
Textual Description of Biobase

June 20, 2006

Introduction

Biobase is part of the Bioconductor project. It is meant to be the location of any reusable (or non–
specific) functionality. Biobase will be required by most of the other Bioconductor libraries.

1 Data Structures

Part of the Biobase functionality is the standardization of data structures for genomic data. Currently
we have designed some data structures to handle microarray data.

The exprSet class has the following slots:

exprs A matrix of expression levels. Arrays are columns and genes are rows.

se.exprs A matrix of standard errors for expressions if they are available. It will have length 0 if they
are not.

phenoData An object of class phenoData that contains phenotypic and/or experimental data.

description A description of the experiment (object of class MIAME)

annotation A character string indicating the base name for the associated annotation.

notes A set of notes describing aspects or features of the data, the analysis, processing done, etc.

These data are extremely large and complex. To deal with them effectively we will need better
tools for combining data and documentation. The exprSet class represents an initial attempt by the
Bioconductor project to provide better tools for documenting and handling these large and complex
data sets.

The expression data represent experimentally derived data. In most cases these data will benefit
from making use of biologically relevant meta-data. The meta-data are very large and diverse. In order
to facilitate interactions and explorations we have taken the approach of constructing a specialized meta-
data package for each chip or instrument. Many of these packages are available from the Bioconductor
web site. These packages contain information such as the gene name, symbol and chromosomal location.
There are other meta-data packages that contain the information that is provided by other initiatives
such as GO and KEGG. These data can then be linked to the exprSet via the annotation slot.

The annotate package provides basic data manipulation tools for the meta-data packages.
The phenoData class has the following slots:

pData A dataframe where the rows are cases and the columns are variables.

varLabels A list of labels and descriptions for the variables represented by the columns of pData.

varMetaData A data.frame defining meta-data for the variables contained in the pData slot.

1

Instances of this class are essentially data.frame’s with some additional documentation on the
variables stored in the varLabels and varMetaData slots.

A mechanism for ensuring that the elements of the phenoData slot of an instance of exprSet are
in the same order as the columns of the exprs array is needed. It is important that these be properly
aligned since analyses will require this and automatic tools for checking will probably be better than
ad hoc ones.

In addition to the class definitions a number of special methods (or functions) have been defined to
operate on instances of these classes. Some particular attention has been paid to subsetting operations.
Instances of both phenoData and exprSet are closed under subsetting operations. That is, any subset
of one of these objects retains its class. There are also specialized print methods for objects of both
classes.

We consider an instance of an exprSet to be an expression array with some additional information.
Thus there are two subscripts, one for the rows and one for the columns. For that reason subsetting
works in the following ways:

� If the first subscript is given then the appropriate subset of rows from exprs and se.exprs is
taken. All the data in phenoData is propagated since no subset of cases was made.

� If the second subscript is given then the appropriate set of columns from exprs and se.exprs is
taken. At the same time the corresponding set of rows of phenoData are taken.

1.1 An exprSet Vignette

In the data directory for Biobase there is a small anonymized data set. It consists of expression level
data for 500 genes on 26 patients. The data can be accessed with the command data(geneData). There
are three artificial covariates provided as well. These can be accessed using data(geneCovariate) once
the Biobase library is attached.

The following vignette shows how to read in these data and to create an instance of the exprSet
class using those data. The first step is to create an object of phenoData calss. This object is used to
store the phenotype data. We will use the example data frame geneCovariate to create such an object.

> data(geneCovariate)

> head(geneCovariate)

sex type score
A Female Control 0.75
B Male Case 0.40
C Male Control 0.73
D Male Case 0.42
E Female Case 0.93
F Male Control 0.22

> phenoD <- new("phenoData", pData = geneCovariate, varLabels = list(sex = "Female/Male",

+ type = "Case/Control", score = "Testing Score"))

> phenoD

phenoData object with 3 variables and 26 cases
varLabels

sex: Female/Male
type: Case/Control
score: Testing Score

We also need a MIAME object to represent the background information, such as the names of the
experimenter and laboratory, for this data set.

2

> descr <- new("MIAME", name = "Pierre Fermat", lab = "Francis Galton Lab",

+ contact = "pfermat@lab.not.exist", title = "Smoking-Cancer Experiment",

+ abstract = "An example object of expression set (exprSet) class",

+ url = "www.lab.not.exist", other = list(notes = "An example object of expression set (exprSet) class"))

> descr

Experiment data
Experimenter name: Pierre Fermat
Laboratory: Francis Galton Lab
Contact information: pfermat@lab.not.exist
Title: Smoking-Cancer Experiment
URL: www.lab.not.exist
PMIDs:

Abstract: A 8 word abstract is available. Use 'abstract' method.

Moreover, we need a data.frame object to group the reporters (probes) at this data set (chip). The
definition of probe types is applied from Affymetrix GeneChip Expression Analysis Data Analysis Funda-
mentals (http://www.affymetrix.com/Auth/support/downloads/manuals/data_analysis_fundamentals_
manual.pdf), and the result is stored in the data.frame object reporter. This is a one-column data
frame. The rows represent the probe ids in the data set, and the values in the data frame are the
predefined types associated with each probe.

> data(reporter)

> head(reporter)

probeType
AFFX-MurIL2_at QC
AFFX-MurIL10_at QC
AFFX-MurIL4_at QC
AFFX-MurFAS_at QC
AFFX-BioB-5_at QC
AFFX-BioB-M_at QC

The data frame geneData, containing 500 probes and 26 samples, is a subset of real expression data
from an Affymetrix U95v2 chip. The seD is a matrix object containing the standard errors of geneData.
Finaly, we can put all objects together to create the exprSet object.

> data(geneData)

> data(seD)

> exSet <- new("exprSet", exprs = geneData, se.exprs = seD, phenoData = phenoD,

+ annotation = "hgu95av2", description = descr, notes = descr@other$notes,

+ reporterInfo = reporter)

> exSet

Expression Set (exprSet) with
500 genes
26 samples

phenoData object with 3 variables and 26 cases
varLabels

sex: Female/Male
type: Case/Control
score: Testing Score

3

http://www.affymetrix.com/Auth/support/downloads/manuals/data_analysis_fundamentals_manual.pdf
http://www.affymetrix.com/Auth/support/downloads/manuals/data_analysis_fundamentals_manual.pdf

If instead, you have the data stored in files, e.g. .csv files and want to read it in using read.table
you will need to do some conversion. read.table reads data into a data.frame, and this is fine for
the phenotypic data, but not for the expression data. You will need to convert the data.frame into
a matrix. The code example gives a short example of the commands that you would need to execute
if you have the expression data stored in a file named myexprs.csv and the phenotypic data in a file
named mycovs.csv.

myExprs = read.csv("myexprs.csv")
myExprsmat = as.matrix(myExprs)
myCovs = read.csv("mycovs.csv")

if(ncol(myExprsmat) != nrow(myCovs))
print("ERROR: these should be the same")

You should probably also check to ensure that you have the appropriate samples names used as row
names for myCovs and as column names for myExprsmat, and they must be in the same order. So, again
some pseudo-code that gives the essential ingredients is given next. If you are unclear on the difference
between a matrix and a data.frame then you should consult one of the very many introductory texts
on using R as well as the manual pages and documents that come with R.

if(!all.equal(row.names(myCovs), dimnames(myExprsmat)[[2]]))
print("ERROR: samples names are wrong")

Now, we are almost ready to create an instance of an exprSet object. The missing piece is a list of
descriptions for the covariates that constitute the phenotypic data. Suppose that we have two variables,
one the age of the patient in years and the other the particular translocation they are known to have.
And suppose that in the data.frame myCovs the column names are age and translocation. Then we
could make up the covariate descriptions as follows.

covDesc = list(age="age of the patient in years",
translocation="known translocation")

The purpose of this level of documentation is to help others who might want to re-analyze your
data, or you, if at some time in the future you need to go back and see what was done. By carefully
annotating the data, in a self-describing way, you increase the chances that you will understand what
was done. Below is the simplest form for creating an exprSet. We note that typically you would fill in
more details, like the name of the chip used and some additional data describing the experiment itself.

myphenoData = new("phenoData", pData=myCovs, varLabels=covDesc)

myEset = new("exprSet", exprs=myExprsmat, phenoData=myphenoData)

2 Aggregate

When performing an interative computation such as cross–validation or bootstrapping it is often useful
to be able to aggregate certain intermediate results. The Aggregate functions (and soon the Aggregate
class) provide some simple tools for doing this.

4

The strategy employed is to maintain the summary statistics in an environment. This is passed to
the iterative function. It does not need to be returned since environments have a pass–by–reference
semantic. Once the function has finished the environment can be queried for the summary statistics.

One simple task that people often want to carry out is to determine in a cross–validation calculation
which genes are selected the most often. In some sense these genes may form a more stable basis for
inference. Achieving that using an Aggregator is very straight forward.

At each iteration we will pass the names of the selected genes to the Aggregator. It has two functions,
one for initializing and one for updating (or aggregating). The aggregator also has an environment.
This environment stores the data that is being aggregated.

For our cross–validation example the process goes as follows:

1. At each iteration Aggregate is called with the list of genes selected.

2. For each gene in that list we check to see if it was selected before.

(a) If not then initfun is called with that gene name. The value returned by initfun is then
associated with the gene name in the aggregation environment.

(b) If so, then the current value is obtained and agfun is called with the the gene name and the
current value. This returns a new value that is then associated with the gene name in the
aggregation environment.

Basically we are using this as a form of updating hash table. At the same time we are slightly
subverting R’s usual pass–by–value semantics.

3 Session Information

The version number of R and packages loaded for generating the vignette were:

� Version 2.3.1 (2006-06-01), x86_64-unknown-linux-gnu

� Base packages: base, datasets, graphics, grDevices, methods, stats, tools, utils

� Other packages: Biobase 1.10.1

5

	Data Structures
	An exprSet Vignette

	Aggregate
	Session Information

