
Quote di partecipazione:
Trekking sull'Alta via n. 2 € 350,00 a persona (con 20 € di sconto per i soci CAI), comprensivi 
di viaggio in Autobus, alloggio nei rifugi con trattamento di ½ pensione (dove possibile in 
camere 2-8 posti, in camerone al Rifugio Puez), dalla cena del 7 settembre alla colazione del 12 
settembre (sono esclusi i pasti di mezzogioro in rifugio o al sacco e le bevande ai pasti). 

Soggiorno a Siusi a Villa Madonna (o in una struttura vicina: ParkHotel Florian) da € 385,00 
a € 435,00 a persona (a seconda del tipo di sistemazione), comprensivi di viaggio in Autobus, 
alloggio presso l'Albergo con trattamento di ½ pensione, dalla cena del 7 settembre alla colazione 
del 12 settembre (sono esclusi i pasti di mezzogiorno in albergo o al sacco e le bevande ai pasti.
Supplemento camera singola € 35,00. Nel prezzo della camera a Siusi (entrambi le strutture) sono compresi la cena 
e la colazione a buffet (sono escluse le bevande ai pasti e le consumazioni al bar). A Villa Madonna è compreso 
l’uso della piscina coperta, dell’idromassaggio esterno. (non è compreso l’uso della sauna). Al ParkHotel Florian 
l'uso della piscina riscaldata nel parco privato (2 ettari), sauna, bagno turco, solarium e idro massaggio.
Supplemento per i non soci UOEI € 20,00. -  All'atto dell'iscrizione deve essere versata la caparra di € 100,00

Le iscrizioni si ricevono ESCLUSIVAMENTE  col versamento della caparra entro il 04-08-2013.
Penalità di annullamento
L’Associazione, nel caso di annullamento della prenotazione, cercherà di fare il possibile per recuperare tutta o in parte la quota versata 
per l’albergo, trattenendo oltre all'intera quota del pullman le seguenti penali:
recesso fino a 31 gg prima dell’inizio del viaggio = 10% sulla quota relativa al soggiorno, recesso da 30 gg a 21 gg prima dell’inizio del 
viaggio = 25% sulla quota relativa al soggiorno, recesso da 20 gg a 11 gg prima dell’inizio del viaggio = 50% sulla quota relativa al 
soggiorno, recesso da 10 gg a 4 gg prima dell’inizio del viaggio = 75% sulla quota quota relativa al soggiorno, recesso nei 3 gg prima 
dell’inizio del viaggio = 100% sulla quota relativa al soggiorno. Per qualsiasi ulteriore chiarimento ci si può rivolgere in sede.

L’Associazione U.O.E.I. Bergamo declina ogni responsabilità per danni a materiali e cose eventualmente subiti sia durante 
l’attività sia durante il soggiorno in albergo.

ESCURSIONI 2013
U.O.E.I.  Unione Operaia Escursionisti Italiani
Sezione “Alberto Casari” Bergamo

L.go Porta Nuova, 10
24122 Bergamo
Tel. Fax. 035.239405

www.bergamo.uoei.it
e-mail:bergamo@uoei.it

Option 1: Woody Walk 

Option 2: Rifugio Plose 
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Why graphics?

1. To explore data (interactively) 

2. To communicate data & preliminary 
insights with collaborators  

3. To publish results



Goals for this lecture

• Review base R plotting 

• Understand the grammar of graphics concept 

• Introduce ggplot2's ggplot function 

• See how to plot 1D, 2D, 3-5D data and 

understand faceting 

• Visualisation for quickling viewing large 

datasets and discover large-scale trends (e.g. 

batch effects) 

• Use colours like a pro 

• PCA



base R plotting

Canvas model: a series 
of instructions that 
sequentially fill the 
plotting canvas

62 MODERN STATISTICS FOR MODERN BIOLOGY

• Create beautiful and intuitive plots for scientific presentations and publica-
tions

4.2 Built-in R Plotting

R has built-in plotting functions that can be used to quickly and easily visualize
data. ●●
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Figure 4.2: Plot of concentration vs. density
for an ELISA assay of DNase.

The most basic of these is the plot function. In Figure ?? it is used to
show data from an enzyme-linked immunosorbent assay (ELIZA) assay. An
ELIZA assay uses antibodies and the resulting colour change created by them
to identify an enzyme and quantify its activity, in this case the enzyme deoxyri-
bonuclease (DNase), which degrades DNA. The data are assembled in the R
object DNase, which conveniently comes with base R. DNase is a dataframe
whose columns are Run, the assay run; conc, the protein concentration that
was used; and density, the measured optical density.

head(DNase)

## Run conc density

## 1 1 0.0488 0.017

## 2 1 0.0488 0.018

## 3 1 0.1953 0.121

## 4 1 0.1953 0.124

## 5 1 0.3906 0.206

## 6 1 0.3906 0.215

plot(DNase$conc, DNase$density) 0 2 4 6 8 10 12
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Figure 4.3: Same data as in Figure ?? but
with better axis labels and a different plot
symbol.

This basic plot can be customized, for example by changing the plotting
symbol and axis labels as shown in Figure ?? by using the parameters xlab,
ylab and pch (plot character). The information about the labels is stored in
the object DNAse, and we can access it with the attr function.

plot(DNase$conc, DNase$density,

ylab = attr(DNase, "labels")$y,

xlab = paste(attr(DNase, "labels")$x, attr(DNase, "units")$x),

pch = 3, col = "blue")

Besides scatterplots, we can also use built-in functions to create his-
tograms and boxplots (Figure ??).

hist(DNase$density, breaks=25, main = "")

boxplot(density ~ Run, data = DNase)

Boxplots are convenient to show multiple distributions next to each other
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Figure 4.2: Plot of concentration vs. density
for an ELISA assay of DNase.

The most basic of these is the plot function. In Figure ?? it is used to
show data from an enzyme-linked immunosorbent assay (ELIZA) assay. An
ELIZA assay uses antibodies and the resulting colour change created by them
to identify an enzyme and quantify its activity, in this case the enzyme deoxyri-
bonuclease (DNase), which degrades DNA. The data are assembled in the R
object DNase, which conveniently comes with base R. DNase is a dataframe
whose columns are Run, the assay run; conc, the protein concentration that
was used; and density, the measured optical density.
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## 1 1 0.0488 0.017
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Figure 4.3: Same data as in Figure ?? but
with better axis labels and a different plot
symbol.

This basic plot can be customized, for example by changing the plotting
symbol and axis labels as shown in Figure ?? by using the parameters xlab,
ylab and pch (plot character). The information about the labels is stored in
the object DNAse, and we can access it with the attr function.

plot(DNase$conc, DNase$density,

ylab = attr(DNase, "labels")$y,

xlab = paste(attr(DNase, "labels")$x, attr(DNase, "units")$x),

pch = 3, col = "blue")

Besides scatterplots, we can also use built-in functions to create his-
tograms and boxplots (Figure ??).

hist(DNase$density, breaks=25, main = "")

boxplot(density ~ Run, data = DNase)

Boxplots are convenient to show multiple distributions next to each other
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for an ELISA assay of DNase.

The most basic of these is the plot function. In Figure ?? it is used to
show data from an enzyme-linked immunosorbent assay (ELIZA) assay. An
ELIZA assay uses antibodies and the resulting colour change created by them
to identify an enzyme and quantify its activity, in this case the enzyme deoxyri-
bonuclease (DNase), which degrades DNA. The data are assembled in the R
object DNase, which conveniently comes with base R. DNase is a dataframe
whose columns are Run, the assay run; conc, the protein concentration that
was used; and density, the measured optical density.
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Figure 4.3: Same data as in Figure ?? but
with better axis labels and a different plot
symbol.

This basic plot can be customized, for example by changing the plotting
symbol and axis labels as shown in Figure ?? by using the parameters xlab,
ylab and pch (plot character). The information about the labels is stored in
the object DNAse, and we can access it with the attr function.

plot(DNase$conc, DNase$density,

ylab = attr(DNase, "labels")$y,

xlab = paste(attr(DNase, "labels")$x, attr(DNase, "units")$x),

pch = 3, col = "blue")

Besides scatterplots, we can also use built-in functions to create his-
tograms and boxplots (Figure ??).

hist(DNase$density, breaks=25, main = "")

boxplot(density ~ Run, data = DNase)

Boxplots are convenient to show multiple distributions next to each other
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for an ELISA assay of DNase.

The most basic of these is the plot function. In Figure ?? it is used to
show data from an enzyme-linked immunosorbent assay (ELIZA) assay. An
ELIZA assay uses antibodies and the resulting colour change created by them
to identify an enzyme and quantify its activity, in this case the enzyme deoxyri-
bonuclease (DNase), which degrades DNA. The data are assembled in the R
object DNase, which conveniently comes with base R. DNase is a dataframe
whose columns are Run, the assay run; conc, the protein concentration that
was used; and density, the measured optical density.
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Figure 4.3: Same data as in Figure ?? but
with better axis labels and a different plot
symbol.

This basic plot can be customized, for example by changing the plotting
symbol and axis labels as shown in Figure ?? by using the parameters xlab,
ylab and pch (plot character). The information about the labels is stored in
the object DNAse, and we can access it with the attr function.

plot(DNase$conc, DNase$density,

ylab = attr(DNase, "labels")$y,

xlab = paste(attr(DNase, "labels")$x, attr(DNase, "units")$x),

pch = 3, col = "blue")

Besides scatterplots, we can also use built-in functions to create his-
tograms and boxplots (Figure ??).

hist(DNase$density, breaks=25, main = "")

boxplot(density ~ Run, data = DNase)

Boxplots are convenient to show multiple distributions next to each other
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The most basic of these is the plot function. In Figure ?? it is used to
show data from an enzyme-linked immunosorbent assay (ELIZA) assay. An
ELIZA assay uses antibodies and the resulting colour change created by them
to identify an enzyme and quantify its activity, in this case the enzyme deoxyri-
bonuclease (DNase), which degrades DNA. The data are assembled in the R
object DNase, which conveniently comes with base R. DNase is a dataframe
whose columns are Run, the assay run; conc, the protein concentration that
was used; and density, the measured optical density.
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Figure 4.3: Same data as in Figure ?? but
with better axis labels and a different plot
symbol.

This basic plot can be customized, for example by changing the plotting
symbol and axis labels as shown in Figure ?? by using the parameters xlab,
ylab and pch (plot character). The information about the labels is stored in
the object DNAse, and we can access it with the attr function.

plot(DNase$conc, DNase$density,

ylab = attr(DNase, "labels")$y,

xlab = paste(attr(DNase, "labels")$x, attr(DNase, "units")$x),

pch = 3, col = "blue")

Besides scatterplots, we can also use built-in functions to create his-
tograms and boxplots (Figure ??).

hist(DNase$density, breaks=25, main = "")

boxplot(density ~ Run, data = DNase)

Boxplots are convenient to show multiple distributions next to each other
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for an ELISA assay of DNase.

The most basic of these is the plot function. In Figure ?? it is used to
show data from an enzyme-linked immunosorbent assay (ELIZA) assay. An
ELIZA assay uses antibodies and the resulting colour change created by them
to identify an enzyme and quantify its activity, in this case the enzyme deoxyri-
bonuclease (DNase), which degrades DNA. The data are assembled in the R
object DNase, which conveniently comes with base R. DNase is a dataframe
whose columns are Run, the assay run; conc, the protein concentration that
was used; and density, the measured optical density.

head(DNase)

## Run conc density

## 1 1 0.0488 0.017

## 2 1 0.0488 0.018

## 3 1 0.1953 0.121

## 4 1 0.1953 0.124
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Figure 4.3: Same data as in Figure ?? but
with better axis labels and a different plot
symbol.

This basic plot can be customized, for example by changing the plotting
symbol and axis labels as shown in Figure ?? by using the parameters xlab,
ylab and pch (plot character). The information about the labels is stored in
the object DNAse, and we can access it with the attr function.

plot(DNase$conc, DNase$density,

ylab = attr(DNase, "labels")$y,

xlab = paste(attr(DNase, "labels")$x, attr(DNase, "units")$x),

pch = 3, col = "blue")

Besides scatterplots, we can also use built-in functions to create his-
tograms and boxplots (Figure ??).

hist(DNase$density, breaks=25, main = "")

boxplot(density ~ Run, data = DNase)

Boxplots are convenient to show multiple distributions next to each other

Drawbacks: 
• Layout choices have to be made with no ‘global’ overview 

over what may still be coming 
• Resizing often leads to unsatisfactory results 
• Different functions for different plot types with different 

interfaces 
• Many routine tasks require a lot of ‘boilerplate’ code 
• No concept of facets / lattices / viewports 
• Default colours are poor
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along the x-axis and the sizes along the�-axis. Finally, we provided the argument
stat = "identity" (in other words, do nothing) to the geom_bar function, since
otherwise it would try to compute a histogram of the data (the default value of stat
is "count"). stat is short for statistic, which is what we call any function of data.
The identity statistic just returns the data themselves, but there are other more
interesting statistics, such as binning, smoothing, averaging, taking a histogram, or
other operations that summarize the data in some way.
Question 3.4.1
Flip the x - and�-aesthetics to produce a horizontal barplot.
These concepts –data, geometrical objects, statistics– are some of the ingredients

of the grammar of graphics, just as nouns, verbs and adverbs are ingredients of an
English sentence.
The plot in Figure 3.7 is not bad, but there are several potential improvements.

We can use colour for the bars to help us quickly see which bar corresponds to which
group. This is particularly useful if we use the same colour scheme in several plots. To
this end, let’s define a named vector groupColour that contains our desired colours
for each possible value of sampleGroup10. 10 The information is completely equivalent to

that in the sampleGroup and colour columns
of the data.frame groups, we’re just adapting to
the fact that ggplot2 expects this information in
the form of a named vector.

groupColour = setNames(groups$colour, groups$sampleGroup)

Another thing that we need to fix is the readability of the bar labels. Right now
they are running into each other — a common problem when you have descriptive
names.

ggplot(groups, aes(x = sampleGroup, y = n, fill = sampleGroup)) +
geom_bar(stat = "identity") +
scale_fill_manual(values = groupColour, name = "Groups") +
theme(axis.text.x = element_text(angle = 9�, hjust = 1))
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Figure 3.8: Similar to Figure 3.7, but with coloured
bars and better bar labels.

Let’s dissect the above "sentence". We added an argument, fill to the aes func-
tion that states that we want the bars to be coloured (filled) based on sampleGroup
(which in this case co-incidentally is also the value of the x argument, but that need
not be so). Furthermore we added a call to the scale_fill_manual function, which
takes as its input a colour map – i. e., the mapping from the possible values of a vari-
able to the associated colours – as a named vector. We also gave this colour map a
title (note that in more complex plots, there can be several di�erent colour maps
involved). Had we omitted the call to scale_fill_manual, ggplot2 would have used
its choice of default colours. We also added a call to theme stating that we want the
x-axis labels rotated by 90 degrees, and right-aligned (hjust; the default would be to
center it).

3.5 The Grammar of Graphics

The components of ggplot2’s grammar of graphics are
1. a dataset
2. one or more geometric objects that serve as the visual representations of the data –
for instance, points, lines, rectangles, contours

3. a description of how the variables in the data are mapped to visual properties (aes-
thetics) of the geometric objects, and an associated scale (e. g., linear, logarithmic,

The grammar of graphics
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Figure 4.8: Fixing the barplot names through
rotation of the labels.

We have added on another clause, produced by the theme function, which
indicates that we like x-axis text set at an angle of 90 degrees and right
justified (hjust; the default would be to center it).

Now we have a great looking plot that clearly conveys our data on the
number of samples in each group and also the types of groups that we are
comparing.

4.5 The Grammar of Graphics
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Figure 4.9: A scatterplot with three layers
that show different statistics of the same
data: points, a smooth regression line, and a
confidence band.

The components of ggplot2’s grammar of graphics are

1. a dataset
2. a choice of geometric object that serves as the visual representations of

the data – for instance, points, lines, rectangles, contours
3. a description of how the variables in the data are mapped to visual proper-

ties (aesthetics) of the geometric objects, and an associated scale, (e. g.,
linear, logarithmic, rank)

4. a statistical summarisation rule
5. a coordinate system
6. a facet specification, i. e. the use of several plots to look at the same data
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Figure 4.10: As Figure ??, but in addition
with points coloured by the sample group
(as in Figure ??). We can now see that the
expression values of the gene Timd2 (whose
mRNA is targeted by the probe 1418765_at)
are consistently high in the early time points,
whereas its expression goes down in the
EPI samples at days 3.5 and 4.5. In the
FGF4-KO, this decrease is delayed - at E3.5,
its expression is still high. Conversely, the
gene Fn1 (1426642_at) is off in the early
timepoints and then goes up at days 3.5 and
4.5. The PE samples (green) show a high
degree of cell-to-cell variability.

In the examples above, Figures ??–??, the dataset was groupsize, the
variables were the numeric values as well as the names of groupsize,
which we mapped to the aesthetics y-axis and x-axis respectively, the scale
was linear on the y and rank-based on the x-axis (the bars are ordered
alphanumerically and each has the same width), the geometric object was the
rectangular bar, and the statistical summary was the trivial one (i. e., none).
We did not make use of a facet specification in the plots above, but we’ll see
examples later on (Section ??).

In fact, ggplot2’s implementation of the grammar of graphics allows you to
use the same type of component multiple times, in what are called layers?.
For example, the code below uses three types of geometric objects in the
same plot, for the same data: points, a line, and a confidence band.

dftx <- data.frame(t(exprs(x)), pData(x))

ggplot( dftx, aes( x = X1426642_at, y = X1418765_at)) +

geom_point( shape = 1 ) +

geom_smooth( method = "loess" )

We assembled a copy of the expression data (exprs(x)) and the sample
annotation data (pData(x)) all together into the data.frame dftx – since this

���� ������� �������� �� � 9

along the x-axis and the sizes along the�-axis. Finally, we provided the argument
stat = "identity" (in other words, do nothing) to the geom_bar function, since
otherwise it would try to compute a histogram of the data (the default value of stat
is "count"). stat is short for statistic, which is what we call any function of data.
The identity statistic just returns the data themselves, but there are other more
interesting statistics, such as binning, smoothing, averaging, taking a histogram, or
other operations that summarize the data in some way.
Question 3.4.1
Flip the x - and�-aesthetics to produce a horizontal barplot.
These concepts –data, geometrical objects, statistics– are some of the ingredients

of the grammar of graphics, just as nouns, verbs and adverbs are ingredients of an
English sentence.
The plot in Figure 3.7 is not bad, but there are several potential improvements.

We can use colour for the bars to help us quickly see which bar corresponds to which
group. This is particularly useful if we use the same colour scheme in several plots. To
this end, let’s define a named vector groupColour that contains our desired colours
for each possible value of sampleGroup10. 10 The information is completely equivalent to

that in the sampleGroup and colour columns
of the data.frame groups, we’re just adapting to
the fact that ggplot2 expects this information in
the form of a named vector.

groupColour = setNames(groups$colour, groups$sampleGroup)

Another thing that we need to fix is the readability of the bar labels. Right now
they are running into each other — a common problem when you have descriptive
names.

ggplot(groups, aes(x = sampleGroup, y = n, fill = sampleGroup)) +
geom_bar(stat = "identity") +
scale_fill_manual(values = groupColour, name = "Groups") +
theme(axis.text.x = element_text(angle = 9�, hjust = 1))
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Figure 3.8: Similar to Figure 3.7, but with coloured
bars and better bar labels.

Let’s dissect the above "sentence". We added an argument, fill to the aes func-
tion that states that we want the bars to be coloured (filled) based on sampleGroup
(which in this case co-incidentally is also the value of the x argument, but that need
not be so). Furthermore we added a call to the scale_fill_manual function, which
takes as its input a colour map – i. e., the mapping from the possible values of a vari-
able to the associated colours – as a named vector. We also gave this colour map a
title (note that in more complex plots, there can be several di�erent colour maps
involved). Had we omitted the call to scale_fill_manual, ggplot2 would have used
its choice of default colours. We also added a call to theme stating that we want the
x-axis labels rotated by 90 degrees, and right-aligned (hjust; the default would be to
center it).

3.5 The Grammar of Graphics

The components of ggplot2’s grammar of graphics are
1. a dataset
2. one or more geometric objects that serve as the visual representations of the data –
for instance, points, lines, rectangles, contours

3. a description of how the variables in the data are mapped to visual properties (aes-
thetics) of the geometric objects, and an associated scale (e. g., linear, logarithmic,
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is the data format that ggplot2 functions most easily take as input (more on
this in Sections ?? and ??).

We can further enhance the plot by using colours – since each of the
points in Figure ?? corresponds to one sample, it makes sense to use the
sampleColour information in the object x.

ggplot( dftx, aes( x = X1426642_at, y = X1418765_at )) +

geom_point( aes( colour = sampleColour), shape = 19 ) +

geom_smooth( method = "loess" ) +

scale_colour_discrete( guide = FALSE )

Question 4.5.1 In the code above we defined the colour aesthetics (aes)
only for the geom_point layer, while we defined the x and y aesthetics for
all layers. What happens if we set the colour aesthetics for all layers, i. e.,
move it into the argument list of ggplot? What happens if we omit the call to
scale_colour_discrete?

Question 4.5.2 Is it always meaningful to summarize scatterplot data with a
regression line as in Figures ?? and ???

As a small side remark, if we want to find out which genes are targeted by
these probe identifiers, and what they might do, we can call4. 4 Note that here were need to use the orig-

inal feature identifiers (e. g., “1426642_at”,
without the leading “X”). These is the nota-
tion used by the microarray manufacturer,
by the Bioconductor annotation packages,
and also inside the object x. The leading
“X” that we used above when working with
dftx was inserted during the creation
of dftx by the data.frame, since its ar-
gument check.names is set to TRUE by
default. Alternatively, we could have kept
the original identifer notation by setting
check.names=FALSE, but then we would
need to work with the backticks, such as
aes( x = ‘1426642_at‘, ...), to make
sure R understands them correctly.

library("mouse4302.db")

AnnotationDbi::select(mouse4302.db,

keys = c("1426642_at", "1418765_at"), keytype = "PROBEID",

columns = c("SYMBOL", "GENENAME"))

## PROBEID SYMBOL

## 1 1426642_at Fn1

## 2 1418765_at Timd2

## GENENAME

## 1 fibronectin 1

## 2 T cell immunoglobulin and mucin domain containing 2

Often when using ggplot you will only need to specify the data, aesthet-
ics, a geometric object, and labels (through the scale parameters). Most
geometric objects implicitly call a suitable default statistical summary of the
data, and vice versa. For example, if you are using geom_histogram, ggplot2
implicitly bins your data and displays the results in barplot (geom_bar) format.
Thus, you could equivalently plot your histogram by calling geom_bar with
stat_bin.

0

500

1000

1500

2000

4 8 12
20 E3.25

co
un

t

0

500

1000

1500

2000

4 8 12
20 E3.25

co
un

t

Figure 4.11: Two different ways of creating
the same histogram using the grammar of
graphics.

dfx <- as.data.frame(exprs(x))

p1 <- ggplot(dfx, aes(x = ‘20 E3.25‘)) +

geom_histogram(binwidth = 0.2)

p2 <- ggplot(dfx, aes(x = ‘20 E3.25‘)) +
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Figure 4.8: Fixing the barplot names through
rotation of the labels.

We have added on another clause, produced by the theme function, which
indicates that we like x-axis text set at an angle of 90 degrees and right
justified (hjust; the default would be to center it).

Now we have a great looking plot that clearly conveys our data on the
number of samples in each group and also the types of groups that we are
comparing.

4.5 The Grammar of Graphics
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Figure 4.9: A scatterplot with three layers
that show different statistics of the same
data: points, a smooth regression line, and a
confidence band.

The components of ggplot2’s grammar of graphics are

1. a dataset
2. a choice of geometric object that serves as the visual representations of

the data – for instance, points, lines, rectangles, contours
3. a description of how the variables in the data are mapped to visual proper-

ties (aesthetics) of the geometric objects, and an associated scale, (e. g.,
linear, logarithmic, rank)

4. a statistical summarisation rule
5. a coordinate system
6. a facet specification, i. e. the use of several plots to look at the same data
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Figure 4.10: As Figure ??, but in addition
with points coloured by the sample group
(as in Figure ??). We can now see that the
expression values of the gene Timd2 (whose
mRNA is targeted by the probe 1418765_at)
are consistently high in the early time points,
whereas its expression goes down in the
EPI samples at days 3.5 and 4.5. In the
FGF4-KO, this decrease is delayed - at E3.5,
its expression is still high. Conversely, the
gene Fn1 (1426642_at) is off in the early
timepoints and then goes up at days 3.5 and
4.5. The PE samples (green) show a high
degree of cell-to-cell variability.

In the examples above, Figures ??–??, the dataset was groupsize, the
variables were the numeric values as well as the names of groupsize,
which we mapped to the aesthetics y-axis and x-axis respectively, the scale
was linear on the y and rank-based on the x-axis (the bars are ordered
alphanumerically and each has the same width), the geometric object was the
rectangular bar, and the statistical summary was the trivial one (i. e., none).
We did not make use of a facet specification in the plots above, but we’ll see
examples later on (Section ??).

In fact, ggplot2’s implementation of the grammar of graphics allows you to
use the same type of component multiple times, in what are called layers?.
For example, the code below uses three types of geometric objects in the
same plot, for the same data: points, a line, and a confidence band.

dftx <- data.frame(t(exprs(x)), pData(x))

ggplot( dftx, aes( x = X1426642_at, y = X1418765_at)) +

geom_point( shape = 1 ) +

geom_smooth( method = "loess" )

We assembled a copy of the expression data (exprs(x)) and the sample
annotation data (pData(x)) all together into the data.frame dftx – since this
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geom_bar(stat = "bin", binwidth = 0.2)

library("gridExtra")

grid.arrange(p1, p2, nrow = 2)

grid.arrange is a convenient helper function to arrange multiple plots (in
this case, stored in the objects p1 and p2) in a figure.

Let’s come back to the barplot example from above and see how it is done
in the ggplot way.

pb <- ggplot(data.frame(

name = names(groupSize),

size = as.vector(groupSize)),

aes(x = name, y = size))

For now we have simply created a plot object pb and have not generated a
plot yet. In fact we cannot make a plot yet,

pb

## Error: No layers in plot

because we haven’t specified what geometric object we want to use for our
plot. All that we have in our pb object so far are the data and the aesthetics.

Now we can literally add on the other components of our plot through using
the + operator:

pb <- pb + geom_bar(stat = "identity") +

aes(fill = name) +

scale_fill_manual(values = groupColour, name = "Colour code") +

theme(axis.text.x = element_text(angle = 90, hjust = 1)) +

xlab("Groups") + ylab("Number of Samples")

pb
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Figure 4.12: Using ggplot to create our
barplot.Thus we recreate our previous qplot result using the ggplot approach.

This modular approach allows us a lot of freedom in creating figures and
setting parameters. For example we can switch our plot to polar coordinates to
create a popular alternative visualization of the barplot.

pb.polar <- pb + coord_polar() +

theme(axis.text.x = element_text(angle = 0, hjust = 1),

axis.text.y = element_blank(),

axis.ticks = element_blank()) +

xlab("") + ylab("")
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Figure 4.13: Using ggplot to create a
barplot with polar coordinates.

Note above that we can override previously set theme parameters by
simply resetting them – no need to go back to recreating pb, where we

A more complex example: themes
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geom_bar(stat = "bin", binwidth = 0.2)

library("gridExtra")

grid.arrange(p1, p2, nrow = 2)

grid.arrange is a convenient helper function to arrange multiple plots (in
this case, stored in the objects p1 and p2) in a figure.

Let’s come back to the barplot example from above and see how it is done
in the ggplot way.

pb <- ggplot(data.frame(

name = names(groupSize),

size = as.vector(groupSize)),

aes(x = name, y = size))

For now we have simply created a plot object pb and have not generated a
plot yet. In fact we cannot make a plot yet,

pb

## Error: No layers in plot

because we haven’t specified what geometric object we want to use for our
plot. All that we have in our pb object so far are the data and the aesthetics.

Now we can literally add on the other components of our plot through using
the + operator:

pb <- pb + geom_bar(stat = "identity") +

aes(fill = name) +

scale_fill_manual(values = groupColour, name = "Colour code") +

theme(axis.text.x = element_text(angle = 90, hjust = 1)) +

xlab("Groups") + ylab("Number of Samples")

pb
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Figure 4.12: Using ggplot to create our
barplot.Thus we recreate our previous qplot result using the ggplot approach.

This modular approach allows us a lot of freedom in creating figures and
setting parameters. For example we can switch our plot to polar coordinates to
create a popular alternative visualization of the barplot.

pb.polar <- pb + coord_polar() +

theme(axis.text.x = element_text(angle = 0, hjust = 1),

axis.text.y = element_blank(),

axis.ticks = element_blank()) +

xlab("") + ylab("")
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Figure 4.13: Using ggplot to create a
barplot with polar coordinates.

Note above that we can override previously set theme parameters by
simply resetting them – no need to go back to recreating pb, where we
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geom_bar(stat = "bin", binwidth = 0.2)

library("gridExtra")

grid.arrange(p1, p2, nrow = 2)

grid.arrange is a convenient helper function to arrange multiple plots (in
this case, stored in the objects p1 and p2) in a figure.

Let’s come back to the barplot example from above and see how it is done
in the ggplot way.

pb <- ggplot(data.frame(

name = names(groupSize),

size = as.vector(groupSize)),

aes(x = name, y = size))

For now we have simply created a plot object pb and have not generated a
plot yet. In fact we cannot make a plot yet,

pb

## Error: No layers in plot

because we haven’t specified what geometric object we want to use for our
plot. All that we have in our pb object so far are the data and the aesthetics.

Now we can literally add on the other components of our plot through using
the + operator:

pb <- pb + geom_bar(stat = "identity") +

aes(fill = name) +

scale_fill_manual(values = groupColour, name = "Colour code") +

theme(axis.text.x = element_text(angle = 90, hjust = 1)) +

xlab("Groups") + ylab("Number of Samples")

pb

0

10

20

30

E3
.2

5

E3
.2

5 
(F

G
F4
−K

O
)

E3
.5

 (E
PI

)

E3
.5

 (F
G

F4
−K

O
)

E3
.5

 (P
E)

E4
.5

 (E
PI

)

E4
.5

 (F
G

F4
−K

O
)

E4
.5

 (P
E)

Groups

Nu
m

be
r o

f S
am

pl
es

Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.12: Using ggplot to create our
barplot.Thus we recreate our previous qplot result using the ggplot approach.

This modular approach allows us a lot of freedom in creating figures and
setting parameters. For example we can switch our plot to polar coordinates to
create a popular alternative visualization of the barplot.

pb.polar <- pb + coord_polar() +

theme(axis.text.x = element_text(angle = 0, hjust = 1),

axis.text.y = element_blank(),
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Figure 4.13: Using ggplot to create a
barplot with polar coordinates.

Note above that we can override previously set theme parameters by
simply resetting them – no need to go back to recreating pb, where we
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simply resetting them – no need to go back to recreating pb, where we

No geom defined yet!
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grid.arrange is a convenient helper function to arrange multiple plots (in
this case, stored in the objects p1 and p2) in a figure.

Let’s come back to the barplot example from above and see how it is done
in the ggplot way.

pb <- ggplot(data.frame(
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size = as.vector(groupSize)),
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For now we have simply created a plot object pb and have not generated a
plot yet. In fact we cannot make a plot yet,
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because we haven’t specified what geometric object we want to use for our
plot. All that we have in our pb object so far are the data and the aesthetics.

Now we can literally add on the other components of our plot through using
the + operator:
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barplot with polar coordinates.

Note above that we can override previously set theme parameters by
simply resetting them – no need to go back to recreating pb, where we



Showing 1D data
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## 3 1425463_at 1 E3.25 5.50

## 4 1416967_at 1 E3.25 1.73

## 5 1420085_at 2 E3.25 9.29

## 6 1418863_at 2 E3.25 5.53

For good measure, we also add a column that provides the gene symbol
along with the probe identifiers.

genes$gene <- names(probes)[ match(genes$probe, probes) ]

4.6.2 Barplots

A popular way to display data such as in our data.frame genes is through
barplots. See Fig. ??.

ggplot(genes, aes( x = gene, y = value)) +

stat_summary(fun.y = mean, geom = "bar")
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Figure 4.14: Barplots showing the means
of the distributions of expression measure-
ments from 4 probes.

In Figure ??, each bar represents the mean of the values for that gene.
Such plots are seen a lot in the biological sciences, as well as in the popular
media. The data summarisation into only the mean looses a lot of information,
and given the amount of space it takes, a barplot can be a poor way to
visualise data8.

8 In fact, if the mean is an appropriate
summary, such as for highly skewed
distributions, or data sets with outliers, the
barplot can be outright misleading.

Sometimes we want to add error bars, and one way to achieve this in
ggplot2 is as follows.

library("Hmisc")

ggplot(genes, aes( x = gene, y = value, fill = gene)) +

stat_summary(fun.y = mean, geom = "bar") +

stat_summary(fun.data = mean_cl_normal, geom = "errorbar",

mult = 1, width = 0.25)

Here, we see again the principle of layered graphics:fig: we use two sum-
mary functions, mean and mean_cl_normal, and two associated geometric
objects, bar and errorbar. The function mean_cl_normal is from the Hmisc
package and computes the standard error (or confidence limits) of the mean;
it’s a simple function, and we could also compute it ourselves using base R
expressions if we wished to do so. We also coloured the bars in lighter colours
for better contrast.
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Figure 4.15: Barplots with error bars
indicating standard error of the mean.

4.6.3 Boxplots

It’s easy to show the same data with boxplots.
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visualise data8.

8 In fact, if the mean is an appropriate
summary, such as for highly skewed
distributions, or data sets with outliers, the
barplot can be outright misleading.

Sometimes we want to add error bars, and one way to achieve this in
ggplot2 is as follows.

library("Hmisc")

ggplot(genes, aes( x = gene, y = value, fill = gene)) +

stat_summary(fun.y = mean, geom = "bar") +

stat_summary(fun.data = mean_cl_normal, geom = "errorbar",

mult = 1, width = 0.25)

Here, we see again the principle of layered graphics:fig: we use two sum-
mary functions, mean and mean_cl_normal, and two associated geometric
objects, bar and errorbar. The function mean_cl_normal is from the Hmisc
package and computes the standard error (or confidence limits) of the mean;
it’s a simple function, and we could also compute it ourselves using base R
expressions if we wished to do so. We also coloured the bars in lighter colours
for better contrast.
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4.6.3 Boxplots

It’s easy to show the same data with boxplots.
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p <- ggplot(genes, aes( x = gene, y = value, fill = gene))

p + geom_boxplot()
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Figure 4.16: Boxplots.

Compared to the barplots, this takes a similar amount of space, but is
much more informative. In Figure ?? we see that two of the genes (Gata4,
Gata6) have relatively concentrated distributions, with only a few data points
venturing out to the direction of higher values. For Fgf4, we see that the
distribution is right-skewed: the median, indicated by the horizontal black bar
within the box is closer to the lower (or left) side of the box. Analogously, for
Sox2 the distribution is left-skewed.

4.6.4 Violin plots

A variation of the boxplot idea, but with an even more direct representation
of the shape of the data distribution, is the violin plot. Here, the shape of the
violin gives a rough impression of the distribution density.

p + geom_violin()
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Figure 4.17: Violin plots.

4.6.5 Dot plots and beeswarm plots

If the number of data points is not too large, it is possible to show the data
points directly, and it is good practice to do so, compared to using more
abstract summaries.

However, plotting the data directly will often lead to overlapping points,
which can be visually unpleasant, or even obscure the data. We can try to
layout the points so that they are as near possible to their proper locations
without overlap?.

p + geom_dotplot(binaxis = "y", binwidth = 1/6,

stackdir = "center", stackratio = 0.75,

aes(color = gene))

The plot is shown in the left panel of Figure ??. The y-coordinates of the
points are discretized into bins (above we chose a bin size of 1/6), and then
they are stacked next to each other.

A fun alternative is provided by the package beeswarm. It works with base
R graphics and is not directly integrated into ggplot2’s data flows, so we can
either use the base R graphics output, or pass on the point coordinates to
ggplot as follows.

library("beeswarm")

bee <- beeswarm(value ~ gene, data = genes, spacing = 0.7)
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p <- ggplot(genes, aes( x = gene, y = value, fill = gene))

p + geom_boxplot()
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Figure 4.16: Boxplots.

Compared to the barplots, this takes a similar amount of space, but is
much more informative. In Figure ?? we see that two of the genes (Gata4,
Gata6) have relatively concentrated distributions, with only a few data points
venturing out to the direction of higher values. For Fgf4, we see that the
distribution is right-skewed: the median, indicated by the horizontal black bar
within the box is closer to the lower (or left) side of the box. Analogously, for
Sox2 the distribution is left-skewed.

4.6.4 Violin plots

A variation of the boxplot idea, but with an even more direct representation
of the shape of the data distribution, is the violin plot. Here, the shape of the
violin gives a rough impression of the distribution density.

p + geom_violin()
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Figure 4.17: Violin plots.

4.6.5 Dot plots and beeswarm plots

If the number of data points is not too large, it is possible to show the data
points directly, and it is good practice to do so, compared to using more
abstract summaries.

However, plotting the data directly will often lead to overlapping points,
which can be visually unpleasant, or even obscure the data. We can try to
layout the points so that they are as near possible to their proper locations
without overlap?.

p + geom_dotplot(binaxis = "y", binwidth = 1/6,

stackdir = "center", stackratio = 0.75,

aes(color = gene))

The plot is shown in the left panel of Figure ??. The y-coordinates of the
points are discretized into bins (above we chose a bin size of 1/6), and then
they are stacked next to each other.

A fun alternative is provided by the package beeswarm. It works with base
R graphics and is not directly integrated into ggplot2’s data flows, so we can
either use the base R graphics output, or pass on the point coordinates to
ggplot as follows.

library("beeswarm")

bee <- beeswarm(value ~ gene, data = genes, spacing = 0.7)
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ggplot(bee, aes( x = x, y = y, colour = x.orig)) +

geom_point(shape = 19) + xlab("gene") + ylab("value") +

scale_fill_manual(values = probes)
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Figure 4.18: Left: dot plots, made us-
ing geom_dotplot from ggplot2. Right:
beeswarm plots, with layout obtained via
the beeswarm package and plotted as a
scatterplot with ggplot.

The plot is shown in the right panel of Figure ??. The default layout method
used by beeswarm is called swarm. It places points in increasing order. If a
point would overlap an existing point, it is shifted sideways (along the x-axis)
by a minimal amount sufficient to avoid overlap.

As you have seen in the above code examples, some twiddling with layout
parameters is usually needed to make a dot plot or a beeswarm plot look good
for a particular dataset.

4.6.6 Density plots

Yet another way to represent the same data is by lines plots of the density
plots

ggplot(genes, aes( x = value, colour = gene)) + geom_density()

Density estimation has a number of complications, and you can see these
in Figure ??. In particular, the need for choosing a smoothing window. A
window size that is small enough to capture peaks in the dense regions of
the data may lead to instable (“wiggly”) estimates elsewhere; if the window
is made bigger, pronounced features of the density may be smoothed out.
Moreover, the density lines do not convey the information on how much data
was used to estimate them, and plots like Figure ?? can become especially
problematic if the sample sizes for the curves differ.

0.00

0.25

0.50

0.75

2.5 5.0 7.5 10.0 12.5
value

de
ns

ity

gene
Fgf4
Gata4
Gata6
Sox2

Figure 4.19: Density plots.
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ggplot(bee, aes( x = x, y = y, colour = x.orig)) +

geom_point(shape = 19) + xlab("gene") + ylab("value") +

scale_fill_manual(values = probes)
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Figure 4.18: Left: dot plots, made us-
ing geom_dotplot from ggplot2. Right:
beeswarm plots, with layout obtained via
the beeswarm package and plotted as a
scatterplot with ggplot.

The plot is shown in the right panel of Figure ??. The default layout method
used by beeswarm is called swarm. It places points in increasing order. If a
point would overlap an existing point, it is shifted sideways (along the x-axis)
by a minimal amount sufficient to avoid overlap.

As you have seen in the above code examples, some twiddling with layout
parameters is usually needed to make a dot plot or a beeswarm plot look good
for a particular dataset.

4.6.6 Density plots

Yet another way to represent the same data is by lines plots of the density
plots

ggplot(genes, aes( x = value, colour = gene)) + geom_density()

Density estimation has a number of complications, and you can see these
in Figure ??. In particular, the need for choosing a smoothing window. A
window size that is small enough to capture peaks in the dense regions of
the data may lead to instable (“wiggly”) estimates elsewhere; if the window
is made bigger, pronounced features of the density may be smoothed out.
Moreover, the density lines do not convey the information on how much data
was used to estimate them, and plots like Figure ?? can become especially
problematic if the sample sizes for the curves differ.
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Figure 4.19: Density plots.
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4.6.7 ECDF plots

The mathematically most robust way to describe the distribution of a one-
dimensional random variable X is its cumulative distribution function (CDF),
i. e., the function

F(x) = P(X  x), (4.1)

where x takes all values along the real axis. The density of X is then the
derivative of F, if it exists9. The definition of the CDF can also be applied 9 By its definition, F tends to 0 for small x

(x ! �•) and to 1 for large x (x ! +•).to finite samples of X, i. e., samples x
1

, . . . , xn. The empirical cumulative
distribution function (ECDF) is simply

Fn(x) =
1

n

n

Â
i=1

xxi . (4.2)

An important property is that even for limited sample sizes n, the ECDF Fn

is not very far from the CDF, F. This is not the case for the empirical density!
Without smoothing, the empirical density of a finite sample is a sum of Dirac
delta functions, which is difficult to visualize and quite different from any
underlying smooth, true density. With smoothing, the difference can be less
pronounced, but is difficult to control, as discussed above.

ggplot(genes, aes( x = value, colour = gene)) + stat_ecdf()
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Figure 4.20: Empirical cumulative distribution
functions (ECDF).

4.6.8 Data tidying II - Wide vs long format

Let us revisit the melt command from above. In the resulting data.frame
genes, each row corresponds to exactly one measured value, stored in the
column value. Then there are additional columns probe and sample, which
store the associated covariates. Compare this to the following data.frame (for
space reasons we print only the first five columns):

as.data.frame(exprs(x)[probes, ])[, 1:5]

## 1 E3.25 2 E3.25 3 E3.25 4 E3.25 5 E3.25

## 1420085_at 3.03 9.29 2.94 9.72 8.92

## 1418863_at 4.84 5.53 4.42 5.98 4.92

## 1425463_at 5.50 6.16 4.58 4.75 4.63

## 1416967_at 1.73 9.70 4.16 9.54 8.71

This data.frame has several columns of data, one for each sample (an-
notated by the column names). Its rows correspond to the four probes,
annotated by the row names. This is an example for a data table in wide
format.

Now suppose we want to store somewhere not only the probe identifiers
but also the associated gene symbols. We could stick them as an additional



Discussion of 1D plot types

Boxplot makes sense for unimodal distributions  

Histogram requires definition of bins (width, positions) and can 
create visual artifacts esp. if the number of data points is not 
large 

Density requires the choice of bandwidth; plot tends to 
obscure the sample size (i.e. the uncertainty of the estimate) 

ecdf does not have these problems; but is more abstract and 
interpretation requires some training. Good for reading off 
quantiles and shifts in location in comparative plots; OK for 
detecting differences in scale; less good for detecting 
multimodality. 

Up to a few dozens of points -  just show the data! (beeswarm)
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Figure 3.22: Histograms of the same data, with
and without logarithmic transformation. The
number of modes is di�erent.

3.6.9 Data tidying II - wide vs long format

Let us revisit the melt command from above. In the resulting data.frame genes, each
row corresponds to exactly one measured value, stored in the column value. Then
there are additional columns probe and sample, which store the associated covariates.
Compare this to the following data.frame (for space reasons we print only the first five
columns):

as.data.frame(exprs(x)[probes, ])[, 1:5]
## 1 E3.25 2 E3.25 3 E3.25 4 E3.25 5 E3.25

## 142��85_at 3.�27715 9.293�16 2.94�142 9.715243 8.924228

## 1418863_at 4.843137 5.53��16 4.418�59 5.982314 4.92358�

## 1425463_at 5.5��618 6.16�9�� 4.584961 4.753439 4.629728

## 1416967_at 1.731217 9.697�38 4.16124� 9.54�123 8.7�534�

This data.frame has several columns of data, one for each sample (annotated by the
column names). Its rows correspond to the four probes, annotated by the row names.
This is an example for a data table in wide format.
Now suppose we want to store somewhere not only the probe identifiers but also

the associated gene symbols. We could stick them as an additional column into the
wide format data.frame, and perhaps also throw in the genes’ ENSEMBL identifier for
good measure. But now we immediately see the problem: the data.frame now has some
columns that represent di�erent samples, and others that refer to information for
all samples (the gene symbol and identifier) and we somehow have to "know" this
when interpreting the data.frame. This is what Hadley Wickham calls untidy data20.

20 There are many di�erent ways for data to be
untidy.In contrast, in the tidy data.frame genes, we can add these columns, yet still know

that each row forms exactly one observation, and all information associated with that
observation is in the same row.
In tidy data21, 21 Hadley Wickham. Tidy data. Journal of

Statistical Software, 59(10), 20141. each variable forms a column,
2. each observation forms a row,
3. each type of observational unit forms a table.
A potential drawback is e�ciency: even though there are only 4 probe – gene symbol
relationships, we are now storing them 404 times in the rows of the data.frame genes.
Moreover, there is no standardisation: we chose to call this column symbol, but
the next person might call it Symbol or even something completely di�erent, and
when we find a data.frame that was made by someone else and that contains a column
symbol, we can hope, but have no guarantee, that these are valid gene symbols.
Addressing such issues is behind the object-oriented design of the specialized data
structures in Bioconductor, such as the ExpressionSet class.
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all samples (the gene symbol and identifier) and we somehow have to "know" this
when interpreting the data.frame. This is what Hadley Wickham calls untidy data20.
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that each row forms exactly one observation, and all information associated with that
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Statistical Software, 59(10), 20141. each variable forms a column,
2. each observation forms a row,
3. each type of observational unit forms a table.
A potential drawback is e�ciency: even though there are only 4 probe – gene symbol
relationships, we are now storing them 404 times in the rows of the data.frame genes.
Moreover, there is no standardisation: we chose to call this column symbol, but
the next person might call it Symbol or even something completely di�erent, and
when we find a data.frame that was made by someone else and that contains a column
symbol, we can hope, but have no guarantee, that these are valid gene symbols.
Addressing such issues is behind the object-oriented design of the specialized data
structures in Bioconductor, such as the ExpressionSet class.
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column into the wide format data.frame, and perhaps also throw in the genes’
ENSEMBL identifier for good measure. But now we immediately see the
problem: the data.frame now has some columns that represent different
samples, and others that refer to information for all samples (the gene symbol
and identifier) and we somehow have to "know" this when interpreting the
data.frame. This is what Hadley Wickham calls untidy data10. In contrast, in 10 There are many different ways for data to

be untidy.the tidy data.frame genes, we can add these columns, yet still know that each
row forms exactly one observation, and all information associated with that
observation is in the same row.

In tidy data?,

1. each variable forms a column,
2. each observation forms a row,
3. each type of observational unit forms a table.

A potential drawback is efficiency: even though there are only 4 probe –
gene symbol relationships, we are now storing them 404 times in the rows
of the data.frame genes. Moreover, there is no standardisation: we chose
to call this column symbol, but the next person might call it Symbol or even
something completely different, and when we find a data.frame that was
made by someone else and that contains a column symbol, we can hope,
but have no guarantee, that these are valid gene symbols. Addressing such
issues is behind the object-oriented design of the specialized data structures
in Bioconductor, such as the ExpressionSet class.

4.7 2D visualisation: Scatter Plots

Scatter plots are useful for visualizing treatment–response comparisons (as in
Figure ??), associations between variables (as in Figure ??), or paired data
(e. g., a disease biomarker in several patients before and after treatment). We
use the two dimensions of our plotting paper, or screen, to represent the two
variables.

Figure 4.21: Scatterplot of 45101 expression
measurements for two of the samples.

Let us take a look at differential expression between a wildtype and an
FGF4-KO sample.

scp <- ggplot(dfx, aes( x = ‘59 E4.5 (PE)‘ ,

y = ‘92 E4.5 (FGF4-KO)‘))

scp + geom_point()

The labels 59 E4.5 (PE) and 92 E4.5 (FGF4-KO) refer to column
names (sample names) in the data.frame dfx, which we created above. Since
they contain special characters (spaces, parentheses, hyphen) and start with
numerals, we need to enclose them with the downward sloping quotes to
make them syntactically digestible for R. The plot is shown in Figure ??. We

Showing 2D data
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get a dense point cloud that we can try and interpret on the outskirts of the
cloud, but we really have no idea visually how the data are distributed within
the denser regions of the plot.

One easy way to ameliorate the overplotting is to adjust the transparency
(alpha value) of the points by modifying the alpha parameter of geom_point
(Figure ??).

Figure 4.22: As Figure ??, but with semi-
transparent points to resolve some of the
overplotting.

scp + geom_point(alpha = 0.1)

This is already better than Figure ??, but in the very density regions even
the semi-transparent points quickly overplot to a featureless black mass, while
the more isolated, outlying points are getting faint. An alternative is a contour
plot of the 2D density, which has the added benefit of not rendering all of the
points on the plot, as in Figure ??.

scp + geom_density2d()

Figure 4.23: As Figure ??, but rendered as a
contour plot of the 2D density estimate.

However, we see in Figure ?? that the point cloud at the bottom right
(which contains a relatively small number of points) is no longer represented.
We can somewhat overcome this by tweaking the bandwidth and binning
parameters of geom_density2d (Figure ??, left panel).

scp + geom_density2d(h = 0.5, bins = 60)

We can fill in each space between the contour lines with the relative
density of points by explicitly calling the function stat_density2d (for which
geom_density2d is a wrapper) and using the geometric object polygon, as in
the right panel of Figure ??.

library("RColorBrewer")

colourscale <- scale_fill_gradientn(

colours = rev(brewer.pal(9, "YlGnBu")),

values = c(0, exp(seq(-5, 0, length.out = 100))))

scp + stat_density2d(h = 0.5, bins = 60,

aes( fill = ..level..), geom = "polygon") +

colourscale + coord_fixed()

We used the function brewer.pal from the package RColorBrewer to
define the colour scale, and we added a call to coord_fixed to fix the aspect
ratio of the plot, to make sure that the mapping of data range to x- and y-
coordinates is the same for the two variables. Both of these issues merit a
deeper look, and we’ll talk more about plot shapes in Section ?? and about
colours in Section ??.

The density based plotting methods in Figure ?? are more visually appeal-
ing and interpretable than the overplotted point clouds of Figures ?? and ??,
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transparent points to resolve some of the
overplotting.

scp + geom_point(alpha = 0.1)

This is already better than Figure ??, but in the very density regions even
the semi-transparent points quickly overplot to a featureless black mass, while
the more isolated, outlying points are getting faint. An alternative is a contour
plot of the 2D density, which has the added benefit of not rendering all of the
points on the plot, as in Figure ??.

scp + geom_density2d()

Figure 4.23: As Figure ??, but rendered as a
contour plot of the 2D density estimate.

However, we see in Figure ?? that the point cloud at the bottom right
(which contains a relatively small number of points) is no longer represented.
We can somewhat overcome this by tweaking the bandwidth and binning
parameters of geom_density2d (Figure ??, left panel).

scp + geom_density2d(h = 0.5, bins = 60)

We can fill in each space between the contour lines with the relative
density of points by explicitly calling the function stat_density2d (for which
geom_density2d is a wrapper) and using the geometric object polygon, as in
the right panel of Figure ??.

library("RColorBrewer")

colourscale <- scale_fill_gradientn(

colours = rev(brewer.pal(9, "YlGnBu")),

values = c(0, exp(seq(-5, 0, length.out = 100))))

scp + stat_density2d(h = 0.5, bins = 60,

aes( fill = ..level..), geom = "polygon") +

colourscale + coord_fixed()

We used the function brewer.pal from the package RColorBrewer to
define the colour scale, and we added a call to coord_fixed to fix the aspect
ratio of the plot, to make sure that the mapping of data range to x- and y-
coordinates is the same for the two variables. Both of these issues merit a
deeper look, and we’ll talk more about plot shapes in Section ?? and about
colours in Section ??.

The density based plotting methods in Figure ?? are more visually appeal-
ing and interpretable than the overplotted point clouds of Figures ?? and ??,
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Figure 4.24: Left: as Figure ??, but with
smaller smoothing bandwidth and tighter
binning for the contour lines. Right: with
colour filling.

though we have to be careful in using them as we loose a lot of the informa-
tion on the outlier points in the sparser regions of the plot. One possibility is
using geom_point to add such points back in.

But arguably the best alternative, which avoids the limitations of smoothing,
is hexagonal binning?.

library("hexbin")

scp + stat_binhex() + coord_fixed()

scp + stat_binhex(binwidth = c(0.2, 0.2)) + colourscale +

coord_fixed()

Figure 4.25: Hexagonal binning. Left: default
parameters. Right: finer bin sizes and
customized colour scale.

4.7.1 Plot shapes

Choosing the proper shape for your plot is important to make sure the infor-
mation is conveyed well. By default, the shape parameter, that is, the ratio,
between the height of the graph and its width, is chosen by ggplot2 based on
the available space in the current plotting device. The width and height of the
device are specified when it is opened in R, either explicitly by you or through
default parameters11. Moreover, the graph dimensions also depend on the 11 E. g., see the manual pages of the pdf and

png functions.presence or absence of additional decorations, like the colour scale bars in
Figure ??.



Showing 2D data

HIGH QUALITY GRAPHICS IN R 77

Figure 4.24: Left: as Figure ??, but with
smaller smoothing bandwidth and tighter
binning for the contour lines. Right: with
colour filling.

though we have to be careful in using them as we loose a lot of the informa-
tion on the outlier points in the sparser regions of the plot. One possibility is
using geom_point to add such points back in.

But arguably the best alternative, which avoids the limitations of smoothing,
is hexagonal binning?.

library("hexbin")

scp + stat_binhex() + coord_fixed()

scp + stat_binhex(binwidth = c(0.2, 0.2)) + colourscale +

coord_fixed()

Figure 4.25: Hexagonal binning. Left: default
parameters. Right: finer bin sizes and
customized colour scale.

4.7.1 Plot shapes

Choosing the proper shape for your plot is important to make sure the infor-
mation is conveyed well. By default, the shape parameter, that is, the ratio,
between the height of the graph and its width, is chosen by ggplot2 based on
the available space in the current plotting device. The width and height of the
device are specified when it is opened in R, either explicitly by you or through
default parameters11. Moreover, the graph dimensions also depend on the 11 E. g., see the manual pages of the pdf and

png functions.presence or absence of additional decorations, like the colour scale bars in
Figure ??.

HIGH QUALITY GRAPHICS IN R 77

Figure 4.24: Left: as Figure ??, but with
smaller smoothing bandwidth and tighter
binning for the contour lines. Right: with
colour filling.

though we have to be careful in using them as we loose a lot of the informa-
tion on the outlier points in the sparser regions of the plot. One possibility is
using geom_point to add such points back in.

But arguably the best alternative, which avoids the limitations of smoothing,
is hexagonal binning?.

library("hexbin")

scp + stat_binhex() + coord_fixed()

scp + stat_binhex(binwidth = c(0.2, 0.2)) + colourscale +

coord_fixed()

Figure 4.25: Hexagonal binning. Left: default
parameters. Right: finer bin sizes and
customized colour scale.

4.7.1 Plot shapes

Choosing the proper shape for your plot is important to make sure the infor-
mation is conveyed well. By default, the shape parameter, that is, the ratio,
between the height of the graph and its width, is chosen by ggplot2 based on
the available space in the current plotting device. The width and height of the
device are specified when it is opened in R, either explicitly by you or through
default parameters11. Moreover, the graph dimensions also depend on the 11 E. g., see the manual pages of the pdf and

png functions.presence or absence of additional decorations, like the colour scale bars in
Figure ??.



HIGH QUALITY GRAPHICS IN R 79

0

50

100

150

1700 1800 1900 2000
year

nu
m

be
r

050100150
1700 1800 1900 2000

year

nu
m

be
r

Figure 4.26: The sunspot data. In the upper
panel, the plot shape is roughly quadratic, a
frequent default choice. In the lower panel,
a technique called banking was used to
choose the plot shape.

4.8 3–5D data

Sometimes we want to show the relations between more than two variables.
Obvious choices for including additional dimensions are the plot symbol
shapes and colours. The geom_point geometric object offers the following
aesthetics (beyond x and y):

• fill

• colour

• shape

• size

• alpha

They are explored in the manual page of the geom_point function. fill
and colour refer to the fill and outline colour of an object; alpha to its trans-
parency level. Above, in Figures ?? and following, we have used colour or

Yearly sunspot numbers 
1849-1924  

Changes in amplitude 

Banking to 45 degrees: 
Choose aspect ratio so that 
center of absolute values of 
slopes is 45 degrees  
Sawtooth: Sunspot cycles 
typically rise more rapidly 
than they fall (pronounced 
for high peaks, less for 
medium and not for lowest)  

Plot shape, banking
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Sometimes we want to show the relations between more than two variables.
Obvious choices for including additional dimensions are the plot symbol
shapes and colours. The geom_point geometric object offers the following
aesthetics (beyond x and y):

• fill

• colour
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They are explored in the manual page of the geom_point function. fill
and colour refer to the fill and outline colour of an object; alpha to its trans-
parency level. Above, in Figures ?? and following, we have used colour or

Yearly sunspot numbers 
1849-1924  

Changes in amplitude 

Banking to 45 degrees: 
Choose aspect ratio so that 
center of absolute values of 
slopes is 45 degrees  
Sawtooth: Sunspot cycles 
typically rise more rapidly 
than they fall (pronounced 
for high peaks, less for 
medium and not for lowest)  

Plot shape, banking

For plots where x- and 
y-axis have same 
units: use 1:1 aspect 
ratio (PCA!)



3-5 D, and faceting

geom_point 
offers these 
aesthetics 
(beyond x and y):  

• fill 

• colour  

• shape 

• size 

• alpha  
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transparency to reflect point density and avoid the obscuring effects of over-
plotting. Instead, we can use them show other dimensions of the data (but
of course we can only do one or the other). In principle, we could use all the
5 aesthetics listed above simultaneously to show up to 7-dimensional data;
however, such a plot would be hard to decipher, and most often we are better
off with one or two additional dimensions and mapping them to a choice of the
available aesthetics.

4.8.1 Faceting

Another way to show additional dimensions of the data is to show multiple
plots that result from repeatedly subsetting (or “slicing”) our data based on
one (or more) of the variables, so that we can visualize each part separately.
So we can, for instance, investigate whether the observed patterns among
the other variables are the same or different across the range of the faceting
variable. Let’s look at an example12 12 The first line, mutate is not strictly

necessary – it’s just some data wrangling to
make the plots look better.dftx <- mutate(dftx, lineage = factor(sub("^$", "no", lineage),

levels = c("no", "EPI", "PE", "FGF4-KO")))

ggplot(dftx, aes( x = X1426642_at, y = X1418765_at)) +

geom_point() + facet_grid( . ~ lineage )
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Figure 4.27: An example for faceting: the
same data as in Figure ??, but now split by
the categorical variable lineage.

The result is shown in Figure ??. We used the formula language to specify
by which variable we want to do the splitting, and that the separate panels
should be in different columns: facet_grid( . ⇠ lineage ). In fact, we
can specify two faceting variables, as follows; the result is shown in Figure ??.

ggplot( dftx,

aes( x = X1426642_at, y = X1418765_at)) + geom_point() +

facet_grid( Embryonic.day ~ lineage )

Another useful function is facet_wrap: if the faceting variables has too
many levels for all the plots to fit in one row or one column, then this function
can be used to wrap them into a specified number of columns or rows.

We can use a continuous variable by discretizing it into levels. The function
cut is useful for this purpose.
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Figure 4.28: Faceting: the same data as in
Figure ??, split by the categorical variables
Embryonic.day (rows) and lineage
(columns).

ggplot(mutate(dftx, Tdgf1 = cut(X1450989_at, breaks = 4)),

aes( x = X1426642_at, y = X1418765_at)) + geom_point() +

facet_wrap( ~ Tdgf1, ncol = 2 )

We see in Figure ?? that the number of points in the four panel is different,
this is because cut splits into bins of equal length, not equal number of points.
If we want the latter, then we can use quantile in conjunction with cut.
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Figure 4.29: Faceting: the same data as in
Figure ??, split by the continuous variable
X1450989_at and arranged by facet_wrap.

Axes scales In Figures ??–??, the axes scales are the same for all plots.
Alternatively, we could let them vary by setting the scales argument of the
facet_grid and facet_wrap; this parameters allows you to control whether
to leave the x-axis, the y-axis, or both to be freely variable. Such alternatives
scalings might allows us to see the full detail of each plot and thus make more
minute observations about what is going on in each. The downside is that the
plot dimensions are not comparable across the groupings.

Implicit faceting You can also facet your plots (without explicit calls to
facet_grid and facet_wrap) by specifying the aesthetics. A very sim-
ple version of implicit faceting is using a factor as your x-axis, such as in
Figures ??–??
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transparency to reflect point density and avoid the obscuring effects of over-
plotting. Instead, we can use them show other dimensions of the data (but
of course we can only do one or the other). In principle, we could use all the
5 aesthetics listed above simultaneously to show up to 7-dimensional data;
however, such a plot would be hard to decipher, and most often we are better
off with one or two additional dimensions and mapping them to a choice of the
available aesthetics.

4.8.1 Faceting

Another way to show additional dimensions of the data is to show multiple
plots that result from repeatedly subsetting (or “slicing”) our data based on
one (or more) of the variables, so that we can visualize each part separately.
So we can, for instance, investigate whether the observed patterns among
the other variables are the same or different across the range of the faceting
variable. Let’s look at an example12 12 The first line, mutate is not strictly

necessary – it’s just some data wrangling to
make the plots look better.dftx <- mutate(dftx, lineage = factor(sub("^$", "no", lineage),

levels = c("no", "EPI", "PE", "FGF4-KO")))

ggplot(dftx, aes( x = X1426642_at, y = X1418765_at)) +

geom_point() + facet_grid( . ~ lineage )
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Figure 4.27: An example for faceting: the
same data as in Figure ??, but now split by
the categorical variable lineage.

The result is shown in Figure ??. We used the formula language to specify
by which variable we want to do the splitting, and that the separate panels
should be in different columns: facet_grid( . ⇠ lineage ). In fact, we
can specify two faceting variables, as follows; the result is shown in Figure ??.

ggplot( dftx,

aes( x = X1426642_at, y = X1418765_at)) + geom_point() +

facet_grid( Embryonic.day ~ lineage )

Another useful function is facet_wrap: if the faceting variables has too
many levels for all the plots to fit in one row or one column, then this function
can be used to wrap them into a specified number of columns or rows.

We can use a continuous variable by discretizing it into levels. The function
cut is useful for this purpose.



Data from an agricultural field trial to 
study the crop barley.  

At 6 sites in Minnesota, 10 varieties 
of barley were grown in each of 
two years.  

Data: yield, for all combinations of 
site, variety, and year (6 x 10 x 2 = 
120 observations)  

Note the data for Morris - reanalysis 
in the 1990s using Trellis revealed 
that the years had been flipped!
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library(“lattice”) 
example(“barley”)



Demo ggvis 

1. in R-Studio 

2. http://ggvis.rstudio.com/interactivity.html

http://ggvis.rstudio.com/interactivity.html


package 
splots

EDA for finding batch effects



pheatmap
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function to interpolate the 11 colour into a smooth-looking palette (Figure ??).

library("pheatmap")

topGenes <- order(rowVars(exprs(x)), decreasing = TRUE)[ seq_len(500) ]

rowCenter <- function(x) { x - rowMeans(x) }

pheatmap( rowCenter(exprs(x)[ topGenes, ] ),

show_rownames = FALSE, show_colnames = FALSE,

breaks = seq(-5, +5, length = 101),

annotation_col = pData(x)[, c("sampleGroup", "Embryonic.day", "ScanDate") ],

annotation_colors = list(

sampleGroup = groupColour,

genotype = c(‘FGF4-KO‘ = "chocolate1", ‘WT‘ = "azure2"),

Embryonic.day = setNames(brewer.pal(9, "Blues")[c(3, 6, 9)], c("E3.25", "E3.5", "E4.5")),

ScanDate = setNames(brewer.pal(nlevels(x$ScanDate), "YlGn"), levels(x$ScanDate))

),

cutree_rows = 4

)

sampleGroup
Embryonic.day
ScanDate

ScanDate
2010−06−30
2010−07−01
2010−07−02
2010−09−16
2011−03−15
2011−03−16
2012−03−16
2012−08−16
2013−03−05

Embryonic.day
E3.25
E3.5
E4.5

sampleGroup
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
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E4.5 (PE)
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Figure 4.33: A heatmap of relative expres-
sion values, i. e., log

2

fold change compared
to the average expression of that gene (row)
across all samples (columns). The colour
scale uses a diverging palette, whose neutral
midpoint is at 0.

Let us take a minute to deconstruct the rather massive-looking call
to pheatmap. The options show_rownames and show_colnames control
whether the row and column names are printed at the sides of the matrix. Be-
cause our matrix is large in relation to the available plotting space, the labels
would anyway not be readable, and we suppress them. The annotation_col

many reasonable defaults 

easy to add column and 
row ‘metadata’ at the 
sides
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4.8.2 plotly, webgl

fixme: Mention them as they are cool.

4.9 Colour

An important consideration when making plots is the colouring that we use in
them. Most R users are likely familiar with the built-in R colour scheme, used
by base R graphics, as shown in Figure ??.

pie(rep(1, 8), col=1:8)

1
23

4

5
6 7

8

Figure 4.30: Basic R colours.

These colour choices date back from 1980s hardware, where graphics
cards handled colours by letting each pixel either fully use or not use each
of the three basic colour channels of the display: red, green and blue (RGB):
this leads to 2

3 = 8 combinations, which lie at the 8 the extreme corners of
the RGB color cube13 The colours in Figure ?? are harsh on the eyes, and

13 Thus the 8

th colour should be white; in R,
whose basic infastructure was put together
when more sophisticated graphics display
were already available, this was replaced by
grey, as you can see in Figure ??.

there is no good excuse any more for creating graphics that are based on this
palette. Fortunately, the default colours used by some of the more modern
visualisation oriented packages (including ggplot2) are much better already,
but sometimes we want to make our own choices.

In Section ?? we saw the function scale_fill_gradientn, which al-
lowed us to create the colour gradient used in Figures ?? and ?? by interpolat-
ing the basic colour palette defined by the function brewer.pal in the RCol-
orBrewer package. This package defines a great set of colour palettes, we
can see all of them at a glance by using the function display.brewer.all

(Figure ??).
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RdYlGn
Spectral
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Paired
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Greens
Greys

OrangesOrRd
PuBu

PuBuGn
PuRd

PurplesRdPu
Reds
YlGn

YlGnBu
YlOrBr

YlOrRd

Figure 4.31: RColorBrewer palettes.

display.brewer.all()

We can get information about the available colour palettes from the
data.frame brewer.pal.info.

head(brewer.pal.info)

## maxcolors category colorblind

## BrBG 11 div TRUE

## PiYG 11 div TRUE

## PRGn 11 div TRUE

## PuOr 11 div TRUE

## RdBu 11 div TRUE

## RdGy 11 div FALSE

table(brewer.pal.info$category)

##
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by base R graphics, as shown in Figure ??.

pie(rep(1, 8), col=1:8)

1
23

4

5
6 7

8

Figure 4.30: Basic R colours.

These colour choices date back from 1980s hardware, where graphics
cards handled colours by letting each pixel either fully use or not use each
of the three basic colour channels of the display: red, green and blue (RGB):
this leads to 2

3 = 8 combinations, which lie at the 8 the extreme corners of
the RGB color cube13 The colours in Figure ?? are harsh on the eyes, and

13 Thus the 8
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whose basic infastructure was put together
when more sophisticated graphics display
were already available, this was replaced by
grey, as you can see in Figure ??.

there is no good excuse any more for creating graphics that are based on this
palette. Fortunately, the default colours used by some of the more modern
visualisation oriented packages (including ggplot2) are much better already,
but sometimes we want to make our own choices.

In Section ?? we saw the function scale_fill_gradientn, which al-
lowed us to create the colour gradient used in Figures ?? and ?? by interpolat-
ing the basic colour palette defined by the function brewer.pal in the RCol-
orBrewer package. This package defines a great set of colour palettes, we
can see all of them at a glance by using the function display.brewer.all
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Consider these:

Different requirements for line & area colours

Many people are red-green colour blind 

Lighter colours tend to make areas look larger than 

darker colours -> use colors of equal luminance for 
filled areas.



RColorBrewer
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RGB color space
Motivated by computer screen hardware



HSV color space
Hue-Saturation-Value (Smith 1978)

Vmin: black (one point) 

Vmax: a planar area of fully saturated 
colours, with white in the centre 

wikipedia



HSV color space
GIMP colour selector

linear or circular hue 
chooser  

and  

a two-dimensional 
area (usually a square 

or a triangle) to 
choose saturation 

and value/lightness 
for the selected hue 



(almost) 1:1 mapping between RGB and HSV space

wikipedia



perceptual colour spaces
Human perception of colour corresponds neither to RGB nor 

HSV coordinates, and neither to the physiological axes light-
dark, yellow-blue, red-green 

Rather to polar coordinates in the colour plane (yellow/blue vs. 
green/red) plus a third light/dark axis. Perceptually-based 
colour spaces try to capture these perceptual axes: 

1. hue (dominant wavelength) 
2. chroma (colourfulness, intensity of coulor as compared 

to grey) 
3. luminance (brightness, amount of grey)



CIELUV and HCL
Commission Internationale de l’ Éclairage (CIE) in 1931, on 

the basis of extensive colour matching experiments with 
people, defined a “standard observer” who represents a 
typical human colour response (response of the three 
light cones + their processing in the brain) to a triplet 
(x,y,z) of primary light sources (in principle, this could 
be monochromatic R, G, B; but CIE choose something a 
bit more subtle) 

1976: CIELUV and CIELAB are perceptually based 
coordinates of colour space. 

CIELUV (L, u, v)-coordinates is prefered by those who 
work with emissive colour technologies (such as 
computer displays) and CIELAB by those working with 
dyes and pigments (such as in the printing and textile 
industries)        
 Ihaka 2003



HCL colours
(u,v) = chroma * (cos h, sin h) 

L the same as in CIELUV, (C, H) are 
simply polar coordinates for (u,v) 

1. hue (dominant wavelength) 

2. chroma (colorfulness, intensity 
of color as compared to gray) 

3. luminance (brightness, amount 
of gray)





From A. Zeileis, Reisensburg 2007

Pick your favourite



Albert Munsell 
(1858-1918) divided the 
circle of hues into 5 
main hues — R, Y, G, B, 
P (red, yellow, green, 
blue and purple).  

Value, Chroma: ranges 
divided into 10 equal 
steps.  

E.g. R 4/5 = hue of red 
with a value of 4 and a 
chroma of 5.



Munsell Colour System

Albert Munsell 
(1858-1918) divided the 
circle of hues into 5 main 
hues — R, Y, G, B, P (red, 
yellow, green, blue and 
purple).  

Value, Chroma: ranges 
divided into 10 equal 
steps.  

E.g. R 4/5 = hue of red 
with a value of 4 and a 
chroma of 5.



Colour Harmony



Balance
The intensity of colour which should be used is 

dependent on the area that that colour is to 
occupy. Small areas need to be more 
colourful than larger ones.  

Choose colours centered on a mid-range or 
neutral value, or; 

Choose colours at equally spaced points along 
smooth paths through (perceptually uniform) 
colour space: equal luminance and chroma 
and correspond to set of evenly spaced hues.
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Cluster stability analysis
1. Draw random subset of the full data (e.g. 67% of the samples) 

2. Apply clustering method of choice. Predict cluster memberships 

of the samples not in the subset with cl_predict - through their 
proximity to the cluster centres  

3. Repeat 1.+2. for B = 250 times 

4. Apply consensus clustering (cl_consensus)  

5. For each of the B clusterings, measure agreement with 

consensus (cl_agreement) 

6. If the agreement is generally high, then the clustering into k 
classes can be considered stable and reproducible; inversely, if it 
is low, then no stable partition of the samples into k clusters is 
evident



Cluster stability analysis

Analysis report: Ohnishi et al., 2014

> ce = list(
+ "E3.25" = clusterResampling(x[, unlist(groups[c("E3.25")])], ngenes = 20),
+ "E3.5" = clusterResampling(x[, unlist(groups[c("E3.5 (EPI)", "E3.5 (PE)")])],
+ ngenes = 20))

The results are shown in Figure 3. They confirm the hypothesis stated at the
beginning of this section.

> par(mfrow = c(1,2))
> colours = c(sampleColourMap["E3.25"], brewer.pal(9,"Set1")[9])
> boxplot(lapply(ce, `[[`, "agreements"), ylab = "agreement probabilities", col = colours)
> mems = lapply(ce, function(x) sort(cl_membership(x$consensus)[, 1]))
> mgrp = lapply(seq(along = mems), function(i) rep(i, times = length(mems[[i]])))
> myjitter = function(x) x+seq(-.4, +.4, length.out = length(x))
> plot(unlist(lapply(mgrp, myjitter)), unlist(mems),
+ col = colours[unlist(mgrp)], ylab = "membership probabilities",
+ xlab = "consensus clustering", xaxt = "n", pch = 16)
> text(x = 1:2, y = par("usr")[3], labels = c("E3.25","E3.5"), adj = c(0.5, 1.4), xpd = NA)
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Figure 3: Cluster stability analysis with E3. 25 and E3.5 WT samples. Left: boxplot of the
cluster agreements with the consensus, for the B=250 clusterings; 1 indicates perfect agree-
ment, and the value decreases with worse agreement. The statistical significance of the dif-
ference is confirmed by a Wilcoxon test in the main text. Right: membership probabilities of
the consensus clustering; colours are as in the left panel. For E3.25, the probabilities are dif-
fuse, indicating that the individual (resampled) clusterings disagree a lot, whereas for E3.5, the
distribution is bimodal, with only one ambiguous sample.

We can compute a p-value for the statistical significance of the two distributions
shown in the boxplot of Figure 3.

> wilcox.test(ce$E3.25$agreements, ce$E3.5$agreements)

Wilcoxon rank sum test with continuity correction

data: ce$E3.25$agreements and ce$E3.5$agreements
W = 211, p-value < 2.2e-16
alternative hypothesis: true location shift is not equal to 0

12

CRAN package: clue

Ohnishi et al.,  
Nature Cell Biology 
doi: 10.1038/ncb2881  

Bioc package: 
Hiiragi2013
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FIGURE 14.20. The first linear principal component of a set of data. The line
minimizes the total squared distance from each point to its orthogonal projection
onto the line.

In this application the authors have developed a “zoom” feature, which
allows one to interact with the map in order to get more detail. The final
level of zooming retrieves the actual news articles, which can then be read.

14.5 Principal Components, Curves and Surfaces

Principal components are discussed in Sections 3.4.1, where they shed light
on the shrinkage mechanism of ridge regression. Principal components are
a sequence of projections of the data, mutually uncorrelated and ordered
in variance. In the next section we present principal components as linear
manifolds approximating a set of N points xi ∈ IRp. We then present
some nonlinear generalizations in Section 14.5.2. Other recent proposals
for nonlinear approximating manifolds are discussed in Section 14.9.

14.5.1 Principal Components

The principal components of a set of data in IRp provide a sequence of best
linear approximations to that data, of all ranks q ≤ p.

Denote the observations by x1, x2, . . . , xN , and consider the rank-q linear
model for representing them
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FIGURE 14.21. The best rank-two linear approximation to the half-sphere data.
The right panel shows the projected points with coordinates given by U2D2, the
first two principal components of the data.

two-dimensional principal component surface fit to the half-sphere data
(left panel). The right panel shows the projection of the data onto the
first two principal components. This projection was the basis for the initial
configuration for the SOM method shown earlier. The procedure is quite
successful at separating the clusters. Since the half-sphere is nonlinear, a
nonlinear projection will do a better job, and this is the topic of the next
section.

Principal components have many other nice properties, for example, the
linear combination Xv1 has the highest variance among all linear com-
binations of the features; Xv2 has the highest variance among all linear
combinations satisfying v2 orthogonal to v1, and so on.

Example: Handwritten Digits

Principal components are a useful tool for dimension reduction and com-
pression. We illustrate this feature on the handwritten digits data described
in Chapter 1. Figure 14.22 shows a sample of 130 handwritten 3’s, each a
digitized 16 × 16 grayscale image, from a total of 658 such 3’s. We see
considerable variation in writing styles, character thickness and orienta-
tion. We consider these images as points xi in IR256, and compute their
principal components via the SVD (14.54).

Figure 14.23 shows the first two principal components of these data. For
each of these first two principal components ui1 and ui2, we computed the
5%, 25%, 50%, 75% and 95% quantile points, and used them to define
the rectangular grid superimposed on the plot. The circled points indicate

Hastie, Tibshirani, Friedman
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Data points: xi 2 Rn

Linear projection: P : Rn 7! Rk

such that

X
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Hessian eigenmaps: Locally linear embedding
techniques for high-dimensional data
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We describe a method for recovering the underlying parametriza-
tion of scattered data (mi) lying on a manifold M embedded in
high-dimensional Euclidean space. The method, Hessian-based
locally linear embedding, derives from a conceptual framework of
local isometry in which the manifold M, viewed as a Riemannian
submanifold of the ambient Euclidean space !n, is locally isometric
to an open, connected subset ! of Euclidean space !d. Because !
does not have to be convex, this framework is able to handle a
significantly wider class of situations than the original ISOMAP
algorithm. The theoretical framework revolves around a quadratic
form H (f ) " !M !Hf (m)!F

2dm defined on functions f : M ! !. Here
Hf denotes the Hessian of f, and H ( f ) averages the Frobenius norm
of the Hessian over M. To define the Hessian, we use orthogonal
coordinates on the tangent planes of M. The key observation is
that, if M truly is locally isometric to an open, connected subset of
!d, then H (f ) has a (d # 1)-dimensional null space consisting of the
constant functions and a d-dimensional space of functions spanned
by the original isometric coordinates. Hence, the isometric coordi-
nates can be recovered up to a linear isometry. Our method may be
viewed as a modification of locally linear embedding and our
theoretical framework as a modification of the Laplacian eigen-
maps framework, where we substitute a quadratic form based on
the Hessian in place of one based on the Laplacian.

manifold learning " ISOMAP " tangent coordinates " isometry "
Laplacian eigenmaps

1. Introduction

A recent article in Science (1) proposed to recover a low-
dimensional parametrization of high-dimensional data by

assuming that the data lie on a manifold M which, viewed as a
Riemannian submanifold of the ambient Euclidean space, is
globally isometric to a convex subset of a low-dimensional
Euclidean space. This bold assumption has been surprisingly
fruitful, although the extent to which it holds is not fully
understood.

It is now known (2, 3) that there exist high-dimensional
libraries of articulated images for which the corresponding data
manifold is indeed locally isometric to a subset of a Euclidean
space; however, it is easy to see that, in general, the assumption
that the subset will be convex is unduly restrictive. Convexity can
fail in the setting of image libraries due to (i) exclusion phe-
nomena (2, 3), where certain regions of the parameter space
would correspond to collisions of objects in the image, or (ii)
unsystematic data sampling, which investigates only a haphaz-
ardly chosen region of the parameter space.

In this article we describe a method that works to recover a
parametrization for data lying on a manifold that is locally
isometric to an open, connected subset " of Euclidean space !d.
Because this subset need not be convex, whereas the original
method proposed in ref. 1 demands convexity, our proposal
significantly expands on the class of cases that can be solved by
isometry principles.

Justification of our method follows from properties of a
quadratic form H(f) # !M !Hf (m)!F

2 dm defined on functions
f : M ! !. H(f ) measures the average, over the data manifold

M, of the Frobenius norm of the Hessian of f. To define the
Hessian, we use orthogonal coordinates on the tangent planes of M.

The key observation is that, if M is locally isometric to an open,
connected subset of !d, then H(f ) has a (d $ 1)-dimensional
null space consisting of the constant function and a d-
dimensional space of functions spanned by the original isometric
coordinates. Hence, the isometric coordinates can be recovered,
up to a rigid motion, from the null space of H(f ).

We describe an implementation of this procedure on sampled
data and demonstrate that it performs consistently with the
theoretical predictions on a variant of the ‘‘Swiss roll’’ example,
where the data are not sampled from a convex region in
parameter space.

2. Notation and Motivation
Suppose we have a parameter space " $ !d and a smooth
mapping ! : " ! !n, where the embedding space !n obeys d %
n. We speak of the image M # !(") as the manifold, although
of course from the viewpoint of manifold theory it is actually the
very special case of a single coordinate patch.

The vector " can be thought of as some control parameters
underlying a measuring device and the manifold as the enumer-
ation m # !(") of all possible measurements as the param-
eters vary. Thus the mapping ! associates parameters to
measurements.

In such a setting, we are interested in obtaining data examples
mi, i # 1, . . . , N showing (we assume) the results of measure-
ments with many different choices of control parameters ("i, i #
1, . . . , N). We will speak of M as the data manifold, i.e., the
manifold on which our data mi must lie. In this article we
consider only the situation where all data points mi lie exactly in
the manifold M.

There are several concrete situations related to image analysis
and acoustics where this abstract model may apply.

Y Scene variation: pose variations and facial gesturing;
Y Imaging variations: changes in the position of lighting sources

and in the spectral composition of lighting color; and
Y Acoustic articulations: changes in distance from source to

receiver, position of the speaker, or direction of the speaker’s
mouth.

In all such situations, there is an underlying parameter control-
ling articulation of the scene; here are two examples.

Y Facial expressions: The tonus of several facial muscles control
facial expression; conceptually, a parameter vector " records
the contraction of each of those muscles.

Y Pose variations: Several joint angles (shoulder, elbow, wrist,
etc.) control the combined pose of the elbow–wrist–finger
system in combination.

We also speak of M as the articulation manifold.

Abbreviations: LLE, locally linear embedding; HLLE, Hessian LLE.

*To whom correspondence should be addressed at: Department of Statistics, Room 128,
Sequoia Hall, Stanford University, Stanford, CA 94305. E-mail: donoho@stat.stanford.edu.
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We describe a method for recovering the underlying parametriza-
tion of scattered data (mi) lying on a manifold M embedded in
high-dimensional Euclidean space. The method, Hessian-based
locally linear embedding, derives from a conceptual framework of
local isometry in which the manifold M, viewed as a Riemannian
submanifold of the ambient Euclidean space !n, is locally isometric
to an open, connected subset ! of Euclidean space !d. Because !
does not have to be convex, this framework is able to handle a
significantly wider class of situations than the original ISOMAP
algorithm. The theoretical framework revolves around a quadratic
form H (f ) " !M !Hf (m)!F

2dm defined on functions f : M ! !. Here
Hf denotes the Hessian of f, and H ( f ) averages the Frobenius norm
of the Hessian over M. To define the Hessian, we use orthogonal
coordinates on the tangent planes of M. The key observation is
that, if M truly is locally isometric to an open, connected subset of
!d, then H (f ) has a (d # 1)-dimensional null space consisting of the
constant functions and a d-dimensional space of functions spanned
by the original isometric coordinates. Hence, the isometric coordi-
nates can be recovered up to a linear isometry. Our method may be
viewed as a modification of locally linear embedding and our
theoretical framework as a modification of the Laplacian eigen-
maps framework, where we substitute a quadratic form based on
the Hessian in place of one based on the Laplacian.
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dimensional parametrization of high-dimensional data by

assuming that the data lie on a manifold M which, viewed as a
Riemannian submanifold of the ambient Euclidean space, is
globally isometric to a convex subset of a low-dimensional
Euclidean space. This bold assumption has been surprisingly
fruitful, although the extent to which it holds is not fully
understood.

It is now known (2, 3) that there exist high-dimensional
libraries of articulated images for which the corresponding data
manifold is indeed locally isometric to a subset of a Euclidean
space; however, it is easy to see that, in general, the assumption
that the subset will be convex is unduly restrictive. Convexity can
fail in the setting of image libraries due to (i) exclusion phe-
nomena (2, 3), where certain regions of the parameter space
would correspond to collisions of objects in the image, or (ii)
unsystematic data sampling, which investigates only a haphaz-
ardly chosen region of the parameter space.

In this article we describe a method that works to recover a
parametrization for data lying on a manifold that is locally
isometric to an open, connected subset " of Euclidean space !d.
Because this subset need not be convex, whereas the original
method proposed in ref. 1 demands convexity, our proposal
significantly expands on the class of cases that can be solved by
isometry principles.

Justification of our method follows from properties of a
quadratic form H(f) # !M !Hf (m)!F

2 dm defined on functions
f : M ! !. H(f ) measures the average, over the data manifold

M, of the Frobenius norm of the Hessian of f. To define the
Hessian, we use orthogonal coordinates on the tangent planes of M.

The key observation is that, if M is locally isometric to an open,
connected subset of !d, then H(f ) has a (d $ 1)-dimensional
null space consisting of the constant function and a d-
dimensional space of functions spanned by the original isometric
coordinates. Hence, the isometric coordinates can be recovered,
up to a rigid motion, from the null space of H(f ).

We describe an implementation of this procedure on sampled
data and demonstrate that it performs consistently with the
theoretical predictions on a variant of the ‘‘Swiss roll’’ example,
where the data are not sampled from a convex region in
parameter space.

2. Notation and Motivation
Suppose we have a parameter space " $ !d and a smooth
mapping ! : " ! !n, where the embedding space !n obeys d %
n. We speak of the image M # !(") as the manifold, although
of course from the viewpoint of manifold theory it is actually the
very special case of a single coordinate patch.

The vector " can be thought of as some control parameters
underlying a measuring device and the manifold as the enumer-
ation m # !(") of all possible measurements as the param-
eters vary. Thus the mapping ! associates parameters to
measurements.

In such a setting, we are interested in obtaining data examples
mi, i # 1, . . . , N showing (we assume) the results of measure-
ments with many different choices of control parameters ("i, i #
1, . . . , N). We will speak of M as the data manifold, i.e., the
manifold on which our data mi must lie. In this article we
consider only the situation where all data points mi lie exactly in
the manifold M.

There are several concrete situations related to image analysis
and acoustics where this abstract model may apply.

Y Scene variation: pose variations and facial gesturing;
Y Imaging variations: changes in the position of lighting sources

and in the spectral composition of lighting color; and
Y Acoustic articulations: changes in distance from source to

receiver, position of the speaker, or direction of the speaker’s
mouth.

In all such situations, there is an underlying parameter control-
ling articulation of the scene; here are two examples.

Y Facial expressions: The tonus of several facial muscles control
facial expression; conceptually, a parameter vector " records
the contraction of each of those muscles.

Y Pose variations: Several joint angles (shoulder, elbow, wrist,
etc.) control the combined pose of the elbow–wrist–finger
system in combination.

We also speak of M as the articulation manifold.

Abbreviations: LLE, locally linear embedding; HLLE, Hessian LLE.

*To whom correspondence should be addressed at: Department of Statistics, Room 128,
Sequoia Hall, Stanford University, Stanford, CA 94305. E-mail: donoho@stat.stanford.edu.
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In section 7, we apply this recipe to a canonical isometric
example.

6. Comparison to LLE!Laplacian Eigenmaps
The algorithm we have described bears substantial resemblance
to the LLE procedure proposed by Roweis and Saul (4). The
theoretical framework we have described also bears substantial
resemblance to the Laplacian eigenmap framework of Belkin
and Niyogi (5), only with the Hessian replacing the Laplacian.
The Laplacian eigenmap setup goes as follows: Define
the Laplacian operator in tangent coordinates by !(tan)( f ) "
# i"1

d (!2f!!xi
2), and define the functional L( f ) "

$M(!(tan)( f ))2dm. This functional computes the average of the
Laplacian operator over the manifold; Laplacian eigenmap
methods propose to solve embedding problems by obtaining the
d % 1 lowest eigenvalues of L and using the corresponding
eigenfunctions to embed the data in low-dimensional space. The
LLE method is an empirical implementation of the same prin-
ciple, defining a discrete Laplacian based on a nearest-neighbor
graph and embedding scattered n-dimensional data by using the
first d nonconstant eigenvectors of the graph Laplacian.

7. Data Example
In this example we take a random sample (mi) on the Swiss roll
surface (4) in three dimensions. The resulting surface is like a
rolled-up sheet of paper and thus is exactly isometric to Euclid-
ean space (i.e. to a rectangular segment of !2). Successful results
of LLE and ISOMAP on such data have been published (1, 4).
However, here we consider a change in sampling procedure.
Instead of sampling parameters in a full rectangle, we sample
from a rectangle with a missing rectangular strip punched out of

the center. The resulting Swiss roll is then missing the corre-
sponding strip and thus is not convex (while still remaining
connected).

Using this model and the code provided for ISOMAP and
LLE in refs. 1 and 4, respectively, we test the performance of all
three algorithms on a random sample of 600 points in three
dimensions. The points were generated by using the same code
published by Roweis and Saul (4). The results, as seen in Fig. 1,
show the dramatic effect that nonconvexity can have on the
resulting embeddings. Although the data manifold is still locally
isometric to Euclidean space, the effect of the missing sampling
region is, in the case of LLE, to make the resulting embedding
functions asymmetric and nonlinear with respect to the original
parametrization. In the case of ISOMAP, the nonconvexity
causes a strong dilation of the missing region, warping the rest
of the embedding. Hessian LLE, on the other hand, embeds the
result almost perfectly into two-dimensional space.

The computational demands of LLE algorithms are very
different than those of the ISOMAP distance-processing step.
LLE and HLLE are both capable of handling large N problems,
because initial computations are performed only on smaller
neighborhoods, whereas ISOMAP has to compute a full matrix
of graph distances for the initial distance-processing step. How-
ever, both LLE and HLLE are more sensitive to the dimension-
ality of the data space, n, because they must estimate a local
tangent space at each point. Although we introduce an orthogo-
nalization step in HLLE that makes the local fits more robust to
pathological neighborhoods than LLE, HLLE still requires
effectively a numerical second differencing at each point that can
be very noisy at low sampling density.

Fig. 1. (Upper Left) Original data. (Upper Right) LLE embedding (Roweis and Saul code, k " 12; ref. 4). (Lower Left) Hessian eigenmaps (Donoho and Grimes
code, k " 12; as described in section 5). (Lower Right) ISOMAP (Tenenbaum et al. code, k " 7; ref. 1). The underlying correct parameter space that generated
the data is a square with a central square removed, similar to what is obtained by the Hessian approach (Lower Left).

5594 " www.pnas.org!cgi!doi!10.1073!pnas.1031596100 Donoho and Grimes
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(a) Visualization by t-SNE.

 

 

(b) Visualization by Sammon mapping.

Figure 2: Visualizations of 6,000 handwritten digits from the MNIST data set.
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Abstract

We present a new technique called “t-SNE” that visualizes high-dimensional data by giving each
datapoint a location in a two or three-dimensional map. The technique is a variation of Stochastic
Neighbor Embedding (Hinton and Roweis, 2002) that is much easier to optimize, and produces
significantly better visualizations by reducing the tendency to crowd points together in the center
of the map. t-SNE is better than existing techniques at creating a single map that reveals structure
at many different scales. This is particularly important for high-dimensional data that lie on several
different, but related, low-dimensional manifolds, such as images of objects from multiple classes
seen from multiple viewpoints. For visualizing the structure of very large data sets, we show how
t-SNE can use random walks on neighborhood graphs to allow the implicit structure of all of the
data to influence the way in which a subset of the data is displayed. We illustrate the performance of
t-SNE on a wide variety of data sets and compare it with many other non-parametric visualization
techniques, including Sammon mapping, Isomap, and Locally Linear Embedding. The visualiza-
tions produced by t-SNE are significantly better than those produced by the other techniques on
almost all of the data sets.

Keywords: visualization, dimensionality reduction, manifold learning, embedding algorithms,
multidimensional scaling

1. Introduction

Visualization of high-dimensional data is an important problem in many different domains, and
deals with data of widely varying dimensionality. Cell nuclei that are relevant to breast cancer,
for example, are described by approximately 30 variables (Street et al., 1993), whereas the pixel
intensity vectors used to represent images or the word-count vectors used to represent documents
typically have thousands of dimensions. Over the last few decades, a variety of techniques for
the visualization of such high-dimensional data have been proposed, many of which are reviewed
by de Oliveira and Levkowitz (2003). Important techniques include iconographic displays such as
Chernoff faces (Chernoff, 1973), pixel-based techniques (Keim, 2000), and techniques that repre-
sent the dimensions in the data as vertices in a graph (Battista et al., 1994). Most of these techniques
simply provide tools to display more than two data dimensions, and leave the interpretation of the

c⃝2008 Laurens van der Maaten and Geoffrey Hinton.
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