0.10 0.12 -0.10 0.16 0.08 0.21 0.00 -0.10 0.00

i10->h2

0.03

b->o h1->o h2->o

0.59 -3.64 5.94

which is the customary nnet summary. This also gives access to visualization.

> ags <- agnesB(smallG, k = 4, height = 0, stand = FALSE)

> plot(RObject(ags), which.plot = 2)

5

1 9
12

40 57
27

20
2 35 3

10 11 59
42

24 65
26 63

46 8
28 30

66 18 68
19 34 5

2
13 17 14 56 2

3
6 50 38 41

61
7 31 4
8 4

4 45
21

33 71
25 70

36
29

53 60
72

4 32
67

22 62 69
64

37
39 58

49 4
3 15 47

16
5

55
51 54

0
20

00
60

00
10

00
0

14
00

0
Dendrogram of cluster::agnes(x = dat, metric = metric, stand = stand, method = method,

Dendrogram of keep.diss = keep.diss, keep.data = keep.data)

Agglomerative Coefficient = 0.73
dat

H
ei

gh
t

3 Classes

The S4 class structure is based on a few observations. First, there are two basic types
of task covered in machine learning, ‘supervised’ (MLP uses known classes and ML re-
turns predictand instances) and ‘unsupervised’ (MLP groups data based on features,
no predictand data assumed; ML can tell which group D’ is closest to). Second, there
is an important concept of ‘quality’ of prediction or clustering events, and it will be
important to allow flexible representation of different approaches to quality measure-
ment by machine learning procedures. Third, there are various things that one always
wants access to, regardless of the underlying MLP (call information, R object consti-
tuting the ‘fit’ to the training data). This leads to general classes MLOutput, which
collects the most general information of interest, MLLabel, which represents predictand
or clustergroup information, and MLScore, which represents quality information. Classes
classifOutput and clustOutput manage the results of supervised and unsupervised
learning respectively.

6

3.1 MLOutput

Extended by all machine learning output containers.

> getClass("MLOutput")

Slots:

Name: method RObject call distMat

Class: character ANY call dist

Known Subclasses: "classifOutput", "clustOutput"

3.1.1 MLLabel

Identifies the results of machine learning labeling events, either in the form of class labels
or integer cluster indices.

> getClass("MLLabel")

Virtual Class

No Slots, prototype of class "list"

Known Subclasses: "predClass", "groupIndex"

3.1.2 MLScore

Identifies quality information about classification or clustering events. This can range
from a scalar (agglomeration coefficient, not yet used) to a vector (vote proportions
in knn) to a matrix (posterior probabilities of class assignments) to an array (pamr
thresholded posteriors).

> getClass("MLScore")

Virtual Class

No Slots, prototype of class "list"

Known Subclasses: "probMat", "probArray", "membMat", "qualScore", "silhouetteVec"

7

3.2 classifOutput

Container for classification results.

> getClass("classifOutput")

Slots:

Name: predLabels predScores trainInds allClass method RObject

Class: MLLabel MLScore integer character character ANY

Name: call distMat

Class: call dist

Extends: "MLOutput"

3.3 clustOutput

Container for clustering results.

> getClass("clustOutput")

Slots:

Name: clustIndices clustScores method RObject call

Class: MLLabel MLScore character ANY call

Name: distMat

Class: dist

Extends: "MLOutput"

4 A sketch of a ‘doubt’ computation

The nnet function returns a structure encoding predicted probabilities of class occu-
pancy. We will use this to enrich the nnetB output to include a “doubt” outcome. As
written this code will handle a two-class outcome; additional structure emerges with
more than two classes and some changes will be needed for such cases.

First we obtain the predicted probabilities (for the test set) and round these for
display purposes.

> predProb <- round(nns@predScores, 3)

We save the true labels and the predicted labels.

8

> truth <- as.character(smallG$ALL.AML[-c(1:40)])

> simpPred <- predict(RObject(nns), newdata = data.frame(t(exprs(smallG)[1:10,

+ -c(1:40)])), type = "class")

We create a closure that allows boundaries of class probabilities to be specified for
assertion of “doubt”:

> douClo <- function(pprob) function(lo, hi) pprob > lo & pprob <

+ hi

Evaluate the closure on the predicted probabilities, yielding a function of two arguments
(lo, hi).

> smallDou <- douClo(predProb)

Now replace the labels for those predictions that are very close to .5.

> douPred <- simpPred

> douPred[smallDou(0.48, 0.52)] <- "doubt"

The resulting modified predictions are in the fourth column:

> mm <- cbind(predProb, truth, simpPred, douPred)

> mm

truth simpPred douPred

1 "0.643" "ALL" "AML" "AML"

2 "0.045" "ALL" "ALL" "ALL"

3 "0.045" "ALL" "ALL" "ALL"

4 "0.045" "ALL" "ALL" "ALL"

5 "0.045" "ALL" "ALL" "ALL"

6 "0.94" "ALL" "AML" "AML"

7 "0.045" "ALL" "ALL" "ALL"

8 "0.045" "ALL" "ALL" "ALL"

9 "0.045" "ALL" "ALL" "ALL"

10 "0.045" "ALL" "ALL" "ALL"

11 "0.999" "ALL" "AML" "AML"

12 "0.045" "ALL" "ALL" "ALL"

13 "0.045" "ALL" "ALL" "ALL"

14 "0.045" "ALL" "ALL" "ALL"

15 "0.045" "ALL" "ALL" "ALL"

16 "0.045" "ALL" "ALL" "ALL"

17 "0.045" "ALL" "ALL" "ALL"

18 "0.045" "ALL" "ALL" "ALL"

19 "0.045" "ALL" "ALL" "ALL"

9

20 "0.045" "ALL" "ALL" "ALL"

21 "0.045" "ALL" "ALL" "ALL"

22 "0.999" "AML" "AML" "AML"

23 "0.999" "AML" "AML" "AML"

24 "0.045" "AML" "ALL" "ALL"

25 "0.045" "AML" "ALL" "ALL"

26 "0.045" "AML" "ALL" "ALL"

27 "0.045" "AML" "ALL" "ALL"

28 "0.045" "AML" "ALL" "ALL"

29 "0.045" "AML" "ALL" "ALL"

30 "0.999" "AML" "AML" "AML"

31 "0.999" "AML" "AML" "AML"

32 "0.947" "AML" "AML" "AML"

> table(mm[, "truth"], mm[, "simpPred"])

ALL AML

ALL 18 3

AML 6 5

> table(mm[, "truth"], mm[, "douPred"])

ALL AML

ALL 18 3

AML 6 5

10

	Introduction
	Usage
	Classes
	MLOutput
	MLLabel
	MLScore

	classifOutput
	clustOutput

	A sketch of a `doubt' computation

