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Recent technological advancements have enabled the profiling of a large number of genome-wide features in individual cells.
However, single-cell data present unique challenges that require the development of specialized methods and software infra-
structure to successfully derive biological insights. The Bioconductor project has rapidly grown to meet these demands, host-
ing community-developed open-source software distributed as R packages. Featuring state-of-the-art computational methods,
standardized data infrastructure and interactive data visualization tools, we present an overview and online book (https://osca.
bioconductor.org) of single-cell methods for prospective users.

munity of developers and users from diverse scientific fields, tioned are also generalizable to other types of single-cell assays. We

f ince 2001, the Bioconductor project' has attracted a rich com-  single-cell RNA-seq (scRNA-seq) data, much of the concepts men-
driving the development of open-source software packages cover data import, common data containers for storing single-cell

https://osca.bioconductor.org
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Orchestrating Single-Cell Analysis

Welcome

1 Introduction
1.1 What you will learn
1.2 What you won't learn
1.3 Who we wrote this for
1.4 Why we wrote this
1.5 Acknowledgements

2 Learning R and Bioconductor

2.1 The Benefits of R and Biocondu...

2.2 Learning R Online
2.3 Running R Locally
2.4 Getting Help In (and Out) of R
2.5 Bioconductor Help
3 Beyond R Basics

3.1 Becoming an R Expert
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Welcome

This is the website for “Orchestrating Single-Cell Analysis with
Bioconductor”, a book that teaches users some common workflows for
the analysis of single-cell RNA-seq data (scRNA-seq). This book will teach
you how to make use of cutting-edge Bioconductor tools to process,
analyze, visualize, and explore scRNA-seq data. Additionally, it serves as
an online companion for the manuscript “Orchestrating Single-Cell

Analysis with Bioconductor”.

While we focus here on scRNA-seq data, a newer technology that profiles

Biolconductor

transcriptomes at the single-cell level, many of the tools, conventions, and

https://osca.bioconductor.org



10 Clustering
10.1 Motivation
10.2 What is the “true clustering”?
10.3 Graph-based clustering
10.3.1 Background
10.3.2 Implementation
10.3.3 Other parameters
10.3.4 Assessing cluster separation
10.4 k-means clustering
10.5 Hierarchical clustering
10.6 Subclustering
Session Info
11 Marker gene detection
11.1 Motivation
11.2 Using pairwise t-tests

11.3 Alternative testing regimes

Lots of philosophical
discussions about
10.2 What is the “true clustering”? single-cell ana|yses

At this point, it is worth stressing the distinction between clusters and

. The former is an empirical
construct while the latter is a biological truth (albeit a vaguely defin or this reason, questions like
“what is the true number of clusters?” are usually meaningless fine as many clusters as we like,
with whatever algorithm we like - each clustering will represent artitioning of the high-dimensional

expression space, and is as “real” as any other clustering.

A more relevant question is “how well do the clusters approximate the cell types?” Unfortunately, this is
difficult to answer given the context-dependent interpretation of biological truth. Some analysts will be
satisfied with resolution of the major cell types; other analysts may want resolution of subtypes; and others
still may require resolution of different states (e.g., metabolic activity, stress) within those subtypes.
Moreover, two clusterings can be highly inconsistent yet both valid, simply partitioning the cells based on
different aspects of biology. Indeed, asking for an unqualified “best” clustering is akin to asking for the best
magnification on a microscope without any context.

It is helpful to realize that clustering, like a microscope, is simply a tool to explore the data. We can zoom in
and out by changing the resolution of the clustering parameters, and we can experiment with different
clustering algorithms to obtain alternative perspectives of the data. This iterative approach is entirely
permissible for data exploration, which constitutes the majority of all scRNA-seq data analyses.

https://osca.bioconductor.org



10 Clustering

Lots of R/Bioc
code to analyze
single-cell data

10.1 Motivation

library(scater)

10.2 What is the “true clustering”?
4 sce.pbmc$cluster <- factor(clust)

10.3 Graph-based clustering plotReducedDim(sce.pbmc, "TSNE", colour_by="cluster")

10.3.1 Background

10.3.2 Implementation
10.3.3 Other parameters
: % 20 cluster
10.3.4 Assessing cluster separation bt
2
10.4 k-means clustering 3
4
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11.5 Invalidity of p-values TSNE 1
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# delayed_array

# developers-forum
# diversebioc

# general

# hca_clustering

# hca_rfa

# introductions

# isee

# osca-book

# papersandpreprints
# random

# sc-signature

# singlecell-queries

# singlecellexperiment

#osca-book @
& 47 | Add a topic

simpleSingleCell to trigger propagation ¢ THuksaay.July2id ©

Friday, July 3rd v

Aaron Lun &8 12:30 AM
Excellent.

« Hervé Pagés 7:15pPM

% Same problem with pandoc 2.7.3. Updating to the latest pandoc (2.10) doesn't help either (just tried this on
my laptop, still running Ubuntu 16.04 here). The HTML source code | get locally is the same as the online
HTML:

<p>To inspect the object, we can simply type <code>sce</code> into the console to see some
pertinent information, which will display an overview of the various slots available to us (which
may or may not have any data).</p>

<div class="sourceCode" id="cb1l0@"><pre class="sourceCode r"><code class="sourceCode r"><span
1d="cb10-1"><a href="data-infrastructure.html#cb10-1" aria-hidden="true"></a>sce</span></code>
</pre></div>

<pre><code>## class: SingleCellExperiment

## dim: 10 3

## metadata(@):

## assays(l): counts

a7 a0 a =1 N an
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#Bioc2020

http://bioc2020.bioconductor.org/

Now Virtual

BioC 2020: Where Software and
Biology Connect

When: July 29 - 31, 2020

What: Community/Developer Day, Main Conference
Where: venue, Boston, USA

Slack: Bioconductor Team (#bioc2020 channel)
Twitter: #bioc2020




