


What you will learn in this lecture

Exemplary applications
_inear discriminant analysis
How to get non-linear decision boundaries

Hyperparameters

Using cross-validation to
— tune parameters

— assess performance




Basics

e There are two basic kinds of machine learning algorithms,
supervised and unsupervised
e Supervised - classification: usually there is a training set
with features and class labels
e Unsupervised - clustering: there is no training set, or set
with known class labels
e Typically we have observations (individuals) with features
(covariates, phenotypes) measured on each observation
e All machine learning algorithms depend on finding some
measure of similarity (or distance) between observations
e In many situations the features will need to be transformed, or
manipulated (feature engineering) to better suit the task.
e Often feature selection - which features to use - or feature
engineering are part of the process



The diabetes data

library ("readr")
library ("magrittr")
diabetes = read csv("../data/diabetes.csv", col_names = TRUE)

diabetes

## # A tibble: 144 x 7

## id relwt glufast glutest steady insulin group
## <int> <dbl> <int> <int> <int> <int> <int>
## 1 1 0.81 80 356 124 55 3
## 2 3 0.94 105 319 143 105 3
## 3 5 1.00 90 323 240 143 3
## 4 7 0.91 100 350 221 119 3
## 5 9 0.99 97 379 142 98 3
## 6 11 0.90 91 353 221 53 3
## 7 13 0.96 78 290 136 142 3
## 8 15 0.74 86 312 208 68 3
## 9 17 1.10 90 364 152 76 3
## 10 19 0.83 85 296 116 60 3
## # ... with 134 more rows

diabetes$group %<>% factor

We used the forward-backward pipe operator $<>$% to convert the group column
into a factor. The plot is shown in Figure 13.4.

library ("ggplot2")
library ("reshape2")
ggplot (melt (diabetes, id.vars = e¢("id", "group")),
aes (x = value, col = group)) +
geom_density () + facet_wrap( ~variable, ncol = 1, scales = "free") +

theme (legend.position="bottom")

https://cran.r-project.org/web/packages/candisc/vignettes/
diabetes.html
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Figure 13.4: We see already from the one-
dimensional distributions that some of the
individual variables could potentially predict
which group a patient is more likely to belong to.
Our goal will be to combine variables to improve
these one dimensional predictions.



Diabetes Data

The candisc package can
give us some idea about
how the data are

distributed...
And potentially some ideas glufast
about how to best analyze
it.

“It is clear from this that there

is a problem of heterogeneity glutest

of variance-covariance matrices

here. The normal group shows

the smallest variances and the

overt diabetic group the instest

largest.”




Molecular classification of cancer
(multlple myeloma In newly dlagnosed patlents gene expressmn proflllng)
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Pathology
Patient diagnosis / stratification learning
Email - spam detection
Credit card fraud
Car insurance rates
Sorting your photo library I .
F— T UTTT—
X Y

Figure 13.3: In supervised learning, we assign two
different roles to our variables. We have labeled
the explanatory variables X and the response
variable(s) Y. There are also two different sets of
observations: the training set Xy and Yy and the
validation set X, and Yo,.
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Morphological Phenotyping

Provide Human Annotation to a small set of cells:
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Which mitotic phase is this?
Can we do this automatically?



Automatic Classification Workflow

Preprocessing
e.g. normalization, background subtraction,

Feature extraction
e.g. lightness, nucleus area, excentricity, ...
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Prophase/ Metaphase Classification

Predict mitotic state based Predict mitotic state based on

on brightness nucleus area
Prophase Metaphase count

count ! 144 Prophase . Metaphase
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Decision boundary with
lowest prediction error

Both features are informative, but none of them
individually has a good predictive power



A Simple Least Squares Classifier (1D)

decision boundary
Metaphase 2 -
Prophase S — e uo’/u".u [ °
| | I [ I
0 10 20 30
[ [ [ |
0 10 20 30
intensity
y[1i] = -1 for prophase
y[i] = +1 for metaphase
x[1i,] = intensity[i] Zi (J/i - ﬂxl’)z —> MIN
model = 1lm(y ~ X)

ynew = predict(model, newdata=newX)
ifelse(ynew < 0, “pro”, “meta”)



A Simple Least Squares Classifier (2D)

lightness
224 Prophase Metaphase

21} .
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14 ‘ ‘ ‘ ‘ > area
2 4 6 8 10

y[i] = +1 for prophase

y[i] = -1 for metaphase

X[1,] = c(area[i],lightness[i])

model = 1m(y~x)

ynew = predict(model, Xnew)
Sfitted.values

ifelse(ynew < 0, “meta”, *“pro”)



Linear discriminant Analysis (LDA) on the diabetes data

library ("MASS")

F) [
° ]
l

° . group

Why is the boundary | = .
between the prediction : @ =
regions for groups 2 | '

:g’ 800 - S ghat
and 3 not half-way 1
between the centers? .o 5
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insulin

ghat = predict (diabetes_lda) $class
table (ghat, diabetes$group)

. QDA: Represent each group by

## ghat 1 2 3

N a bivariate Normal N(4,, 2.,)

## 3 112 70
mean (ghat != diabetes$group) LD‘ \- Zg I Z

## [1] 0.1736111



Hiiragi mouse embryo single cell expression data

library ("Hiiragi2013")

data ("x")

probes = c("1426642_at", "1418765_at", "1418864_at",

embryoCells = t (exprs(x) [probes, ]) %>% as_tibble
mutate (Embryonic.day = x$Embryonic.day) %>%
filter (xSgenotype == "WI")

library ("mouse4302.db")

anno = AnnotationDbi: :select (mouse4302.db, keys = probes,

columns = ¢ ("SYMBOL", "GENENAME"))

anno

## PROBEID SYMBOL

## 1 1426642_at Fnl

## 2 1418765_at Timd2

## 3 1418864_at Gata4

## 4 1416564_at Sox7

## GENENAME

## 1 fibronectin 1

## 2 T cell immunoglobulin and mucin domain containing 2

## 3 GATA binding protein 4

## 4 SRY (sex determining region Y)-box 7
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Figure 13.10: LDA classification regions for
Embryonic.day.
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Figure 13.11: QDA for the mouse cell data. Shown
are all pairwise plots of the four features.



k-Nearest-Neighbor Classifier

lightness
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Two ways to think about classifiers

® One can think of classifiers as working in two different ways
e One way is to decide on (estimate) the decision boundary -
thereby tiling the k dimensional space you are working in.
@ Then once you know what region you classify accordingly
e An alternative: decide where the cluster centroids are then
assign according to whether the new observation is closer to one
centroid or another.
® You can use different measures of distance to effectively
stretch or shrink in different directions (often accounting for
different units of measurement, or directions of more variation
in the data)
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https://link.springer.com/article/10.1007/s10845-019-01504-w

Prediction Error

Bias-Variance-Dilemma

A High Bias Low Bias
Low Variance High Variance
<+ —>
TQStErrOr/
Training Error
——
low high

Model Complexity



Building an Al/ML Model

The typical process involves identifying a machine learning algorithm that
seems appropriate

« eg convolutional neural networks, xgboost, etc
* in most cases there are:

 model parameters: these are parameters that are directly estimated by
the underlying model step

* hyperparameters: these are parameters the analyst must specify, eg
how many layers in the neural network, how much smoothing to do,
parameters that affect the “rate of learning”

e sometimes feature selection is carried out

* hyperparameters are often examined by choosing a range of possible
values, then fitting with each one and selecting one on the basis of some
loss function (often using cross-validation)



Train/Test/Validate

typical use is that the training data are used to fit model
parameters

testing data are used to adjust hyperparameters (eg how many
layers in the neural network)

validation is an independent set that is only used once a final
model is chosen and it is used to assess prediction accuracy

it is very typical for one large (homogeneous) data set to be used
for all three

the data are split, possibly at random - sometimes with some
care — into three different data sets and labeled accordingly
Usually training >> testing > validation



relevant elements
I 1

Sensitivity and Specificity  mammmm v nesstives
ein order to estimate sensitivity
and specificity we typically divide
our learning data into three groups true positives  false positives
eG1: training data - usually the
largest - fit model parameters
eG2: testing data - used to
assess different hyperparameters
¢G3: validation data - used to

selected elements

assess the overall predictions (eg How many relevant How many negative
items are selected? selecteld elegr}nt'e:_nts
P - . . . . e.g. How many sick are truly negative?
sensitivity and specificity) with people are correctly g owmany
. the condition. ldentlﬁed as nOt, '

respect to the target population having the condition.

Sensitivity= Specificity =




Separation of Tasks

eone of the most important
things to address is to ensure
that you do not allow
information to pass between
different layers

ecarly experience with
microarrays where feature
selection was carried out using
all the data, then data were
colon cancer classification based
on 62 samples (40 disease, 22
normal)

‘microarray data — thousands of
genes

RESEARCH ARTICLE L)

Selection bias in gene extraction on the basis of
microarray gene-expression data

Christophe Ambroise and Geoffrey J. McLachlan
+ See all authors and affiliations
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« colon cancer classification based on
62 samples (40 disease, 22 normal)

* microarray data — thousands of genes

 the authors show how biased our

estimates of the error rate are when

feature selection is not included in each

step of the cross-validation process



Cross-Validation

Test data

v
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Wikipedia



Cross-Validation

Divide the data into a training, test and validation data set

You should have some stochastic component

You need to worry about balance if there are important features
that are rare in the population (eg red hair)

Cross-validation helps you choose hyper-parameters

There is some overfitting as you are using the same data to
select parameters as to train, test

Dividing one large data set into three groups tends to lead to an
overly optimistic impression of the operating characteristics



Loss Functions

e In many cases not all errors are equal and you may need to
balance the cost of the error against the probability of making it

e Eg: screening for serious diseases - the cost of a FP is not as big
as the cost of a FN (and for other diseases it can be the other
way)

e Predicting rare conditions: eg we want to use genetics to predict
the probability that someone has red hair. In the population of
interest about 10% of people have red hair.

e S0 a naive classifier - "No one has red hair” is right 90% of the
time....

e We might want to use a loss function that balances the errors
differently in order to ensure that we are predicting the
outcome of interest....



Example: 2 classes, 2 variables, 200 objects
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estimate of prediction error

Cross-validation for k nearest neighbours
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Cross-validation for k nearest neighbours

Shading:
classifi-
cation

result for
k=5




Come back to the linear least squares classifier

X: n X d matrix with d-dimensional features for n samples
y: vector of length n: y;=0 for first class, 1 for second
class

Fit linear model by minimizing the squared error:

p = argmin| X5 -y,

model = Im.fit (X, vVy)
ynew = predict (model, Xnew) $fitted.values
ifelse(ynew < 0,-1,1)

Class 1 2 3

Extension to k classes: g é 2 8

indicator variables b 01 0 lda (R-
a 1 00 package

MASS)



Some Other Considerations

© In some cases we are very certain about the classification of a
new observations, but in other cases we might want to express

some amount of “doubt”.
o The point might lie very close to the boundary

® Sometimes you might want to just refuse to attempt to classify -
perhaps because the new data is very different from the data

used to train the classifier.

o This requires access to the original training data - and there are some reasons
why that information should be retained and used.



Non-Linear Classifiers?
These classes can not be separated by a straight line
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We could either

bend our decision
boundaries to be
curvy, or

bend our data
space and stick
with linear
boundaries.

Guess what is

Danny MacAskill



Data Transformation & Augmentation

Apply non-linear functions, e.q.

f(x)= (1,x,x2,x3,...)

Train linear classifier in the
new feature space \\
94¥#

non-linear Y,

classifier in the original feature space 25



Quadratic Extension

Parabolic decision boundaries can be achieved by using the product
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The Kernel Trick

Popular choices

Linear kernel K(xl.,xj) = xl.xj

1
20

2

o ‘XJH)

K(x,x;)=(xx; +1°

Radial basis functions K(xi’xf) - eXP(—

Polynomial



Example

/

Radial Basis Functions
Kernel

(SVM
Thick line: class separating
hyperplane

Thin line: margin

Circles: support vectors)



The Influence of the Kernel Parameter

vy =02, RBF



The curse of dimensionality
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» Question 13.12 Assume you have a dataset with 1 000 000 data points in p dimen-
sions. The data are uniformly distributed in the unit hybercube (i. e., all features lie
in the interval [0, 1]). What’s the side length of a hybercube that can be expected to

contain just 10 of the points, as a function of p? <

» Solution 13.12

See Figure 13.16.
sideLength = function (p, pointDensity = 1le6, pointsNeeded = 10)
(pointsNeeded / pointDensity) ~ (1 / p)
ggplot (tibble(p = 1:400, sidelength = sideLength (p)),
aes(x = p, y = sidelength)) + geom_line(col = "red") +

geom_hline (aes (yintercept = 1), linetype = 2)



1.00 -

0.00- . . . .
0 100 200 300 400
P
» Question 13.13 What fraction of a unit cube’s total volume is closer than 0.01 to
any of its surfaces, as a function of the dimension? <

» Solution 13.13

See code below and Figure 13.17.

tibble (
p = 1:400,
volOuterCube = 1 © p,
volInnerCube = 0.98 * p,
‘V(shell) ' = volOuterCube - volInnerCube) %>%

ggplot (aes (x = p, y ='W (shell) ')) + geom_line(col = "blue")



An attempt to
visualize a 7-
dim hypercube
(27 = 128
corners)

http://yaroslavvb.blogspot.com/2006/05/curse-of-dimensionality-and-intuition.html
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13.14 What is the coefficient of variation (ratio of standard deviation
over average) of the distance between two randomly picked points in the unit hyper-
cube, as a function of the dimension?



Curse of Dimensionality:
overfitting guaranteed
= Consider:
10 samples per class
Each sample is characterised by several hundred
features.
= Even a linear classifier will (always) be too complex:
overfitting




Regularisation

E.g.: decision rule:
Xn-1>0

Remember that a plane in
3D space can be
represented by its normal
vector.

Same for n-dim. space

¥ Idea: rather than allowing

general vectors, ask for
many of the coefficients to
be small, or even zero.



Commonly used penalizationsand their geometry
Lasso estimator: p(3) = ||f||1 Ridge estimator: p(83) = ||8|/5

B € arg min £(5) + Al18]]x B € arg min £(5) + IEE:
= arg mﬁin (B) s.t.||Bll1 < t, = arg mﬁin /(B) s.t.||B||5 < t,
B B
B likelihood o B N\
/shrinkage lshrinkage |

st B B
”BH < B”Izy

Ridge just wants the p to be small
Lasso snaps many of the elements to 0 (‘sparsity’)

(least absolute shrinkage and selection operator)



13.6.2 Example: predicting colon cancer from stool microbiome com-

position

Zeller et al. (2014) studied metagenome sequencing data from fecal samples of 156
humans that included colorectal cancer patients and tumor-free controls. Their

aim was to see whether they could identify biomarkers (presence or abundance of
certain taxa) that could help with early tumor detection. The data are available from
Bioconductor through its ExperimentHub service under the identifier EH359.

library ("ExperimentHub")
eh = ExperimentHub ()
zeller = eh[["EH361"]]

table(zeller$disease)

##
## cancer large_adenoma
ikid 53 15

n small adenoma
ol 277



pData (zellerNC) [ sample (ncol(zellerNC), 3), 1]

il
il
il
il
il
il
il
il
il
il
il

subjectID age gender bmi country disease

CCIS71578391S5T-4-0 FR-187 70 male 25 france n
CCIS50003399ST-4-0 FR-194 66 female 28 france n
CCIS38765456S5T-20-0 FR-723 79 female 22 france cancer
tnm_stage ajcc_stage localization fobt
CCIS71578391ST-4-0 <NA> <NA> <NA> negative
CCIS50003399ST-4-0 <NA> <NA> <NA> negative
CCIS38765456ST-20-0 tdnlml iv lc positive
wif-1_gene_methylation_test group
CCIS71578391ST-4-0 negative control
CCIS50003399ST-4-0 negative control



rownames (zellerNC) [1:4]

## "k__ Bacteria"

#4# "k Viruses"

## "k__ Bacterial|p_ Firmicutes"

#4# "k__ Bacteria|p__ Bacteroidetes"

rownames (zellerNC) [nrow(zellerNC) + (-2:0)] %>% formatfn
##

#¥# "k_ Bacterial| p__Proteobacteria| c_ Deltaproteobacterial"
#4# "o Desulfovibrionales| f_ Desulfovibrionaceae|"

#4# "g_ Desulfovibrio| s_ _Desulfovibrio_termitidis"

##

##

#4# "k_ Viruses| p_ _Viruses_noname| c_ _Viruses_noname|"
#4# "o Viruses_noname| f_ Baculoviridae|"

## "g_ Alphabaculovirus|"

#4# "s__ Bombyx_mori_nucleopolyhedrovirus|"

#¥# "t_ Bombyx_mori_nucleopolyhedrovirus_unclassified"
##

¥

## "k_ Bacterial| p__Proteobacteria| c__ Deltaproteobacterial|"
## "o_ _Desulfovibrionales| f_ Desulfovibrionaceae|"

#4# "g_ Desulfovibrio| s__ _Desulfovibrio_termitidis]|"

##

"t__GCF_000504305"



glmnet on the Zeller data

0 112 142 159 162 162
library ("glmnet

glmfit = glmne

predTrsf = pred;

3000

table (predTrsft,

Coefficients

1000
I

##
## predTrsf can
## cancer

#4# n

-1000

plot (glmfit, co
0 2000 6000 10000

L1 Norm

Figure 13.21: Regularization paths for glmfit.
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Summary: It’s all about adapting the
complexity of the model to that of the data
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Low bias
High variance
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Always assess classifiers by cross-validation

- - * * > 14
2 4 6 8 10
low model complexity
(needs 2 parameters to

describe the decision boundary)

Reduce complexity: regularization (Lasso, ridge, ...)

' 14

4 6 8 10

high model complexity
(need 100s of parameters to
describe decision boundary)

Increase complexity: data transformation, augmentation, kernels



Another example of overfitting
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