IBD

Reproducible RNA-seq analysis with recount2

Leonardo Collado-Torres @fellgernon #bioc2017

LIEBER INSTITUTE for BRAIN DEVELOPMENT MALTZ RESEARCH LABORATORIES

Reads

Reference genome

NATIONAL CANCER INSTITUTE THE CANCER GENOME ATLAS TCGA produced over TCGA data describes including PETABY of data TUMOR TYPES ...based on paired tumor and normal tissue sets To put this into perspective, 1 petabyte of data collected from is equal to DVDs DATA TYPES **TCGA RESULTS & FINDINGS** For example, a TCGA study found the basal-like subtype of breast cancer to be similar to the Improved our serous subtype of ovarian cancer on a molecular MOLECULAR understanding of the BASIS OF level, suggesting that despite arising from genomic underpinnings CANCER different tissues in the body, these subtypes may of cancer share a common path of development and respond to similar therapeutic strategies. TCGA revolutionized how cancer is classified by TUMOR Revolutionized how identifying tumor subtypes with distinct sets of SUBTYPES cancer is classified genomic alterations.* Identified genomic TCGA's identification of targetable genomic characteristics of tumors alterations in lung squamous cell carcinoma led THERAPEUTIC that can be targeted with to NCI's Lung-MAP Trial, which will treat TARGETS currently available patients based on the specific genomic changes therapies or used to help in their tumor. with drug development THF TFAM The Genomic Data Commons (GDC) houses TCGA and other NCI-generated data sets for scientists to access from anywhere. The GDC also has many expanded INSTITUTIONS capabilities that will allow researchers to across the United States answer more clinically and Canada relevant questions with slide adapted from Shannon Ellis mach cancer revealed that uding a new subtype chara

G AAG	ATA SRA	
AACGCC TTGCAT TAA	allow for new discoveries by comparing throughput sequencing platforms, inclu	biological sequence data available to the research community to enhance reproducil data sets. The SRA stores raw sequencing data and alignment information from hig ding Roche 454 GS System®, Illumina Genome Analyzer®, Applied Biosystems SOI te Genomics®, and Pacific Biosciences SMRT®.
Getting Started	Tools and Software	Related Resources
Understanding and Using SRA	Download SRA Toolkit	dbGaP Home
How to Submit	SRA Toolkit Documentation	Trace Archive Home
Login to Submit	<u>SRA-BLAST</u>	BioSample
Download Guide	SRA Run Browser	GenBank Home
	SRA Run Selector	

You are here: NCBI > DNA & RNA > Sequence Read Archive (SRA)

S

Slide adapted from Ben Langmead

http://blogs.citrix.com/2012/10/17/announcing-general-availability-of-sharefile-with-storagezones/

recount2 A multi-experiment resource of analysis-ready RNA-seq gene and exon count datasets

recount2 is an online resource consisting of RNA-seq gene and exon counts as well as coverage bigWig files for 2041 different studies. It is the second generation of the ReCount project. The raw sequencing data were processed with Rail-RNA as described in the recount2 paper and at Nellore et al, Genome Biology, 2016 which created the coverage bigWig files. For ease of statistical analysis, for each study we created count tables at the gene and exon levels and extracted phenotype data, which we provide in their raw formats as well as in RangedSummarizedExperiment R objects (described in the SummarizedExperiment Bioconductor package). We also computed the mean coverage per study and provide it in a bigWig file, which can be used with the derfinder Bioconductor package to perform annotation-agnostic differential expression analysis at the expressed regions-level as described at Collado-Torres et al, Genome Research, 2017. The count tables, RangedSummarizeExperiment objects, phenotype tables, sample bigWigs, mean bigWigs, and file information tables are ready to use and freely available here. We also created the recount Bioconductor package which allows you to search and download the data for a specific study . By taking care of several preprocessing steps and combining many datasets into one easily-accessible website, we make finding and analyzing RNA-seq data considerably more straightforward.

Related publications

entries

Collado-Torres L, **Nellore A**, Kammers K, Ellis SE, Taub MA, Hansen KD, Jaffe AE, Langmead B, Leek JT. Reproducible RNA-seq analysis using *recount2*. *Nature Biotechnology*, 2017. doi: 10.1038/nbt.3838.

The Datasets

Show 10

https://jhubiostatistics.shinyapps.io/recount/

Gene

exon 1

exon 2

exon 3

disjoint exon 3

disjoint exon 1

$\frac{\sum_{i}^{n} \text{coverage}_{i}}{\text{Read Length}} * \frac{\text{target}}{\text{mapped}} = \text{scaled read counts}$

$$\frac{\sum_{i}^{n} \text{coverage}_{i}}{\text{Read Length}} * \frac{\text{target}}{\text{mapped}} = \text{scaled read counts}$$

$$\frac{\sum_{i}^{n} \text{coverage}_{i}}{\text{AUC}} * \text{target} = \text{scaled read counts}$$

> library('recount')

> download_study('ERP001942', type='rse-gene')

>load(file.path('ERP001942 ', 'rse_gene.Rdata'))

> rse <- scale_counts(rse_gene)</pre>

https://github.com/leekgroup/recount-analyses/

Replying to @jtleek

Recount has been very useful for me over the years in developing and testing methods

RETWEETSLIKES45

10:17 AM - 11 Apr 2017

🛧 🛟 4 🖤 5

slide adapted from Jeff Leek

>library('recount')

- > download_study('SRP029880', type='rse-gene')
- > download_study('SRP059039', type='rse-gene')
- > load(file.path('SRP029880 ', 'rse_gene.Rdata'))
- >load(file.path('SRP059039', 'rse_gene.Rdata'))

> mdat <- do.call(cbind, dat)</pre>

https://github.com/leekgroup/recount-analyses/

Average Log2 Fold Change

Gene

Postmortem Human Brain Samples

6 / group, N = 36

6 / group, N = 36

Jaffe et al, Nat. Neuroscience, 2015

BrainSpan data Jaffe et al, *Nat. Neuroscience*, 2015

recount2

expression data for ~70,000 human samples

recount2

expression data for ~70,000 human samples

slide adapted from Shannon Ellis

recount2

expression data for ~70,000 human samples

Even when information *is* provided, it's not always clear...

sra_meta\$Se

X	
Category	Frequency
F	95
female	2036
Female	51
Μ	77
male	1240
Male	141
Total	3640

"1 Male, 2 Female", "2 Male, 1 Female", "3 Female", "DK", "male and female" "Male (note:)", "missing", "mixed", "mixture", "N/A", "Not available", "not applicable", "not collected", "not determined", "pooled male and female", "U", "unknown", "Unknown"

SRA phenotype information is far from complete

	SubjectID	Sex	Tissue	Race		Age	
6620	NA	female	liver	NA		NA	
6621	NA	female	liver	NA		NA	
6622	NA	female	liver	NA		NA	
6623	NA	female	liver	NA		NA	
6624	NA	female	liver	NA		NA	
6625	NA	male	liver	NA		NA	
6626	NA	male	liver	NA		NA	
6627	NA	male	liver	NA		NA	
6628	NA	male	liver	NA		NA	
6629	NA	male	liver	NA		NA	
6630	NA	male	liver	NA		NA	
6631	NA	NA	blood	NA		NA	
6632	NA	NA	blood	NA		NA	
6633	NA	NA	blood	NA		NA	
6634	NA	NA	blood	NA		NA	
6635	NA	NA	blood	NA		NA	
6636	NA	NA	blood	NA	I '	1.1 1	

slide adapted from Shannon Ellis

Goal :

to accurately predict critical phenotype information for all samples in *recount*

slide adapted from Shannon Ellis
Goal :

to accurately predict critical phenotype information for all samples in *recount*

Goal :

to accurately predict critical phenotype information for all samples in *recount*

Goal :

to accurately predict critical phenotype information for all samples in *recount*

Output: Coverage matrix (data.frame) Region information (GRanges)

Sex Prediction

1.0 99.4% 99.8% 99.6% 88.5% 0.8 Sex Proportion Correct prediction is 0.6 accurate 0.4 across data 0.2 sets 0.0 GTEx: training GTEx: test TCGA SRA **Number of Regions** 20 20 20 20 4,769 Number of Samples 4,769 11,245 3,640 **(N)**

Sex Prediction

Can we use expression data to predict tissue?

http://www.rna-seqblog.com/

Tissue Prediction

Tissue Prediction

- > library('recount')
- > download_study('ERP001942', type='rse-gene')
- > load(file.path('ERP001942 ', 'rse_gene.Rdata'))
- > rse <- scale_counts(rse_gene)</pre>

> rse_with_pred <- add_predictions(rse_gene)</pre>

https://github.com/leekgroup/recount-analyses/

recount2

expression data for ~70,000 human samples

LIBD

Collaborators

The Leek Group Jeff Leek Shannon Ellis

Hopkins Ben Langmead Chris Wilks Kai Kammers Kasper Hansen Margaret Taub OHSU Abhinav Nellore

LIBD Andrew Jaffe Emily Burke Stephen Semick Carrie Wright Amanda Price Nina Rajpurohit

Funding

NIH R01 GM105705 NIH 1R21MH109956 CONACyT 351535 AWS in Education Seven Bridges IDIES SciServer

> LIEBER INSTITUTE for BRAIN DEVELOPMENT MALTZ RESEARCH LABORATORIES

http://research.libd.org/recountWorkshop/

help(package = recountWorkshop)

file.edit(

system.file('doc/recount-workshop.Rmd', package = 'recountWorkshop')

Leonardo Collado-Torres @fellgernon #bioc2017

LIEBER INSTITUTE for BRAIN DEVELOPMENT MALTZ RESEARCH LABORATORIES

recount2

expression data for ~70,000 human samples

(Multiple) Postdoc positions available to

- develop methods to process and analyze data from recount2
- use recount2 to address specific biological questions
- This project involves the Hansen, Leek, Langmead and Battle labs at JHU

Contact: Kasper D. Hansen (khansen@jhsph.edu | www.hansenlab.org)