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Understanding and Using SRA
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Download Guide
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Help

AW Sequence Read Archive (SRA) makes biological sequence data available to the research community to enhance reproducibility and

allow for new discoveries by comparing data sets. The SRA stores raw sequencing data and alignment information from high-
throughput sequencing platforms, including Roche 454 GS System®, lllumina Genome Analyzer®, Applied Biosystems SOLID
System®, Helicos Heliscope®, Complete Genomics®, and Pacific Biosciences SMRT®.

Tools and Software

Download SRA Toolkit

SRA Toolkit Documentation

SRA-BLAST
SRA Run Browser
SRA Run Selector

Related Resources
dbGaP Home
Trace Archive Home

BioSample

GenBank Home

You are here: NCBI > DNA & RNA > Sequence Read Archive (SRA)

Wiite to the Help Desk
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Bowtie 2

Preprocess

Align reads end-to-end to genome
Aggregate duplicate reads
Split inti) readlets

Aggregate duplicate readlets Bowtie

Align readlets to genome

Correlation clustering for readlet alignments

* [
Call splice junction Bowtie

L

Align readlets to junction co-occurrence index Merge exon differentials

Write spliced Iignment BAMs Compile sanlple coverages
Write junction & indel BEDs Write lfigWigs

Write normalization factors

http://rail.bio/

Slide adapted from Ben Langmead



___NeNP
“.’amazon

webservices™

“:'amazon

_ _NpNp
“.."amazon
webservices™

US West
(OR, CA)

Sao Paolo -':.:':-'a'-' azon
webservices™

T -':-3
us wgpservnoes"

azon

http://blogs.citrix.com/2012/10/17/announcing-general-availability-of-sharefile-with-storagezones/



H 2 A multi-experiment resource of analysis-ready RNA-seq gene and exon count
recount .4 datasets

recount2 is an online resource consisting of RNA-seq gene and exon counts as well as coverage bigWig files for 2041 different studies. It is the second generation of the ReCount project. The
raw sequencing data were processed with Rail-RNA as described in the recount2 paper and at Nellore et al, Genome Biology, 2016 which created the coverage bigWig files. For ease of
statistical analysis, for each study we created count tables at the gene and exon levels and extracted phenotype data, which we provide in their raw formats as well as in
RangedSummarizedExperiment R objects (described in the SummarizedExperiment Bioconductor package). We also computed the mean coverage per study and provide it in a bigWig file,
which can be used with the derfinder Bioconductor package to perform annotation-agnostic differential expression analysis at the expressed regions-level as described at Collado-Torres et al,
Genome Research, 2017. The count tables, RangedSummarizeExperiment objects, phenotype tables, sample bigWigs, mean bigWigs, and file information tables are ready to use and freely
available here. We also created the recount Bioconductor package which allows you to search and download the data for a specific study . By taking care of several preprocessing steps and
combining many datasets into one easily-accessible website, we make finding and analyzing RNA-seq data considerably more straightforward.

Related publications

Collado-Torres L, Nellore A, Kammers K, Ellis SE, Taub MA, Hansen KD, Jaffe AE, Langmead B, Leek JT. Reproducible RNA-seq analysis using recount2. Nature Biotechnology, 2017. doi:
10.1038/nbt.3838.

The Datasets

https://jhubiostatistics.shinyapps.1o/recount/
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brain development by age group from LIBD jx_cov counts
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disjoint exon 2

_ disjoint exon 3
disjoint exon 1
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> library('recount')

> download study( 'ERP001942', type="rse-gene')

> load(file.path('ERP0O01942 ", 'rse gene.Rdata'))

> rse <- scale counts(rse gene)

https://github.com/leekgroup/recount-analyses/



Mike Love
@mikelove

Replying to @jtleek

Recount has been very useful for me over
the years in developing and testing methods
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>library('recount')

> download study('SRP029880', type="rse-gene')
> download study('SRP059039', type="rse-gene')
> load(file.path('SRP029880 ', rse gene.Rdata'))
> load(file.path('SRP059039', rse gene.Rdata'))
> mdat <- do.call(cbind, dat)

https://github.com/leekgroup/recount-analyses/
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Postmortem Human Brain Samples

Discovery data Replication data
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Jaffe et al, Nat. Neuroscience, 2015
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Even when information is provided, it’s not always clear...

sra_meta$Se

X
Category Frequency
F 05 “l1 Male, 2 Female”, “2 Male, 1 Female”, “3
female 2036 Female”, “DK”, “male and female” “Male
Female 51 (note: ....)”", “missing”, “mixed”, “mixture”,
M 77 “N/A”, “Not available”, “not applicable”,
male 1240 “not collected”, “not determined”, “pooled
Male 141 male and female”, “U”, “unknown”,
Total 3640 “Unknown”

slide adapted from Shannon Ellis



SRA phenotype information 1s far from complete
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Sex Prediction
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Sex Prediction
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Tissue Prediction
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Tissue Prediction
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> library('recount')

> download study( 'ERP001942', type="rse-gene')
> load(file.path('ERP0O01942 ', 'rse gene.Rdata'))

> rse <- scale counts(rse gene)

>rse with pred <- add predictions(rse gene)

https://github.com/leekgroup/recount-analyses/
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I = hlrecountz

http://research.libd.org/recountWorkshop/
help(package = recountWorkshop)

file.edit(

system.file('doc/recount-workshop.Rmd', package = 'recountWorkshop')

| eonardo Collado-Torres

@fellgemon LIEBER INSTITUTE for

. BRAIN DEVELOPMENT
#b|oc2O | / MALTZ RESEARCH LABORATORIES



N lrecountz

expression data for ~70,000 human samples

(Multiple) Postdoc positions available to
- develop methods to process and analyze data from recount2
- use recount2 to address specific biological questions
This project involves the Hansen, Leek, Langmead and Battle labs at JHU

Contact: Kasper D. Hansen (khansen@jhsph.edu | www.hansenlab.org)



