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What you will learn in this lecture
• Exemplary applications 
• Linear discriminant analysis 
• How to get non-linear decision boundaries 
• Hyperparameters 
• Using cross-validation to  

  — tune parameters 
  — assess performance



Basics
• There are two basic kinds of machine learning algorithms, 

supervised and unsupervised 
• Supervised - classification: usually there is a training set 

with features and class labels 
• Unsupervised - clustering: there is no training set, or set 

with known class labels 
• Typically we have observations (individuals) with features 

(covariates, phenotypes) measured on each observation 
• All machine learning algorithms depend on finding some 

measure of similarity (or distance) between observations  
• In many situations the features will need to be transformed, or 

manipulated (feature engineering) to better suit the task. 
• Often feature selection - which features to use - or feature 

engineering are part of the process



The diabetes data
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library("readr")

library("magrittr")

diabetes = read_csv("../data/diabetes.csv", col_names = TRUE)

diabetes

## # A tibble: 144 x 7

## id relwt glufast glutest steady insulin group

## <int> <dbl> <int> <int> <int> <int> <int>

## 1 1 0.81 80 356 124 55 3

## 2 3 0.94 105 319 143 105 3

## 3 5 1.00 90 323 240 143 3

## 4 7 0.91 100 350 221 119 3

## 5 9 0.99 97 379 142 98 3

## 6 11 0.90 91 353 221 53 3

## 7 13 0.96 78 290 136 142 3

## 8 15 0.74 86 312 208 68 3

## 9 17 1.10 90 364 152 76 3

## 10 19 0.83 85 296 116 60 3

## # ... with 134 more rows

diabetes$group %<>% factor
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Figure 13.4: We see already from the one-
dimensional distributions that some of the
individual variables could potentially predict
which group a patient is more likely to belong to.
Our goal will be to combine variables to improve
these one dimensional predictions.

We used the forward-backward pipe operator %<>% to convert the group column
into a factor. The plot is shown in Figure 13.4.
library("ggplot2")

library("reshape2")

ggplot(melt(diabetes, id.vars = c("id", "group")),

aes(x = value, col = group)) +

geom_density() + facet_wrap( ~variable, ncol = 1, scales = "free") +

theme(legend.position="bottom")

Predicting cellular phenotypes

Neumann et al. (2010) observed human cancer cells using live-cell imaging. The
cells were genetically engineered so that their histones were tagged with a green
fluorescent protein (GFP). A genome-wide RNAi library was applied to the cells, and
for each siRNA perturbation, movies of a few hundred cells were recorded for about
two days, to see what e�ect the depletion of each gene had on cell cycle, nuclear
morphology and cell proliferation. Their paper reports the use of an automated
image classification algorithm that quantified the visual appearance of each cell’s
nucleus and enabled the prediction of normal mitosis states or aberrant nuclei. The
algorithm was trained on the data from around 3000 cells that were annotated by a
human expert. It was then applied to almost 2 billions images of nuclei (Figure 13.5).
Using automated image classification provided scalablity (annotating 2 billion images
manually would take a long time) and objectivity.

https://cran.r-project.org/web/packages/candisc/vignettes/
diabetes.html



Diabetes Data

The candisc package can 
give us some idea about 
how the data are 
distributed… 
And potentially some ideas 
about how to best analyze 
it. 
“It is clear from this that there 

is a problem of heterogeneity 
of variance-covariance matrices 
here. The normal group shows 
the smallest variances and the 
overt diabetic group the 
largest.”



Broyl, Hose et al. Blood 2010;116:2543
©2010 by American Society of Hematology

Molecular classification of cancer
(multiple myeloma in newly diagnosed patients, gene expression profiling)
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• see how to use cross-validation to tune parameters of the algorithms,
• get to see a unified framework for machine learning algorithms in R that allows
you to use hundreds of methods in a consistent manner,

• discuss method hacking.

13.2 What are the data?

The basic data structure for both supervised and unsupervised learning is (at least
conceptually) a dataframe, where each row corresponds to an object and the columns
are di�erent features (usually numerical values) of the objects2. While in unsuper- 2 This is a simplified description. Machine learn-

ing is a huge field, and lots of generalizations of
this simple conceptual picture have been made.
Already the construction of relevant features is
an art by itself — we have seen examples with
images of cells in Chapter ??, and more generally
there are lots of possibilities to extract features
from images, sounds, movies, free text, . . ..
Moreover, there is a variant of machine learning
methods called kernel methods that do not need
features at all; instead, kernel methods use dis-
tances or measures of similarity between objects.
It may be easier, for instance, to define a measure
of similarity between two natural language text
objects than to find relevant numerical features
to represent them. Kernel methods are beyond
the scope of this book.

vised learning we aim to find (dis)similarity relationships between the objects based
on their feature values (e. g., by clustering or ordination), in supervised learning we
aim to find a mathematical function (or a computational algorithm) that predicts the
value of one of the features from the other features. Many implementations require
that there are no missing values, whereas other methods can be made to work with
some amount of missing data.

The feature that we select over all the others with the aim of predicting is called
the objective or the response. Sometimes the choice is natural, but sometimes it is
also instructive to reverse the roles, especially if we are interested in dissecting the
prediction function for the purpose of biological understanding, or in disentangling
correlations from causation.

The framework for supervised learning covers both continuous and categorical
response variables. In the continuous case we also call it regression, in the categori-
cal case, classification. It turns out that this distinction is not a detail, as it has quite
far-reaching consequences for the choice of loss function (Section 13.5) and thus the
choice of algorithm (Friedman, 1997).

The first question to consider in any supervised learning task is how the number of
objects compares to the number of predictors. The more ojects, the better, and much
of the hard work in supervised learning has to do with overcoming the limitations of
having a finite (and typically, too small) training set. validation

learning

X

X Y

Y

l l

v v

Figure 13.3: In supervised learning, we assign two
di�erent roles to our variables. We have labeled
the explanatory variablesX and the response
variable(s) Y . There are also two di�erent sets of
observations: the training setX` and Y` and the
validation setX� and Y� .

I Task Give examples where we have encountered instances of supervised learning
with a categorical response in this book. J

13.2.1 Motivating examples

Predicting diabetes type

The diabetes dataset (Reaven and Miller, 1979) presents three di�erent groups of
diabetes patients and five clinical variables measured on them.

Pathology
Patient diagnosis / stratification 
Email - spam detection
Credit card fraud
Car insurance rates
Sorting your photo library
....
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Phenotypic profiling of the human genome
by time-lapse microscopy reveals cell
division genes
Beate Neumann1*, Thomas Walter1*, Jean-Karim Hériché5{, Jutta Bulkescher1, Holger Erfle1,3{,
Christian Conrad1,3, Phill Rogers1{, Ina Poser6, Michael Held1{, Urban Liebel1{, Cihan Cetin3, Frank Sieckmann8,
Gregoire Pau9, Rolf Kabbe10, Annelie Wünsche2, Venkata Satagopam4, Michael H. A. Schmitz7, Catherine Chapuis3,
Daniel W. Gerlich7, Reinhard Schneider4, Roland Eils10, Wolfgang Huber9, Jan-Michael Peters11,
Anthony A. Hyman6, Richard Durbin5, Rainer Pepperkok3 & Jan Ellenberg2

Despite our rapidly growing knowledge about the human genome, we do not know all of the genes required for some of the
most basic functions of life. To start to fill this gap we developed a high-throughput phenotypic screening platform combining
potent gene silencing by RNA interference, time-lapse microscopy and computational image processing. We carried out a
genome-wide phenotypic profiling of each of the ,21,000 human protein-coding genes by two-day live imaging of
fluorescently labelled chromosomes. Phenotypes were scored quantitatively by computational image processing, which
allowed us to identify hundreds of human genes involved in diverse biological functions including cell division, migration and
survival. As part of the Mitocheck consortium, this study provides an in-depth analysis of cell division phenotypes and makes
the entire high-content data set available as a resource to the community.

To target the ,21,000 protein-coding genes in the human genome,
we used a chemically synthesized short interfering RNA (siRNA)
library designed to uniquely target each gene with 2–3 independent
sequences (Supplementary Methods). The siRNAs in this library
were tested individually and reduced the messenger RNAs of targeted
genes to below 30% of original levels (to an average of 13%) for 97%
of more than 1,000 genes tested (Supplementary Table 1). To allow
high-throughput phenotyping of each individual siRNA in triplicates
by live-cell imaging, we used a previously established workflow for
solid-phase transfection using siRNA microarrays coupled to auto-
matic time-lapse microscopy1. As a high-content phenotypic assay
we chose to monitor fluorescent chromosomes in a human cell line
stably expressing core histone 2B tagged with green fluorescent
protein (GFP)1. After seeding on the siRNA microarrays, on average
67 (630) cells for each siRNA of the library were imaged in triplicates
for 2 days, thus documenting many of their basic functions such as
cell division, proliferation, survival and migration.

Image processing reveals mitotic hits

This resulted in a large data set of ,190,000 time-lapse movies pro-
viding time-resolved records of over 19 million cell divisions. To auto-
matically score and annotate phenotypes in this large data set, we
developed a computational pipeline2 (Fig. 1) extending previously
established methods of morphology recognition by supervised

machine learning3–6. In brief, after segmentation, about 200 quantita-
tive features were extracted from each nucleus and used for classifica-
tion into one of 16 morphological classes (Fig. 1 and Supplementary
Movies 1–30) by a support vector machine classifier previously trained
on a set of ,3,000 manually annotated nuclei (Supplementary
Methods). This classifier automatically recognizes changes in nuclear
morphology due to the cell cycle, cell death or other phenotypic
changes with an overall accuracy of 87% (Supplementary Fig. 1) and
allows us to convert each time-lapse movie into a phenotypic profile
that quantifies the response to each siRNA (Fig. 1a). In addition, the
position of each nucleus is tracked over time. Using stringent signifi-
cance thresholds for each morphological class, nuclear mobility as well
as proliferation rate, significant and reproducible (majority of three or
more technical replicates) deviations caused by each siRNA are com-
puted (Fig. 1 and Supplementary Methods).

The key biological function that motivated this screen was mitosis,
studied systematically within the Mitocheck consortium. Cell division
phenotypes are rare and transient in human cell culture and are there-
fore typically missed in endpoint assays; however, they can be particu-
larly well detected by time-lapse microscopy1,7. In addition, live
imaging data reveal the primary defect and secondary consequences
of the phenotype and thereby allow a more precise interpretation of the
function of already identified genes. Despite genome-wide screening in
a number of model organisms7–9, candidate genes for key mitotic

*These authors contributed equally to this work.

1MitoCheck Project Group, 2Gene Expression and 3Cell Biology/Biophysics Units, Structural and 4Computational Biology Unit, European Molecular Biology Laboratory (EMBL),
Meyerhofstrasse 1, D-69117 Heidelberg, Germany. 5Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK. 6Max Planck Institute for
Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany. 7Institute of Biochemistry, Swiss Federal Institute of Technology Zurich (ETHZ),
Schafmattstrasse 18, CH-8093 Zurich, Switzerland. 8Leica Microsystems CMS GmbH, Am Friedensplatz 3, D-68165 Mannheim, Germany. 9European Bioinformatics Institute,
European Molecular Biology Laboratory, Cambridge CB10 1SD, UK. 10Division of Theoretical Bioinformatics, German Cancer Research Center, Im Neuenheimer Feld 267, D-69120
Heidelberg, Germany. 11Institute for Molecular Pathology, Dr Bohr Gasse 7, A-1030 Vienna, Austria. {Present addresses: MitoCheck Project Group, European Molecular Biology
Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany (J.-K.H.); BIOQUANT Centre University Heidelberg, INF 267, D-69120 Heidelberg, Germany (H.E.); 3-V
Biosciences GmbH, Wagistrasse 27, 8952 Schlieren, Switzerland (P.R.); Institute of Biochemistry, Swiss Federal Institute of Technology Zurich (ETHZ), Schafmattstrasse 18, CH-8093
Zurich, Switzerland (M.H.); Karlsruhe Institute of Technology KIT, Herrmann-von-Helmholtz Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany (U.L.).
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processes such as the restructuring or segregation of mitotic chromo-
somes remain to be discovered. To score an initial set of potential
mitotic genes identified reproducibly with at least one siRNA, 5 of
our 16 morphological classes describing chromosome configurations
were used (see Fig. 1 and Supplementary Methods). These classes
included early mitotic chromosome configurations such as ‘prometa-
phase’ and ‘metaphase alignment problems’ (MAP) that will be
enriched by delays or arrests in mitosis, and we therefore combined
these classes to score ‘mitotic arrest/delay’ phenotypes (we did not find
significant deviations in normal ‘metaphase’ or ‘anaphase’ classes and
therefore did not use these for scoring mitotic hits) (Fig. 1b). Also
included were morphological classes such as ‘polylobed’, exhibiting
multilobed nuclei, ‘grape’, exhibiting many micronuclei, as well as
‘binuclear’, representing cells with two nuclei (Fig. 1b). These three
classes specifically arise as a consequence of distinct problems during
mitotic exit including premature nuclear assembly, chromosome
segregation errors or cytokinesis failures. A total of 1,042 genes
deviated significantly from controls in one or more of these four
phenotypic groups (Fig. 1c). In addition, 207 genes below the stringent
significance thresholds of automatic scoring were identified by manual
annotation of the movies during training, quality control and thresh-
old evaluation (see Supplementary Methods). The combined 1,249
genes (Supplementary Table 2) are thus the potential mitotic hits from
this first pass genome-wide screen (Fig. 1c).

Validation of mitotic hits

Comparison of our potential hits with previously published RNA
interference (RNAi) screens that scored cell division is not suitable

for validation of our hit list, because the overlap between such screens
tends to be relatively low (in our case ranging between 6–36%) due to
poor comparability of the different screens (Supplementary Table 3).
To minimize the risk of reporting false positives, we therefore carried
out a second pass validation screen against 90% (1,128) of these genes
with two additional independent siRNAs. Combined with the results
from the first pass genome-wide screen, 46% (572 out of 1,249) of the
potential hits showed consistent phenotypes with two or more
siRNAs (Supplementary Table 4). This set of validated genes con-
tained 61% (41 out of 67) of a manually curated human gene set for
which a requirement for mitosis had already been established in low-
throughput RNAi experiments in HeLa cells with comparably spe-
cific mitotic assays (Supplementary Table 5). In addition, we also
carried out phenotypic complementation experiments for a subset
of the potential mitotic hits. To this end, the genomic copy of the
mouse orthologue was tagged with a combined localization and
affinity tag at the last exon in a bacterial artificial chromosome10,11,
and stably expressed under its endogenous promoter in the HeLa cell
strain used for the screen. Because of the DNA sequence divergence
between mouse and human, 89% of mouse genes are not targeted by
our siRNAs against human genes. We created 21 cell lines with such
RNAi-resistant BAC transgenes. In 12 (57%) of these lines the pheno-
type was fully complemented (Fig. 2 and Supplementary Table 6).
These rescues were specific as the mouse transgenes did not suppress
the knockdown of the endogenous human gene nor the phenotype of
siRNAs targeting other genes (Supplementary Fig. 2). Suppression of
the target genes was thus responsible for the phenotype. Phenotypes
were partially complemented in three (14%) additional cell lines and
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Figure 1 | Data analysis and hit detection. a, All nuclei in the 187,226
movies (each consisting in 92 images) are classified into 1 out of 16
predefined morphological classes. The workflow is illustrated for a RAD23A
RNAi experiment; for clarity, only four morphological classes are shown:
mitotic delay/arrest (prometaphase plus metaphase alignment problems
(MAP)), polylobed, grape and cell death. For each morphological class, the
score is defined as the maximal difference over time between the relative cell
count curve in one morphological class and the corresponding negative
control curve, averaged over eight scrambled siRNA experiments on the

same slide (shown for mitosis). b, 1,918,544,775 nuclei from all movies
(controls removed) classified into 16 different nuclei morphology classes.
Classes used for mitotic hit detection are underlined. c, Genome-wide score
distribution for the four classes used to detect potential mitotic hits—
mitotic delay/arrest (prometaphase plus MAP), binuclear, polylobed and
grape—automatically computed for all 51,810 siRNAs. Each siRNA is
considered as a potential mitotic hit if the median score of its replicates
exceeds a manually defined threshold (dotted lines) in at least one of the four
morphological classes.
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Morphological Phenotyping

Provide Human Annotation to a small set of cells:

5

inter             pro         prometa       meta        earlyana      lateana         
telo

Which mitotic phase is this?
Can we do this automatically?



Automatic Classification Workflow

6

Preprocessing
e.g. normalization, background subtraction, …

Feature extraction
e.g. lightness, nucleus area, excentricity, …

Classification

Prophase Metaphase

6 ����

Figure 13.5: The data were images of 2x109 nuclei
from movies. The images were segmented to
identify the nuclei, and numeric features were
computed for each nucleus, corresponding to
size, shape, brightness and lots of other more
or less abstract quantitative summaries of the
joint distribution of pixel intensities. From the
features, the cells were classified into 16 di�erent
nuclei morphology classes, represented by the
rows of the barplot. Representative images for
each class are shown in black and white in the
center column. The class frequencies, which are
very unbalanced, are shown by the lengths of the
bars.

Predicting embryonic cell states

We will revisit the mouse embryo data (Ohnishi et al., 2014), which we have already
seen in Chapters ??, ?? and ??. We’ll try to predict cell state and genotype from the
gene expression measurements in Sections 13.3.2 and 13.6.3.

13.3 Linear discrimination

We start with one of the simplest possible discrimination problems3: we have objects 3 Arguably the simplest possible problem is a
single continuous feature, two classes, and the
task of finding a single threshold to discriminate
between the two groups – as in Figure ??.

described by two continuous features (so the objects can be thought of as points in the
2D plane) and falling into three groups. Our aim is to define class boundaries, which
are lines in the 2D space.

13.3.1 Diabetes data

Let’s see whether we can predict the feature group from the features insulin and
glutest variables in the diabetes data. It’s always a good idea to first visualise the
data (Figure 13.6).



Prophase/ Metaphase Classification
Predict mitotic state based 

on brightness
Predict mitotic state based on 

nucleus area

7

Decision boundary with
lowest prediction error

Both features are informative, but none of them 
individually has a good predictive power

Prophase Metaphase
Prophase Metaphase

hello

areabrightness



A Simple Least Squares Classifier (1D)

Prophase

Metaphase

hello

decision boundary

y[i] = -1 for prophase
y[i] = +1 for metaphase
x[i,] = intensity[i]
model = lm(y ~ x)
ynew = predict(model, newdata=newX)
ifelse(ynew < 0, “pro”, “meta”)

Σi (yi - βxi)2 → min



A Simple Least Squares Classifier (2D)

8

y[i] = +1 for prophase
y[i] = -1 for metaphase
x[i,] = c(area[i],lightness[i])
model = lm(y~x)
ynew = predict(model, Xnew)
           $fitted.values
ifelse(ynew < 0, “meta”, “pro”)

Prophase Metaphase
lightness

area



Linear discriminant Analysis (LDA) on the diabetes data
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ggdb = ggplot(mapping = aes(x = insulin, y = glutest)) +

geom_point(aes(colour = group), data = diabetes)

ggdb
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Figure 13.6: Scatterplot of two of the variables in
the diabetes data. Each point is a sample, and
the color indicates the diabetes type as encoded
in the group variable.

We’ll start with a method called linear discriminant analysis (LDA). This method
is a foundation stone of classification, many of the more complicated (and sometimes
more powerful) algorithms are really just generalizations of LDA.
library("MASS")

diabetes_lda = lda(group ~ insulin + glutest, data = diabetes)

diabetes_lda

## Call:

## lda(group ~ insulin + glutest, data = diabetes)

##

## Prior probabilities of groups:

## 1 2 3

## 0.2222222 0.2500000 0.5277778

##

## Group means:

## insulin glutest

## 1 320.9375 1027.3750

## 2 208.9722 493.9444

## 3 114.0000 349.9737

##

## Coefficients of linear discriminants:

## LD1 LD2

## insulin -0.004463900 -0.01591192

## glutest -0.005784238 0.00480830

##

## Proportion of trace:

## LD1 LD2

## 0.9677 0.0323

ghat = predict(diabetes_lda)$class

table(ghat, diabetes$group)

##

## ghat 1 2 3

## 1 25 0 0

## 2 6 24 6

## 3 1 12 70

mean(ghat != diabetes$group)

## [1] 0.1736111

I Question 13.1 What do the di�erent parts of the above output mean? J

Now, let’s visualise the LDA result. We are going to plot the prediction regions
for each of the three groups. We do this by creating a grid of points and using our
prediction rule on each of them. We’ll then also dig a bit deeper into the mechanics
of LDA and plot the class centers (diabetes_lda$means) and ellipses that corre-
spond to the fitted covariance matrix (diabetes_lda$scaling). Assembling this
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Figure 13.6: Scatterplot of two of the variables in
the diabetes data. Each point is a sample, and
the color indicates the diabetes type as encoded
in the group variable.

We’ll start with a method called linear discriminant analysis (LDA). This method
is a foundation stone of classification, many of the more complicated (and sometimes
more powerful) algorithms are really just generalizations of LDA.
library("MASS")

diabetes_lda = lda(group ~ insulin + glutest, data = diabetes)

diabetes_lda

## Call:

## lda(group ~ insulin + glutest, data = diabetes)

##

## Prior probabilities of groups:

## 1 2 3

## 0.2222222 0.2500000 0.5277778

##

## Group means:

## insulin glutest

## 1 320.9375 1027.3750

## 2 208.9722 493.9444

## 3 114.0000 349.9737

##

## Coefficients of linear discriminants:

## LD1 LD2

## insulin -0.004463900 -0.01591192

## glutest -0.005784238 0.00480830

##

## Proportion of trace:

## LD1 LD2

## 0.9677 0.0323

ghat = predict(diabetes_lda)$class

table(ghat, diabetes$group)

##

## ghat 1 2 3

## 1 25 0 0

## 2 6 24 6

## 3 1 12 70

mean(ghat != diabetes$group)

## [1] 0.1736111

I Question 13.1 What do the di�erent parts of the above output mean? J

Now, let’s visualise the LDA result. We are going to plot the prediction regions
for each of the three groups. We do this by creating a grid of points and using our
prediction rule on each of them. We’ll then also dig a bit deeper into the mechanics
of LDA and plot the class centers (diabetes_lda$means) and ellipses that corre-
spond to the fitted covariance matrix (diabetes_lda$scaling). Assembling this
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visualization requires us to write a bit of code.
make1Dgrid = function(x) {

rg = grDevices::extendrange(x)

seq(from = rg[1], to = rg[2], length.out = 100)

}

Set up the points for prediction, a 100 ⇥ 100 grid that covers the data range.
diabetes_grid = with(diabetes,

expand.grid(insulin = make1Dgrid(insulin),

glutest = make1Dgrid(glutest)))

Do the predictions.
diabetes_grid$ghat =

predict(diabetes_lda, newdata = diabetes_grid)$class

The group centers.
centers = diabetes_lda$means

Compute the ellipse. We start from a unit circle and apply the corresponding a�ne
transformation from the LDA output.
unitcircle = exp(1i * seq(0, 2*pi, length.out = 90)) %>%

(function(x) cbind(Re(x), Im(x)))

ellipse = unitcircle %*% solve(diabetes_lda$scaling)

All three ellipses, one for each group center.
ellipses = lapply(seq_len(nrow(centers)), function(i) {

(ellipse +

matrix(centers[i, ], byrow = TRUE,

ncol = ncol(centers), nrow = nrow(ellipse))) %>%

cbind(group = i)

}) %>% do.call(rbind, .) %>% data.frame

ellipses$group %<>% factor

Now we are ready to plot (Figure 13.7).
ggdb + geom_raster(aes(fill = ghat),

data = diabetes_grid, alpha = 0.25, interpolate = TRUE) +

geom_point(data = as_tibble(centers), pch = "+", size = 8) +

geom_path(aes(colour = group), data = ellipses) +

scale_x_continuous(expand = c(0, 0)) +

scale_y_continuous(expand = c(0, 0))
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Figure 13.7: As Figure 13.6, with the classification
regions from the LDA model shown. The three
ellipses represent the class centers and the
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same for all three classes. Therefore also the sizes
and orientations of the ellipses are the same for
the three classes, only their centers di�er. They
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probability.

I Question 13.2 Why is the boundary between the prediction regions for groups 1
and 2 not perpendicular to the line between the cluster centers? J

I Solution 13.2 The boundaries would be perpendicular if the ellipses were circles.
In general, a boundary is tangential to the contours of equal class probabilities, and
due the elliptic shape of the contours, a boundary is in general not perpendicular to
the line between centers. ⇤

I Question 13.3 How confident would you be about the predictions in those areas of

Why is the boundary 
between the prediction 
regions for groups 1 
and 2 not 
perpendicular to the 
line between the 
cluster centers?

How confident would 
you be about the 
predictions in those 
areas of the 2D plane 
that are far from all of 
the cluster centers?

Why is the boundary 
between the prediction 
regions for groups 2 
and 3 not half-way 
between the centers?

QDA: Represent each group by 
a bivariate Normal  
LDA: 

N(μg, Σg)
Σg = Σ
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I Solution 13.7 See Section 4.3, Equation (4.10) in (Hastie et al., 2008). ⇤

13.3.2 Predicting embryonic cell state from gene expression

Assume that we already know that the four genes FN1, TIMD2, GATA4 and SOX7 are
relevant to the classification task4. We want to build a classifier that predict the 4 Later in this chapter we will see methods that

can drop this assumption and screen all available
features.

developmental time (embryonic days: E3.25, E3.5, E4.5). We load the data and select
four corresponding probes.
library("Hiiragi2013")

data("x")

probes = c("1426642_at", "1418765_at", "1418864_at", "1416564_at")

embryoCells = t(exprs(x)[probes, ]) %>% as_tibble %>%

mutate(Embryonic.day = x$Embryonic.day) %>%

filter(x$genotype == "WT")

We can use the Bioconductor annotation package associated with the microarray
to verify that the probes correspond to the intended genes.
annotation(x)

## [1] "mouse4302"

library("mouse4302.db")

anno = AnnotationDbi::select(mouse4302.db, keys = probes,

columns = c("SYMBOL", "GENENAME"))

anno

## PROBEID SYMBOL

## 1 1426642_at Fn1

## 2 1418765_at Timd2

## 3 1418864_at Gata4

## 4 1416564_at Sox7

## GENENAME

## 1 fibronectin 1

## 2 T cell immunoglobulin and mucin domain containing 2

## 3 GATA binding protein 4

## 4 SRY (sex determining region Y)-box 7

mt = match(anno$PROBEID, colnames(embryoCells))

colnames(embryoCells)[mt] = anno$SYMBOL

Now we are ready to visualize the data in a pairs plot (Figure 13.9).
library("GGally")

ggpairs(embryoCells, mapping = aes(col = Embryonic.day),

columns = anno$SYMBOL, upper = list(continuous = "points"))

We can now call lda on these data. The linear combinations LD1 and LD2 that
serve as discriminating variables are given in the slot ed_lda$scaling of the
output from lda.
ec_lda = lda(Embryonic.day ~ Fn1 + Timd2 + Gata4 + Sox7,

data = embryoCells)

round(ec_lda$scaling, 1)
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## 3 GATA binding protein 4
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mt = match(anno$PROBEID, colnames(embryoCells))

colnames(embryoCells)[mt] = anno$SYMBOL

Now we are ready to visualize the data in a pairs plot (Figure 13.9).
library("GGally")

ggpairs(embryoCells, mapping = aes(col = Embryonic.day),

columns = anno$SYMBOL, upper = list(continuous = "points"))

We can now call lda on these data. The linear combinations LD1 and LD2 that
serve as discriminating variables are given in the slot ed_lda$scaling of the
output from lda.
ec_lda = lda(Embryonic.day ~ Fn1 + Timd2 + Gata4 + Sox7,

data = embryoCells)
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Figure 13.9: Expression values of the discrimi-
nating genes, with the prediction target Embry-
onic.day shown by color.

## LD1 LD2

## Fn1 -0.2 -0.4

## Timd2 0.5 0.0

## Gata4 -0.1 -0.6

## Sox7 -0.7 0.5

For the visualization of the learned model in Figure 13.10, we need to build the
prediction regions and their boundaries by expanding the grid in the space of the two
new coordinates LD1 and LD2.
ec_rot = predict(ec_lda)$x %>% as_tibble %>%

mutate(ed = embryoCells$Embryonic.day)

ec_lda2 = lda(ec_rot[, 1:2], predict(ec_lda)$class)

ec_grid = with(ec_rot, expand.grid(

LD1 = make1Dgrid(LD1),

LD2 = make1Dgrid(LD2)))

ec_grid$edhat = predict(ec_lda2, newdata = ec_grid)$class

ggplot() +

geom_point(aes(x = LD1, y = LD2, colour = ed), data = ec_rot) +

geom_raster(aes(x = LD1, y = LD2, fill = edhat),

data = ec_grid, alpha = 0.4, interpolate = TRUE) +
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scale_x_continuous(expand = c(0, 0)) +

scale_y_continuous(expand = c(0, 0)) +

coord_fixed()
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Figure 13.10: LDA classification regions for
Embryonic.day.

I Question 13.8 Repeat these analyses using quadratic discriminant analysis (qda).
What di�erence do you see in the shape of the boundaries? J

I Solution 13.8 See code below and Figure 13.11.
library("gridExtra")

ec_qda = qda(Embryonic.day ~ Fn1 + Timd2 + Gata4 + Sox7,

data = embryoCells)

variables = colnames(ec_qda$means)

pairs = combn(variables, 2)

lapply(seq_len(ncol(pairs)), function(i) {

grid = with(embryoCells,

expand.grid(x = make1Dgrid(get(pairs[1, i])),

y = make1Dgrid(get(pairs[2, i])))) %>%

‘colnames<-‘(pairs[, i])

for (v in setdiff(variables, pairs[, i]))

grid[[v]] = median(embryoCells[[v]])

grid$edhat = predict(ec_qda, newdata = grid)$class

ggplot() + geom_point(

aes_string(x = pairs[1, i], y = pairs[2, i],

colour = "Embryonic.day"), data = embryoCells) +

geom_raster(

aes_string(x = pairs[1, i], y = pairs[2, i], fill = "edhat"),

data = grid, alpha = 0.4, interpolate = TRUE) +

scale_x_continuous(expand = c(0, 0)) +

scale_y_continuous(expand = c(0, 0)) +

coord_fixed() +

if (i != ncol(pairs)) theme(legend.position = "none")

}) %>% grid.arrange(grobs = ., ncol = 2)

⇤

I Question 13.9 What happens if you call lda or qda with a lot more genes, say the
first 1000, in the Hiiragi dataset? J

I Solution 13.9
lda(t(exprs(x))[, 1:1000], x$Embryonic.day)

## Warning in lda.default(x, grouping, ...): variables are collinear

qda(t(exprs(x))[, 1:1000], x$Embryonic.day)

## Error in qda.default(x, grouping, ...): some group is too small

for ’qda’



14 ����

●

●

●

●

●
●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

4

6

8

10

12

6 8 10 12
Fn1

Ti
m
d2

●

●●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●
●●

● ●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

● ●

●

●

●

3

4

5

6 8 10 12
Fn1

G
at
a4

● ●

● ●
●

●
●

●

●
●

● ●

●

●
●

●
●● ● ●

●
● ●

●
●

● ●●
●●

●
●

●
●

●
●

●

● ●●
●

●●
●

●

●

●
●
●

●●
●

●●
●

●●
●

●

●

●

●
●

●

●

●

5.0

7.5

10.0

6 8 10 12
Fn1

So
x7

●

● ●
●●

●

●●
●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●
● ●

● ●

● ●

●

●
●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

3

4

5

4 6 8 10 12
Timd2

G
at
a4

●●

●●
●

●
●

●

●
●

●●

●

●
●

●
●● ●●

●
●●
●

●
●● ●

●●
●

●
●

●
●

●

●

●●●
●

●●
●

●

●

●
●

●
● ●●
●●

●

●●
●

●

●

●

●
●

●

●

●

5.0

7.5

10.0

4 6 8 10 12
Timd2

So
x7

● ●

●●
●

●
●

●

●
●

● ●

●

●
●

●
● ●●●

●
● ●
●
●
●● ●

●●
●
●

●
●

●
●

●

●●●
●

●●
●

●

●

●
●

●
●●

●
●●

●

●●
●

●

●

●

●
●

●

●

●

5.0

7.5

10.0

3 4 5
Gata4

So
x7

Embryonic.day
●

●

●

E3.25

E3.5

E4.5

edhat
E3.25

E3.5

E4.5

Figure 13.11: QDA for the mouse cell data. Shown
are all pairwise plots of the four features.

The lda function manages to fit a model, but complains (with the warning) about
the fact that there are more variables than replicates, which means that the variables
are not linearly independent, and thus are redundant of each other. The qda function
aborts with an error, since the QDA model with so many parameters cannot be fitted
from the available data. ⇤
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Figure 13.12: Misclassification rate of LDA applied
to random data. While the number of samples
n is held constant (at 20), we are increasing the
number of features p starting from 2 up to 21.
The misclassification rate becomes almost zero
as p approaches 20. The LDA model becomes so
elaborate and over-parameterized that it manages
to learn the random labels ”by heart”. (As p
becomes even larger, the “performance” degrades
again somewhat, apparently due to numerical
properties of the lda implementation used here.)

13.4 Machine learning vs rote learning

Computers are really good at memorizing facts. In the worst case, a machine learning
algorithm is a roundabout way of doing this5. The central question in statistical learn-

5 The not so roundabout way is database tech-
nologies.

ing is whether the algorithm is able to generalize, i. e., interpolate and extrapolate.
Let’s look at the following example. We generate random data (rnorm) for n objects,
with di�erent numbers of features (given by p). We train a LDA on these data and
compute themisclassification rate, i. e., the fraction of times the prediction is wrong
(pred != resp).
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Figure 13.11: QDA for the mouse cell data. Shown
are all pairwise plots of the four features.

The lda function manages to fit a model, but complains (with the warning) about
the fact that there are more variables than replicates, which means that the variables
are not linearly independent, and thus are redundant of each other. The qda function
aborts with an error, since the QDA model with so many parameters cannot be fitted
from the available data. ⇤
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Figure 13.12: Misclassification rate of LDA applied
to random data. While the number of samples
n is held constant (at 20), we are increasing the
number of features p starting from 2 up to 21.
The misclassification rate becomes almost zero
as p approaches 20. The LDA model becomes so
elaborate and over-parameterized that it manages
to learn the random labels ”by heart”. (As p
becomes even larger, the “performance” degrades
again somewhat, apparently due to numerical
properties of the lda implementation used here.)

13.4 Machine learning vs rote learning

Computers are really good at memorizing facts. In the worst case, a machine learning
algorithm is a roundabout way of doing this5. The central question in statistical learn-

5 The not so roundabout way is database tech-
nologies.

ing is whether the algorithm is able to generalize, i. e., interpolate and extrapolate.
Let’s look at the following example. We generate random data (rnorm) for n objects,
with di�erent numbers of features (given by p). We train a LDA on these data and
compute themisclassification rate, i. e., the fraction of times the prediction is wrong
(pred != resp).



k-Nearest-Neighbor Classifier

9

Assign each new cell to the class 
of its nearest neighbor.
Black line shows decision 
boundary

y[i] = +1 for pro phase
y[i] = -1 for meta phase
X[i,] = (area[i],lightness[i])
d = class::knn(X,Xnew,y,k=1)

Prophase Metaphase

area

lightness



Which Decision Boundary?

10

Which decision boundary has the 
lowest prediction error?

High bias
Low variance

Low bias
High variance

high model complexity
(need 100s of parameters to 
describe decision boundary)

low model complexity
(needs 2 parameters to
describe the decision boundary)



Two ways to think about classifiers
๏ One can think of classifiers as working in two different ways 
๏ One way is to decide on (estimate) the decision boundary - 

thereby tiling the k dimensional space you are working in. 
๏ Then once you know what region you classify accordingly 

๏ An alternative: decide where the cluster centroids are then 
assign according to whether the new observation is closer to one 
centroid or another. 

๏ You can use different measures of distance to effectively 
stretch or shrink in different directions (often accounting for 
different units of measurement, or directions of more variation 
in the data)

DOI:10.1007/s10845-019-01504-w

https://link.springer.com/article/10.1007/s10845-019-01504-w


Bias-Variance-Dilemma
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Building an AI/ML Model

     The typical process involves iden/fying a machine learning algorithm that 
seems appropriate 

• eg convolu/onal neural networks, xgboost, etc
•  in most cases there are: 
•  model parameters: these are parameters that are directly es/mated by 
the underlying model step
•  hyperparameters: these are parameters the analyst must specify, eg 
how many layers in the neural network, how much smoothing to do, 
parameters that affect the “rate of learning”
•  some/mes feature selec2on is carried out
•  hyperparameters are o@en examined by choosing a range of possible 
values, then fiBng with each one and selec/ng one on the basis of some 
loss func/on (o@en using cross-valida/on)



Train/Test/Validate

• typical use is that the training data are used to fit model 
parameters 

• testing data are used to adjust hyperparameters (eg how many 
layers in the neural network) 

• validation is an independent set that is only used once a final 
model is chosen and it is used to assess prediction accuracy 

• it is very typical for one large (homogeneous) data set to be used 
for all three 

• the data are split, possibly at random – sometimes with some 
care – into three different data sets and labeled accordingly 

• Usually training >> testing > validation



Sensitivity and Specificity

•in order to estimate sensitivity 
and specificity we typically divide 
our learning data into three groups 
•G1: training data – usually the 
largest – fit model parameters 
•G2: testing data – used to 
assess different hyperparameters 
•G3: validation data – used to 
assess the overall predictions (eg 
sensitivity and specificity) with 
respect to the target population 



Separation of Tasks

•one of the most important 
things to address is to ensure 
that you do not allow 
information to pass between 
different layers 
•early experience with 
microarrays where feature 
selection was carried out using 
all the data, then data were 
colon cancer classification based 
on 62 samples (40 disease, 22 
normal) 
•microarray data – thousands of 
genes

• colon cancer classification based on 
62 samples (40 disease, 22 normal)

•  microarray data – thousands of genes
•  the authors show how biased our 
estimates of the error rate are when 
feature selection is not included in each 
step of the cross-validation process



Cross-Validation 

12
Wikipedia



Cross-Validation

• Divide the data into a training, test and validation data set 
• You should have some stochastic component 
• You need to worry about balance if there are important features 

that are rare in the population (eg red hair) 
• Cross-validation helps you choose hyper-parameters 
• There is some overfitting as you are using the same data to 

select parameters as to train, test 
• Dividing one large data set into three groups tends to lead to an 

overly optimistic impression of the operating characteristics



Loss Functions

• In many cases not all errors are equal and you may need to 
balance the cost of the error against the probability of making it 

• Eg: screening for serious diseases - the cost of a FP is not as big 
as the cost of a FN (and for other diseases it can be the other 
way) 

• Predicting rare conditions:  eg we want to use genetics to predict 
the probability that someone has red hair.  In the population of 
interest about 10% of people have red hair. 
• So a naive classifier - “No one has red hair” is right 90% of the 

time…. 
• We might want to use a loss function that balances the errors 

differently in order to ensure that we are predicting the 
outcome of interest….
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Example: 2 classes, 2 variables, 200 objects

x1

x2
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select k = 5 or 6

Cross-validation for k nearest neighbours
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Shading: 
classifi-
cation
result for 
k = 5

Cross-validation for k nearest neighbours



Come back to the linear least squares classifier
X: n x d matrix with d-dimensional features for n samples 
y: vector of length n:    yi = 0 for first class, 1 for second 
class 
Fit linear model by minimizing the squared error: 

  
     

model = lm.fit(X, y) 
 ynew = predict(model, Xnew)$fitted.values 
 ifelse(ynew < 0,-1,1) 

Extension to k classes: 
Y:  an n x d matrix of 
indicator variables 

18

€ 

ˆ β = argmin
β

Xβ − y 2
2

Class  1 2 3 
a      1 0 0 
b      0 1 0 
c      0 0 1 
b      0 1 0 
a      1 0 0  

  
In practice: 

lda (R-
package 
MASS)



Some Other Considerations

๏ In some cases we are very certain about the classification of a 
new observations, but in other cases we might want to express 
some amount of “doubt”. 
๏ The point might lie very close to the boundary 

๏ Sometimes you might want to just refuse to attempt to classify - 
perhaps because the new data is very different from the data 
used to train the classifier. 
๏ This requires access to the original training data - and there are some reasons 

why that information should be retained and used.



Non-Linear Classifiers?
These classes can not be separated by a straight line 

(hyperplane)

20



We could either 

• bend our decision 
boundaries to be 

curvy, or
• bend our data 

space and stick 
with linear 

boundaries.

Guess what is 
20

Danny MacAskill



Data Transformation & Augmentation
Apply non-linear functions, e.g.  

 
  
Train linear classifier in the  
new feature space 

    
  

   
non-linear 

classifier in the original feature space
21

  

€ 

f (x) = 1,x,x 2,x 3,…( )



Quadratic Extension
Parabolic decision boundaries can be achieved by using the product 

22



The Kernel Trick
You don’t even need to do 
the augmentation explicitly.

Remember that relative 
positions of all data points 
can be encoded by their 
distance matrix.

Now just replace Euclidean 
distance with some other, 
called “kernel”.



Popular choices

Linear kernel       

       

Radial basis functions 

Polynomial

The Kernel Trick

04/21/1223

€ 

K(xi,x j ) = xix j

€ 

K(xi,x j ) = exp − 1
2σ 2 xi − x j

$ 

% 
& 

' 

( 
) 

€ 

K(xi,x j ) = (xix j +1)d



Radial Basis Functions 
Kernel 

(SVM 
Thick line: class separating 
hyperplane 
Thin line: margin 
Circles: support vectors)

Example

24



The Influence of the Kernel Parameter 

25

€ 

γ = 0.001

€ 

γ = 0.03

€ 

γ = 0.005

€ 

γ = 0.1

€ 

γ =1

€ 

γ = 2

€ 

γ = 20

€ 

γ = 200

γ = σ-2, RBF



The curse of dimensionality
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mcl = group_by(mcl, p, variable) %>%

summarise(value = mean(value))

ggplot(mcl, aes(x = p, y = value, col = variable)) + geom_line() +

geom_point() + ylab("Misclassification rate")

Figure 13.15: Idealized version of Figure 13.14,
from Hastie et al. (2008). A recurrent goal in
machine learning is finding the sweet spot in the
variance–bias trade-o�.

The result is shown in Figure 13.14. The group centers are the vectors (inR20)
given by the coordinates (1, 1, 1, 1, 1, 1, 0, 0, 0, . . .) (apples) and (2, 2, 2, 2, 2, 2, 0, 0, 0, . . .)
(oranges), and the optimal decision boundary is the hyperplane orthogonal to the line
between them. For k smaller than 6, the decision rule cannot reach this hyperplane –
it is biased. As a result, the misclassification rate is suboptimal, and it decreases with
k . But what happens for k larger than 6? The algorithm is, in principle, able to model
the optimal hyperplane, and it should not be distracted by the additional features.
The problem is that it is. The more additional features enter the dataset, the higher
the probability that one or more of them happen to fall in a way that they look like
good, discriminating features in the training data – only to mislead the classifier and
degrade its performance in the test data. Shortly we’ll see how to use penalization to
(try to) control this problem.

The term curse of dimensionality was coined by Bellman (1961). It refers to
the fact that high-dimensional spaces are very hard, if not impossible, to sample
thoroughly: for instance, to cover a 2-dimensional square of side length 1 with grid
points that are 0.1 apart, we need 102 = 100 points. In 100 dimensions, we need
10100 – which is already more than the number of protons in the universe. And our
intuitions about distances between points in a high-dimensionsal space, or about the
relationship between its volume and surface, break down. We’ll explore some of the
weirdnesses of high-dimensional spaces in the next few questions.

I Question 13.12 Assume you have a dataset with 1 000 000 data points in p dimen-
sions. The data are uniformly distributed in the unit hybercube (i. e., all features lie
in the interval [0, 1]). What’s the side length of a hybercube that can be expected to
contain just 10 of the points, as a function of p? J

I Solution 13.12
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Figure 13.16: Side length of a hybercube expected
to contain 10 points out of 1 million uniformly
distributed ones, as a function of the p . While for
p = 1, this length is conveniently small, namely
10/106 = 10�5, for larger p it approaches 1,
i. e., becomes the same as the range of each the
features. This means that a “local neighborhood”
of 10 points encompasses almost the same data
range as the whole dataset. In genomics, we
often aim to fit models to data with thousands of
features.

See Figure 13.16.
sideLength = function(p, pointDensity = 1e6, pointsNeeded = 10)

(pointsNeeded / pointDensity) ^ (1 / p)

ggplot(tibble(p = 1:400, sideLength = sideLength(p)),

aes(x = p, y = sideLength)) + geom_line(col = "red") +

geom_hline(aes(yintercept = 1), linetype = 2)

⇤

Next, let’s look at the relation between inner regions of the feature space versus its
boundary regions. Generally speaking, prediction at the boundaries of feature space
is more di�cult than in its interior, as it tends to involve extrapolation, rather than
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Figure 13.16: Side length of a hybercube expected
to contain 10 points out of 1 million uniformly
distributed ones, as a function of the p . While for
p = 1, this length is conveniently small, namely
10/106 = 10�5, for larger p it approaches 1,
i. e., becomes the same as the range of each the
features. This means that a “local neighborhood”
of 10 points encompasses almost the same data
range as the whole dataset. In genomics, we
often aim to fit models to data with thousands of
features.

See Figure 13.16.
sideLength = function(p, pointDensity = 1e6, pointsNeeded = 10)

(pointsNeeded / pointDensity) ^ (1 / p)

ggplot(tibble(p = 1:400, sideLength = sideLength(p)),

aes(x = p, y = sideLength)) + geom_line(col = "red") +

geom_hline(aes(yintercept = 1), linetype = 2)

⇤

Next, let’s look at the relation between inner regions of the feature space versus its
boundary regions. Generally speaking, prediction at the boundaries of feature space
is more di�cult than in its interior, as it tends to involve extrapolation, rather than
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interpolation. In the next question you’ll see how this di�culty explodes with feature
space dimension.

I Question 13.13 What fraction of a unit cube’s total volume is closer than 0.01 to
any of its surfaces, as a function of the dimension? J

I Solution 13.13
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Figure 13.17: Fraction of a unit cube’s total
volume that is in its “shell” (here operationalised
as those points that are closer than 0.01 to its
surface) as a function of the dimension p .

See code below and Figure 13.17.
tibble(

p = 1:400,

volOuterCube = 1 ^ p,

volInnerCube = 0.98 ^ p, # 0.98 = 1 - 2 * 0.01

‘V(shell)‘ = volOuterCube - volInnerCube) %>%

ggplot(aes(x = p, y =‘V(shell)‘)) + geom_line(col = "blue")

⇤

I Question 13.14 What is the coe�cient of variation (ratio of standard deviation
over average) of the distance between two randomly picked points in the unit hyper-
cube, as a function of the dimension? J

I Solution 13.14
Solution by simulation.We solve this one by simulation. We generate n pairs of random points in the

hypercube (x1, x2) and compute their Euclidean distances. See Figure 13.18. This
result can also be predicted from the central limit theorem.
n = 1000

df = tibble(

p = round(10 ^ seq(0, 4, by = 0.25)),

cv = vapply(p, function(k) {

x1 = matrix(runif(k * n), nrow = n)

x2 = matrix(runif(k * n), nrow = n)

d = sqrt(rowSums((x1 - x2)^2))

sd(d) / mean(d)

}, FUN.VALUE = numeric(1)))

ggplot(df, aes(x = log10(p), y = cv)) + geom_line(col = "orange") +

geom_point()
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Figure 13.18: Coe�cient of variation (CV) of the
distance between randomly picked points in the
unit hypercube, as a function of the dimension.
As the dimension increases, everybody is equally
far away from everyone else: there is almost no
variation in the distances any more.

⇤

13.5 Objective functions

We’ve already seen themisclassification rate (MCR) used to assess our classification
performance in Figures 13.12–13.14. Its population version is defined as

MCR = E
⇥

�̂,�
⇤
, (13.1)
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⇤

13.5 Objective functions

We’ve already seen themisclassification rate (MCR) used to assess our classification
performance in Figures 13.12–13.14. Its population version is defined as

MCR = E
⇥

�̂,�
⇤
, (13.1)



An attempt to 
visualize a 7-
dim hypercube 
(27 = 128 
corners)
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interpolation. In the next question you’ll see how this di�culty explodes with feature
space dimension.

I Question 13.13 What fraction of a unit cube’s total volume is closer than 0.01 to
any of its surfaces, as a function of the dimension? J

I Solution 13.13
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Figure 13.17: Fraction of a unit cube’s total
volume that is in its “shell” (here operationalised
as those points that are closer than 0.01 to its
surface) as a function of the dimension p .

See code below and Figure 13.17.
tibble(

p = 1:400,

volOuterCube = 1 ^ p,

volInnerCube = 0.98 ^ p, # 0.98 = 1 - 2 * 0.01

‘V(shell)‘ = volOuterCube - volInnerCube) %>%

ggplot(aes(x = p, y =‘V(shell)‘)) + geom_line(col = "blue")

⇤

I Question 13.14 What is the coe�cient of variation (ratio of standard deviation
over average) of the distance between two randomly picked points in the unit hyper-
cube, as a function of the dimension? J

I Solution 13.14
Solution by simulation.We solve this one by simulation. We generate n pairs of random points in the

hypercube (x1, x2) and compute their Euclidean distances. See Figure 13.18. This
result can also be predicted from the central limit theorem.
n = 1000

df = tibble(

p = round(10 ^ seq(0, 4, by = 0.25)),

cv = vapply(p, function(k) {

x1 = matrix(runif(k * n), nrow = n)

x2 = matrix(runif(k * n), nrow = n)

d = sqrt(rowSums((x1 - x2)^2))

sd(d) / mean(d)

}, FUN.VALUE = numeric(1)))

ggplot(df, aes(x = log10(p), y = cv)) + geom_line(col = "orange") +

geom_point()
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Figure 13.18: Coe�cient of variation (CV) of the
distance between randomly picked points in the
unit hypercube, as a function of the dimension.
As the dimension increases, everybody is equally
far away from everyone else: there is almost no
variation in the distances any more.
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! Consider: 
• 10 samples per class 
• Each sample is characterised by several hundred 

features. 
! Even a linear classifier will (always) be too complex: 

overfitting 

Curse of Dimensionality: 
overfitting guaranteed
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Regularisation

Remember that a plane in 
3D space can be 
represented by its normal 
vector. 

Same for n-dim. space 

Idea: rather than allowing 
general vectors, ask for 
many of the coefficients to 
be small, or even zero.

E.g.: decision rule:
x n - 1 > 0



• Ridge just wants the 𝛃 to be small
• Lasso snaps many of the elements to 0 (‘sparsity’) 

(least absolute shrinkage and selection operator) 

Commonly used penalization and their geometry
Lasso estimator: p(�) = ||�||1

�̂ 2 arg min
�

`(�) + �||�||1

= arg min
�

`(�) s.t.||�||1  t,

Ridge estimator: p(�) = ||�||2
2

�̂ 2 arg min
�

`(�) + �||�||22

= arg min
�

`(�) s.t.||�||22  t,

likelihood

shrinkage
likelihood

shrinkage

β1 β1

β2β2

β̂MLE

β̂Lasso

||β||1 ≤ t

β̂MLE

β̂Ridge

||β||22 ≤ t

Lasso combines regularization with continuous selection of variables
in a convex optimization problem.
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where � � 0 is a real number, and pen is a convex function, called the penalty
function. Popular choices are pen(�) = |� |2 (ridge regression) and pen(�) = |� |1

(lasso)13. In the elastic net, ridge and lasso are hybridized by using the penalty 13 Here, |� |� = Pi ��i is the L� -norm of the
vector � . Variations are possible, for instead
we could include in this summation only some
but not all of the elements of � ; or we could
scale di�erent elements di�erently, for instance
based on some prior belief of their scale and
importance.

function pen(�) = (1 � �)|� |1 + � |� |2 with some further parameter � 2 [0, 1]. The
crux is, of course, how to choose the right �, and we will discuss that in the following.

13.6.2 Example: predicting colon cancer from stool microbiome com-

position

Zeller et al. (2014) studied metagenome sequencing data from fecal samples of 156
humans that included colorectal cancer patients and tumor-free controls. Their
aim was to see whether they could identify biomarkers (presence or abundance of
certain taxa) that could help with early tumor detection. The data are available from
Bioconductor through its ExperimentHub service under the identifier EH359.
library("ExperimentHub")

eh = ExperimentHub()

zeller = eh[["EH361"]]

table(zeller$disease)

##

## cancer large_adenoma n small_adenoma

## 53 15 61 27

I Question 13.16 Explore the eh object to see what other datasets there are. J

I Solution 13.16 Type eh into the R prompt and study the output. ⇤

For the following, let’s focus on the normal and cancer samples and set the adeno-
mas aside.
zellerNC = zeller[, zeller$disease %in% c("n", "cancer")]

Before jumping into model fitting, as always it’s a good idea to do some exploration
of the data. First, let’s look at the sample annotations. The following code prints the
data from three randomly picked samples. (Only looking at the first ones, say with
the R function head, is also an option, but may not be representative of the whole
dataset).
pData(zellerNC)[ sample(ncol(zellerNC), 3), ]

## subjectID age gender bmi country disease

## CCIS71578391ST-4-0 FR-187 70 male 25 france n

## CCIS50003399ST-4-0 FR-194 66 female 28 france n

## CCIS38765456ST-20-0 FR-723 79 female 22 france cancer

## tnm_stage ajcc_stage localization fobt

## CCIS71578391ST-4-0 <NA> <NA> <NA> negative

## CCIS50003399ST-4-0 <NA> <NA> <NA> negative

## CCIS38765456ST-20-0 t4n1m1 iv lc positive

## wif-1_gene_methylation_test group

## CCIS71578391ST-4-0 negative control

## CCIS50003399ST-4-0 negative control
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## CCIS38765456ST-20-0 positive crc

## bodysite ethnicity number_reads

## CCIS71578391ST-4-0 stool white 74021867

## CCIS50003399ST-4-0 stool white 63416533

## CCIS38765456ST-20-0 stool white 81682982

Next, let’s explore the feature names14. 14 We define the helper function formatfn to
line wrap these long character strings for the
available space here.

formatfn = function(x)

gsub("|", "| ", x, fixed = TRUE) %>% lapply(strwrap)

rownames(zellerNC)[1:4]

## [1] "k__Bacteria"

## [2] "k__Viruses"

## [3] "k__Bacteria|p__Firmicutes"

## [4] "k__Bacteria|p__Bacteroidetes"

rownames(zellerNC)[nrow(zellerNC) + (-2:0)] %>% formatfn

## [[1]]

## [1] "k__Bacteria| p__Proteobacteria| c__Deltaproteobacteria|"

## [2] "o__Desulfovibrionales| f__Desulfovibrionaceae|"

## [3] "g__Desulfovibrio| s__Desulfovibrio_termitidis"

##

## [[2]]

## [1] "k__Viruses| p__Viruses_noname| c__Viruses_noname|"

## [2] "o__Viruses_noname| f__Baculoviridae|"

## [3] "g__Alphabaculovirus|"

## [4] "s__Bombyx_mori_nucleopolyhedrovirus|"

## [5] "t__Bombyx_mori_nucleopolyhedrovirus_unclassified"

##

## [[3]]

## [1] "k__Bacteria| p__Proteobacteria| c__Deltaproteobacteria|"

## [2] "o__Desulfovibrionales| f__Desulfovibrionaceae|"

## [3] "g__Desulfovibrio| s__Desulfovibrio_termitidis|"

## [4] "t__GCF_000504305"

As you can see, the features are a mixture of abundance quantifications at di�erent
taxonomic levels, from kingdom over phylum to species. We could select only some
of these, but here we continue with all of them. Next, let’s look at the distribution of
some of the features. Here, we show an arbitrary choice of two, number 510 and 527;
in practice, it is helpful to scroll through many such plots quickly to get an impression
(Figure 13.20).
ggplot(melt(exprs(zellerNC)[c(510, 527), ]), aes(x = value)) +

geom_histogram(bins = 25) +

facet_wrap( ~ Var1, ncol = 1, scales = "free")

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Clostridiaceae|g__Clostridium|s__Clostridium_symbiosum|t__Clostridium_symbiosum_unclassified

k__Bacteria|p__Firmicutes|c__Negativicutes|o__Selenomonadales|f__Veillonellaceae|g__Dialister|s__Dialister_invisus|t__GCF_000160055
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Figure 13.20: Histograms of the distributions for
two randomly selected features. The distributions
are highly skewed, with many zero values and a
thin, long tail of non-zero values.

In the simplest case, we fit model (13.7) as follows.
library("glmnet")

glmfit = glmnet(x = t(exprs(zellerNC)),

y = factor(zellerNC$disease),

family = "binomial")
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In the simplest case, we fit model (13.7) as follows.
library("glmnet")

glmfit = glmnet(x = t(exprs(zellerNC)),

y = factor(zellerNC$disease),

family = "binomial")
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A remarkable feature of the glmnet function is that it fits (13.7) not only for
one choice of �, but for all possible �s at once. For now, let’s look at the prediction
performance for, say, � = 0.04. The name of the function parameter is s:
predTrsf = predict(glmfit, newx = t(exprs(zellerNC)),

type = "class", s = 0.04)

table(predTrsf, zellerNC$disease)

##

## predTrsf cancer n

## cancer 51 0

## n 2 61

Not bad15. Let’s have a closer look at glmfit. The glmnet package o�ers a a diag- 15 But remember that this is on the training data,
without cross-validation.nostic plot that is worth looking at (Figure 13.21).

plot(glmfit, col = brewer.pal(12, "Set3"), lwd = sqrt(3))
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Figure 13.21: Regularization paths for glmfit.

I Question 13.17 What is the x-axis in Figure 13.21? What are the di�erent lines? J

I Solution 13.17 Consult the manual page of the function plot.glmnet in the
glmnet package. ⇤

Let’s get back to the question of how to choose the parameter �. We could try
many di�erent choices –and indeed, all possible choices– of �, assess classification
performance in each case using cross-validation, and then choose the best �16. We

16 You’ll already realize from the description of
this strategy that if we optimize � in this way,
the resulting apparent classification performance
will likely be exaggerated. We need a truly
independent dataset, or at least another, outer
cross-validation loop to get a more realistic
impression of the generalizability. We will get
back to this question at the end of the chapter.

could do so by writing a loop as we did in the estimate_mcl_loocv function in
Section 13.4.1. It turns out that the glmnet package already has built-in functionality
for that, with the function cv.glmnet, which we can use instead.
cvglmfit = cv.glmnet(x = t(exprs(zellerNC)),

y = factor(zellerNC$disease),

family = "binomial")

plot(cvglmfit)

The diagnostic plot is shown in Figure 13.22. We can access the optimal value with
cvglmfit$lambda.min

## [1] 0.08830775

As this value results from finding a minimum in an estimated curve, it turns out
that it is often too small, i. e., that the implied penalization is too weak. A heuristic
recommended by the authors of the glmnet package is to use a somewhat larger value
instead, namely the largest value of � such that the performance measure is within 1
standard error of the minimum.
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Figure 13.22: Diagnostic plot for cv.glmnet:
shown is a measure of cross-validated prediction
performance, the deviance, as a function of �.
The dashed vertical lines show lambda.min and
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cvglmfit$lambda.1se

## [1] 0.1015325

I Question 13.18 How does the confusion table look like for � = lambda.1se? J

I Solution 13.18
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cvglmfit$lambda.1se
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I Question 13.18 How does the confusion table look like for � = lambda.1se? J

I Solution 13.18

glmnet on the Zeller data
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A remarkable feature of the glmnet function is that it fits (13.7) not only for
one choice of �, but for all possible �s at once. For now, let’s look at the prediction
performance for, say, � = 0.04. The name of the function parameter is s:
predTrsf = predict(glmfit, newx = t(exprs(zellerNC)),

type = "class", s = 0.04)

table(predTrsf, zellerNC$disease)

##

## predTrsf cancer n

## cancer 51 0

## n 2 61

Not bad15. Let’s have a closer look at glmfit. The glmnet package o�ers a a diag- 15 But remember that this is on the training data,
without cross-validation.nostic plot that is worth looking at (Figure 13.21).

plot(glmfit, col = brewer.pal(12, "Set3"), lwd = sqrt(3))
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Figure 13.21: Regularization paths for glmfit.

I Question 13.17 What is the x-axis in Figure 13.21? What are the di�erent lines? J

I Solution 13.17 Consult the manual page of the function plot.glmnet in the
glmnet package. ⇤

Let’s get back to the question of how to choose the parameter �. We could try
many di�erent choices –and indeed, all possible choices– of �, assess classification
performance in each case using cross-validation, and then choose the best �16. We

16 You’ll already realize from the description of
this strategy that if we optimize � in this way,
the resulting apparent classification performance
will likely be exaggerated. We need a truly
independent dataset, or at least another, outer
cross-validation loop to get a more realistic
impression of the generalizability. We will get
back to this question at the end of the chapter.

could do so by writing a loop as we did in the estimate_mcl_loocv function in
Section 13.4.1. It turns out that the glmnet package already has built-in functionality
for that, with the function cv.glmnet, which we can use instead.
cvglmfit = cv.glmnet(x = t(exprs(zellerNC)),

y = factor(zellerNC$disease),

family = "binomial")

plot(cvglmfit)

The diagnostic plot is shown in Figure 13.22. We can access the optimal value with
cvglmfit$lambda.min

## [1] 0.08830775

As this value results from finding a minimum in an estimated curve, it turns out
that it is often too small, i. e., that the implied penalization is too weak. A heuristic
recommended by the authors of the glmnet package is to use a somewhat larger value
instead, namely the largest value of � such that the performance measure is within 1
standard error of the minimum.
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Figure 13.22: Diagnostic plot for cv.glmnet:
shown is a measure of cross-validated prediction
performance, the deviance, as a function of �.
The dashed vertical lines show lambda.min and
lambda.1se.

cvglmfit$lambda.1se

## [1] 0.1015325

I Question 13.18 How does the confusion table look like for � = lambda.1se? J

I Solution 13.18
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High bias
Low variance

Low bias
High variance

high model complexity
(need 100s of parameters to 
describe decision boundary)

low model complexity
(needs 2 parameters to
describe the decision boundary)

Summary: It’s all about adapting the 
complexity of the model to that of the data

Reduce complexity: regularization (Lasso, ridge, …)
Increase complexity: data transformation, augmentation, kernels 
Always assess classifiers by cross-validation



Another example of overfitting 

Chapter 13

Supervised Learning

Figure 13.1: In a supervised learning setting, we
have a yardstick or plumbline to judge how well
we are doing: the response itself.

A frequent question in biological and biomedical applications is whether a property
of interest (say, disease type, cell type, the prognosis of a patient) can be “predicted”,
given one or more other properties, called the predictors. Often we are motivated by
a situation in which the property to be predicted is unknown (it lies in the future, or is
hard to measure), while the predictors are known. The crucial point is that we learn
the prediction rule from a set of training data in which the property of interest is also
known. Once we have the rule, we can either apply it to new data, and make actual
predictions of unknown outcomes; or we can dissect the rule with the aim of better
understanding the underlying biology.

Compared to unsupervised learning and what we have seen in Chapters ??, ??
and ??, where we do not know what we are looking for or how to decide whether our
result is “right”, we are on much more solid ground with supervised learning: the
objective is clearly stated, and there are straightforward criteria to measure how well
we are doing.
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Figure 13.2: An example for overfitting: two
regression lines are fit to data in the (x ,�)-plane
(black points). Both lines are smooth, but the
fits di�er in what is called their bandwidth,
which intuitively can be interpreted as a line’s
sti�ness. The blue line seems overly keen to
follow minor wiggles in the data, while the
orange line captures the general trend but is less
detailed. The e�ective number of parameters
needed to describe the blue line is much higher
than for the orange line. Also, if we were to
obtain additional data, it is likely that the blue
line would do a worse job than the orange line
in modeling the new data. We’ll formalize these
concepts –training error and test set error– later
in this chapter. Although exemplified here with
line fitting, the concept applies more generally to
prediction models.

The central issue in supervised learning1 is overfitting and generalizability:

1 Sometimes the term statistical learning is used,
more or less exchangeably.

did we just learn the training data “by heart” by constructing a rule that has 100%
accuracy on the training data, but would perform poorly on any new data? Or did our
rule indeed pick up some of the pertinent patterns in the system being studied, which
will also apply to yet unseen new data? (Figure 13.2)

13.1 Goals for this chapter

In this chapter we will

• see exemplary applications that motivate the use of supervised learning methods
• learn what discriminant analysis does,
• define measures of performance,
• encounter the curse of dimensionality and see what overfitting is,
• find out about regularization and understand the concepts of generizability and
model complexity,
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