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1 Introduction

We have developed an empirical Bayes methodology for gene expression data to account
for replicate arrays, multiple conditions, and a range of modeling assumptions. The
methodology is implemented in the R package EBarrays. Functions calculate posterior
probabilities of patterns of differential expression across multiple conditions. Model
assumptions can be checked. This vignette provides a brief overview of the methodol-
ogy and its implementation. For details on the methodology, see Newton et al. 2001,
Kendziorski et al., 2003, and Newton and Kendziorski, 2003. We note that some of the
function calls in version 1.1 of EBarrays have changed.
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2 General Model Structure: Two Conditions

Our models attempt to characterize the probability distribution of expression measure-
ments xj = (xj1, xj2, . . . , xjI) taken on a gene j. As we clarify below, the parametric
specifications that we adopt allow either that these xj,i are recorded on the original mea-
surement scale or that they have been log-transformed. Additional assumptions can be
considered within this framework. A baseline hypothesis might be that the I samples are
exchangeable (i.e., that potentially distinguishing factors, such as cell-growth conditions,
have no bearing on the distribution of measured expression levels). We would thus view
measurements xji as independent random deviations from a gene-specific mean value µj

and, more specifically, as arising from an observation distribution fobs(·|µj).
When comparing expression samples between two groups (e.g., cell types), the sample

set {1, 2, . . . , I} is partitioned into two subsets, say s1 and s2; sk contains the indices
for samples in group k. The distribution of measured expression may not be affected by
this grouping, in which case our baseline hypothesis above holds and we say that there
is equivalent expression, EEj, for gene j. Alternatively, there is differential expression,
DEj; our formulation requires that there now be two different means, say µj1 and µj2,
corresponding to measurements in s1 and s2, respectively. We assume that the gene
effects arise independently and identically from a system-specific distribution π(µ). This
allows for information sharing amongst genes. Were we instead to treat the µj’s as fixed
effects, there would be no information sharing and potentially a loss in efficiency.

Let p denote the fraction of genes that are differentially expressed (DE); then 1− p
denotes the fraction of genes equivalentlly expressed (EE). An EE gene j presents data
xj = (xj1, . . . , xjI) according to a distribution

f0(xj) =

∫ ( I∏
i=1

fobs(xji|µ)

)
π(µ) dµ. (1)

Alternatively, if gene j is differentially expressed, the data xj = (xj1,xj2) are governed
by the distribution

f1(xj) = f0(xj1) f0(xj2) (2)

owing to the fact that different mean values govern the different subsets xj1 and xj2 of
samples. The marginal distribution of the data becomes

pf1(xj) + (1− p)f0(xj). (3)

With estimates of p, f0, and f1, the posterior probability of differential expression is
calculated by Bayes’ rule as

p f1(xj)

p f1(xj) + (1− p) f0(xj)
. (4)
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To review, the distribution of data involves an observation component, a component
describing variation of mean expression µj, and a discrete mixing parameter p governing
the pattern of expression between conditions. The first two pieces combine to form a
key predictive distribution f0(·) (see (1)), which enters both the marginal distribution
of data (3) and the posterior probability of differential expression (4).

3 Multiple Conditions

Many studies take measurements from more than two cellular conditions, and this leads
us to consider more patterns of mean expression than simply DE and EE. For exam-
ple, with three conditions, there are five possible patterns among the means, including
equivalent expression across the three conditions (1 pattern), altered expression in just
one condition (3 patterns), and distinct expression in each condition (1 pattern). We
view a pattern of expression for a gene j as a grouping or clustering of conditions so that
the mean level µj is the same for all conditions grouped together. With microarrays
from four cell conditions, there are 15 different patterns, in principle, but with extra
information we might reduce the number of patterns to be considered. We discuss an
application in Section 6 in which ten array sets are measured across four cell conditions,
but the context tells us to look only at a particular subset of four patterns.

We always entertain the null pattern of equivalent expression among all conditions.
Consider m additional patterns so that m+1 distinct patterns of expression are possible
for a data vector xj = (xj1, . . . , xjI) on some gene j. Generalizing (3), xj is governed by
a mixture of the form

m∑
k=0

pkfk(xj), (5)

where {pk} are mixing proportions and component densities {fk} give the predictive
distribution of measurements for each pattern of expression. Consequently, the posterior
probability of expression pattern k is

P (k|xj) ∝ pkfk(xj). (6)

The pattern-specific predictive density fk(xj) may be reduced to a product of f0(·)
contributions from the different groups of conditions, just as in (2); this suggests that
the multiple-condition problem is really no more difficult computationally than the two-
condition problem except that there are more unknown mixing proportions pk. Fur-
thermore, it is this reduction that easily allows additional parametric assumptions to be
considered within the EBarrays framework. In particular, two forms for f0 are currently
specified (see section 4), but other assumptions can be considered simply by providing
alternative forms for f0.
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The posterior probabilities (6) summarize our inference about expression patterns at
each gene. They can be used to identify genes with altered expression in at least one
condition, to order genes within conditions, or to classify genes into distinct expression
patterns.

4 The Gamma Gamma and Lognormal Normal mod-

els

We consider two particular specifications of the general mixture model described above.
Each is determined by the choice of observation component and mean component, and
each depends on a few additional parameters θ to be estimated from the data. As we will
demonstrate, the model assumptions can be checked using diagnostic tools implemented
in EBarrays, and additional models can be easily implemented.

In the Gamma-Gamma (GG) model, the observation component is a Gamma distri-
bution having shape parameter α > 0 and a mean value µj; thus, with scale parameter
λ = α/µj,

fobs(x|µj) =
λαxα−1 exp{−λx}

Γ(α)

for measurements x > 0. Note that the coefficient of variation in this distribution is
1/
√

α, taken to be constant across genes j. Matched to this observation component is a
marginal distribution π(µj), which we take to be an inverse Gamma. More specifically,
fixing α, the quantity λ = α/µj has a Gamma distribution with shape parameter α0

and scale parameter ν. Thus, three parameters are involved, θ = (α, α0, ν), and, upon
integration, the key density f0(·) has the form

f0(x1, x2, . . . , xI) = K

(∏I
i=1 xi

)α−1

(
ν +

∑I
i=1 xi

)Iα+α0
, (7)

where

K =
να0 Γ(Iα + α0)

ΓI(α) Γ(α0)
.

In the lognormal normal (LNN) model, the gene-specific mean µj is a mean for the
log-transformed measurements, which are presumed to have a normal distribution with
common variance σ2. Like the GG model, LNN also demonstrates a constant coefficient
of variation:

√
exp(σ2)− 1 on the raw scale. A conjugate prior for the µj is normal with
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some underlying mean µ0 and variance τ 2
0 . Integrating as in (1), the density f0(·) for

an n-dimensional input becomes Gaussian with mean vector µ
0

= (µ0, µ0, . . . , µ0)
t and

exchangeable covariance matrix

Σn =
(
σ2
)
In +

(
τ0

2
)
Mn,

where In is an n× n identity matrix and Mn is an n× n matrix of ones.
The GG and LNN models characterize fluctuations in array data using a small num-

ber of parameters, and both involve the assumption of a constant coefficient of variation
(CV). The appropriateness of these assumptions can be checked.

5 EBarrays

The EBarrays package can be loaded by

> library(EBarrays)

Loading required package: Biobase

Loading required package: lattice

The main user visible functions available in EBarrays are:

emfit fits the EB model using an EM algorithm
postprob generates posterior probabilities for expression patterns
plotMarginal generates predictive marginal distribution from fitted model and

compares with estimated marginal (kernel) density of the data
ebPatterns generates expression patterns
checkCCV diagnostic plot to check for constant coefficient of variation
checkModel generates diagnostic plots to check

Gamma or Log-Normal assumption
on observation component

along with some other utility functions. The form of the parametric model is specified
as an argument to emfit, which can be an object of formal class“ebarraysFamily”. These
objects are built into EBarrays for the GG and LNN models described above. It is pos-
sible to create new instances, using the description given in help(”ebarraysFamily-class”).

The data can be supplied either as a matrix, or as an“exprSet”object. It is expected
that the data be normalized intensity values, with rows representing genes and columns
representing chips. Furthermore, the data must be on the raw scale (not on a logarithmic
scale). All rows that contain at least one negative value are omitted from the analysis.

The columns of the data matrix are assumed to be grouped into a few experimental
conditions. The columns (arrays) within a group are assumed to be replicates obtained
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under the same experimemntal conditions, and thus to have the same mean expression
level across arrays for each gene. This information is usually contained in the“phenodata”
slot of an“exprSet”object.

As an example, consider a hypothetical dataset with I = 10 arrays taken from two
conditions — five arrays in each condition ordered so that the first five columns contain
data from the first condition. In this case, the phenodata can be represented as

1 1 1 1 1 2 2 2 2 2

Thus, there are two, possibly distinct, levels of expression for each gene and two potential
patterns or hypotheses concerning its expression levels: µj1 = µj2 and µj1 6= µj2. These
patterns can be denoted by

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 2 2 2 2 2

representing, in this simple case, equivalent and differential expression for a gene respec-
tively. The choice of admissible patterns is critical in defining the model we try to fit.
EBarrays has a function ebPatterns that can read pattern definitions from an external file
or a character vector that supplies this information in the above notation. For example,

> pattern <- ebPatterns(c("1, 1, 1, 1, 1, 1, 1, 1, 1, 1",

+ "1, 1, 1, 1, 1, 2, 2, 2, 2, 2"))

> pattern

Collection of 2 patterns

Pattern 1 has 1 group

Group 1: 1 2 3 4 5 6 7 8 9 10

Pattern 2 has 2 groups

Group 1: 1 2 3 4 5

Group 2: 6 7 8 9 10

As discussed below, such patterns can be more complicated in general. For experiments
with more than two groups, there can be many more patterns. Zeros can be used in this
notation to identify arrays that are not used in model fitting or analysis.

6 Application

In collaboration with Dr. M.N. Gould’s laboratory in Madison, we have been investi-
gating gene expression patterns of mammary epithelial cells in a rat model of breast
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cancer. EBarrays contains part of a dataset from this study (5000 genes in 4 biological
conditions; 10 arrays total) to illustrate the mixture model calculations. For details on
the full data set and analysis, see Kendziorski et al. (2003).

The data can be read in by

> data(gould)

The experimental information on this data are as follows: in column order, there is
one sample in condition 1, two samples in condition 2, five samples in condition 3, and
two samples in condition 4:

1 2 2 3 3 3 3 3 4 4

Before we proceed with the analysis, we need to tell EBarrays what patterns of mean
expression will be considered in the analysis. Let us first ignore conditions 3 and 4 and
compare conditions 1 and 2. There are two possible expression patterns (µCond1 = µCond2

and µCond1 6= µCond2). This information can be entered as character strings above, or
they could also be read from a patternfile which contains the following lines:

1 1 1 0 0 0 0 0 0 0

1 2 2 0 0 0 0 0 0 0

A zero column indicates that the data in that condition are not considered in the analysis.
The patterns are entered as

> pattern <- ebPatterns(c("1,1,1,0,0,0,0,0,0,0",

+ "1,2,2,0,0,0,0,0,0,0"))

> pattern

Collection of 2 patterns

Pattern 1 has 1 group

Group 1: 1 2 3

Pattern 2 has 2 groups

Group 1: 1

Group 2: 2 3

An alternative approach would be to define a new data matrix containing intensities
from conditions 1 and 2 only and define the associated patterns

1 1 1

1 2 2
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This may be useful in some cases, but in general we recommend importing the full data
matrix and defining the pattern matrix as a 2× 10 matrix with the last seven columns
set to zero. Doing so facilitates comparisons of results among different analyses since
certain attributes of the data, such as the number of genes that are positive across each
condition, do not change.

Preliminary data analysis can be done using standard R and Bioconductor functions.
There are also diagnostics built into EBarrays. For example, the checkCCV function
can be used to see if there is any relationship between the mean expression level and
the coefficient of variation. Recall that both GG and LNN models assume a constant CV.

Another way to assess the goodness of the parametric model is to look at Gamma or
Log-Normal QQ plots for subsets of the data sharing common empirical mean intensities.
For this, we can choose a small number of locations for the mean value, and look at the
QQ plots for the subset of measured intensities in a small window around each of those
locations.

Figure 1 shows that the assumption of a constant coefficient of variation is reason-
able for the small data set considered here. If necessary, the data could be transformed
based on this cv plot prior to analysis. Figure 2 shows a second diagnostic plot for nine
subsets of nb = 100 genes spanning the range of mean expression. Shown are qq plots
against the best-fitting Gamma distribution. The fit is reasonable here. Note that we
only expect these qq plots to hold for equivalently expressed genes, so some violation is
expected in general. Figure 3 shows the same diagnostic for the LNN model.

Using emfit, we can fit either the GG or the LNN model. We recommend fitting both
for the sake of comparison. Posterior probabilities can then be obtained using postprob.
The approach is illustrated below. Output is shown for 10 iterations. The output from
emfit by default contains slots called thetaTrace and probTrace, which contain parameter
estimates at each iteration. It is recommended that these be checked for convergence.

> gg.em.out <- emfit(gould, family = "GG",

+ hypotheses = pattern, num.iter = 10)

> gg.em.out

EB model fit

Family: GG ( Gamma-Gamma )

Model parameter estimates:

alpha alpha0 nu

13.262687 1.107481 43.729656
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> checkCCV(gould[, 1:3])
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Figure 1: Coefficient of variation (CV) as a function of the mean.
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> print(checkModel(gould, model = "gamma",

+ nb = 100))
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Figure 2: Gamma qq plot.
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> print(checkModel(gould, model = "lognormal",

+ nb = 100))
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Figure 3: Log-Normal qq plot.
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Estimated mixing proportions:

p1 p2

0.997019899 0.002980101

Additional slots: @hypotheses, @thetaTrace, @probTrace

> gg.post.out <- postprob(gg.em.out,

+ gould)

> sum(gg.post.out[, 2] > 0.5)

[1] 8

> lnn.em.out <- emfit(gould, family = "LNN",

+ pattern, num.iter = 10)

> lnn.em.out

EB model fit

Family: LNN ( Lognormal-Normal )

Model parameter estimates:

mu_0 sigma^2 tao_0^2

6.73320399 0.08110462 1.13608252

Estimated mixing proportions:

p1 p2

0.993318883 0.006681117

Additional slots: @hypotheses, @thetaTrace, @probTrace

> lnn.post.out <- postprob(lnn.em.out,

+ gould)

> sum(lnn.post.out[, 2] > 0.5)

[1] 19

> sum(gg.post.out[, 2] > 0.5 & lnn.post.out[,

+ 2] > 0.5)

[1] 6
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Using 0.5 as the threshold posterior probability, there are 8 genes identified as most
likely differentially expressed via the GG model and 19 via the LNN. Note that 6 of the 8
identified by the GG model are also identified by LNN. Further diagnostics are required
to investigate model fit and to consider the genes identified by the LNN but not by the
GG.

A plot of the marginal distributions under each model can be compared with the em-
pirical distribution to further assess model fit. Figure 4 shows this plot for the Gamma-
Gamma model, and Figure 5 for the Lognormal-Normal model. This visual comparison
suggests that the LNN model provides a better fit. Additional diagnostics can be useful.

> print(plotMarginal(gg.em.out, gould[,

+ 1:3]))
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Figure 4: Empirical and theoretical marginal densities of log expressions for the Gamma-
Gamma model.
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> print(plotMarginal(lnn.em.out,

+ gould[, 1:3]))
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Figure 5: Marginal densities for Lognormal-Normal model
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A nice feature of EBarrays is that comparisons among more than two groups can be
carried out simply by changing the pattern matrix. For the four conditions, there are
15 possible expression patterns; however, for this case study, four were of most interest.
The null pattern (pattern 1) consists of equivalent expression across the four conditions.
The three other patterns allow for differential expression. Differential expression in con-
dition 1 only is specified in pattern 2; DE in condition 4 only is specified in pattern 4.

The pattern matrix for the four group analysis is now given by

1 1 1 1 1 1 1 1 1 1

1 2 2 2 2 2 2 2 2 2

1 2 2 1 1 1 1 1 2 2

1 1 1 1 1 1 1 1 2 2

> pattern4 <- ebPatterns(c("1, 1, 1, 1, 1, 1, 1, 1, 1, 1",

+ "1, 2, 2, 2, 2, 2, 2, 2, 2, 2",

+ "1,2,2,1,1,1,1,1,2,2", "1,1,1,1,1,1,1,1,2,2"))

> pattern4

Collection of 4 patterns

Pattern 1 has 1 group

Group 1: 1 2 3 4 5 6 7 8 9 10

Pattern 2 has 2 groups

Group 1: 1

Group 2: 2 3 4 5 6 7 8 9 10

Pattern 3 has 2 groups

Group 1: 1 4 5 6 7 8

Group 2: 2 3 9 10

Pattern 4 has 2 groups

Group 1: 1 2 3 4 5 6 7 8

Group 2: 9 10

emfit and postprob are called as before.

> gg4.em.out <- emfit(gould, family = "GG",

+ pattern4, num.iter = 10)

> gg4.em.out
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EB model fit

Family: GG ( Gamma-Gamma )

Model parameter estimates:

alpha alpha0 nu

17.899113 1.077009 30.368735

Estimated mixing proportions:

p1 p2 p3

0.9780804288 0.0186480536 0.0024030494

p4

0.0008684683

Additional slots: @hypotheses, @thetaTrace, @probTrace

> gg4.post.out <- postprob(gg4.em.out,

+ gould)

> lnn4.em.out <- emfit(gould, family = "LNN",

+ pattern4, num.iter = 10)

> lnn4.em.out

EB model fit

Family: LNN ( Lognormal-Normal )

Model parameter estimates:

mu_0 sigma^2 tao_0^2

6.72002011 0.06051488 1.16232054

Estimated mixing proportions:

p1 p2 p3

0.974779403 0.020443944 0.003031844

p4

0.001744809

Additional slots: @hypotheses, @thetaTrace, @probTrace

> lnn4.post.out <- postprob(lnn4.em.out,

+ gould)
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The output from postprob is now a matrix with number of rows equal to the number
of genes and number of columns equal to 4 (one for each pattern considered). A brief
look at the output matrices shows that 51 genes are identified as being in pattern 2
(using 0.5 as the threshold posterior probability) under the GG model and 61 under the
LNN model; 45 of the 51 genes identified by GG are also identified by LNN. Gene id’s
for 10 are shown. Figures 6 and 7 show marginal plots similar to Figures 4 and 5.

> sum(gg4.post.out[, 2] > 0.5)

[1] 51

> sum(lnn4.post.out[, 2] > 0.5)

[1] 61

> sum(gg4.post.out[, 2] > 0.5 & lnn4.post.out[,

+ 2] > 0.5)

[1] 45

> gene.ids <- geneNames(gould)[gg4.post.out[,

+ 2] > 0.5 & lnn4.post.out[,

+ 2] > 0.5]

> gene.ids[1:10]

[1] "X59864mRNA.at"

[2] "D26307cds.at"

[3] "AF039583.s.at"

[4] "J05232cds.s.at"

[5] "J04503.g.at"

[6] "AB003753cds.2.at"

[7] "M12822cds.f.at"

[8] "rc.AA859768.at"

[9] "S77492.i.at"

[10] "S77528cds.s.at"

7 Appendix: older versions of EBarrays

The interface for EBarrays has changed considerably since earlier versions, which required,
among other things, the data file to be in a particular format. EBarrays contains a utility
function createExprSet that reads such a file into an object of class“exprSet”. Details are
described in the help page for createExprSet.
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> print(plotMarginal(gg4.em.out,

+ data = gould))
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Figure 6: Marginal densities for Gamma-Gamma model
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> print(plotMarginal(lnn4.em.out,

+ data = gould))
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Figure 7: Marginal densities for Lognormal-Normal model
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