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Karl Popper (1902-1994)

Logical asymmetry between
verification and falsifiability.

No number of positive outcomes at the
level of experimental testing can
confirm a scientific theory, but a single
counterexample is logically decisive: it
shows the theory is false.




The four steps of hypothesis testing

Step 1: Set up a model of reality: null hypothesis, Ho
Step 2: Do an experiment, collect data
Step 3: Compute the probability of the data in this model

Step 4: Make a decision: reject model if the computed
probability is deemed to small

Ho: a model of reality that lets us make specific predictions of
how the data should look like. The model is stated using the
mathematical theory of probability.

Examples of null hypotheses:

e The coin is fair

* The new drug is no better or worse than a
placebo

* The observed CellTitreGlo signal for my
RNAi-treated cells is no different from that
of the negative controls




Example

Toss a coin a certain number of times =

If the coin is fair, then heads should appear half of the
time (roughly).

But what is “roughly”? We use combinatorics / probability
theory to quantify this.

For example, in 12 tosses with success rate p, the
probability of seeing exactly 8 heads is

(182>p8 (1—p)*



Binomial Distribution

Ho here: p = 0.5. Distribution of number of heads:
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Significance Level

If H, is true and the coin is fair (p=0.5), it is improbable to
observe extreme events such as more than 9 heads

0.0193 =P(Heads 210 | H, ) = “p-value”

If we observe 10 heads in a trial, the null hypothesis is likely
to be false.

An often used (but entirely arbitrary) cutoff is 0.05
(“significance level o"): if p<a, we reject H,

Two views:
Strength of evidence for a certain (negative) statement

Rational decision support




Statistical Testing Workflow

1. Set up hypothesis H, (that you want to reject)

2. Find a test statistic T that should be sensitive to
(interesting) deviations from H,

3. Figure out the null distribution of T, if H, holds

4. Compute the actual value of T for the data at
hand

5. Compute p-value = the probability of seeing that
value, or more extreme, in the null distribution.

6. Test Decision: Rejection of H, -yes/no ?



Errors in hypothesis testing

Truth

Decision

not rejected
(‘negative’)

True negative
(specificity)

False Negative
Type Il error

B

rejected
(‘positive’)

False Positive

Type | error
a

True Positive
(sensitivity)




One sample t-test

t-statistic (1908, William Sealy
Gosset, pen-name “Student”)

_ =
[ X—W
t =1 A 0 ) |
O % > 40
compare to a fixed value Lo g —
N~
N~

Without n: z-score
With n: t-statistic

If data are normal, null distribution
can be computed: “t-distribution”,
with a parameter called “degrees of
freedom”, equal to n-1

=

W




One sample t-test example

Consider the following 10 data points:
-0.01, 0.65,-0.17,1.77,0.76, -0.16, 0.88, 1.09, 0.96, 0.25

We are wondering if these values come from a distribution
with a true mean of 0: one sample t-test

The 10 data points have a mean of 0.60 and a standard
deviation of 0.62.

From that, we calculate the t-statistic:

t=0.60/0.62*1072=3.0



p-value and test decision

10 observations @ compare observed t-statistic to the t-
distribution with 9 degrees of freedom

<
o

0.3

0.2

p(t)

0.1

0.0

p-value: P(|To| =23.0)=0.015
InR: pt(3.0, df=9, lower.tail=FALSE)



One-sided vs two-sided test

5%
One-sided
e.g. Ho: p<0

Two-sided 2.5% 2.5%
e.g. Ho: u=0




Avoid fallacy

The p-value is the probability that the observed data
could happen, under the condition that the null
hypothesis is true.

It is not the probability that the null hypothesis is
true.

Absence of evidence + evidence of absence



Two samples t-test

Do two different samples have the same mean ?

_J-%
SE

4

Y and X are the average of the observations in the two
populations

SE is the standard error for the difference
If Ho is correct, test statistic follows a t-distribution with

n+m-2 degrees of freedom
(n, m: number of observations in each sample)



t-testin R

t.test(x, y, alternative, paired, var.equal)

x,y: Data (only x needs to be specified for one-group
test, specify target mu instead)

paired: paired (e.g. repeated measurements on the
same subjects) or unpaired

var.equal: Can the variances in the two groups assumed

to be equal?
alternative: one- or two-sided test?



Comments and pitfalls

The derivation of the t-distribution assumes that the
observations are independent and that they follow a
Normal distribution.

Deviation from Normality - heavier tails: test still

maintains type-| error control, but may no longer
have optimal power.

Options: Wilcoxon test, permutation tests

If the data are dependent, then p-values will likely

be totally wrong (e.g., for positive correlation, too
optimistic).
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different data distributions - independent case
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Frequency

Frequency

different data distributions — correlated case
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The Multiple Testing Problem

When performing a large number of tests, the type | error
goes up: for a=0.05 and performing n tests, the
probability of no false positive result is:

0.95-095-...-0.95 << 0.95

n—times

= The larger the number of tests performed, the higher

the probability of a false rejection!



Multiple Testing Examples

Many data analysis approaches in genomics rely on item-
by-item (i.e. multiple) testing:

Microarray or RNA-Seq expression profiles of “normal” vs
“perturbed” samples: gene-by-gene

ChlIP-chip: locus-by-locus
RNAi and chemical compound screens
Genome-wide association studies: marker-by-marker

QTL analysis: marker-by-marker and trait-by-trait



False positive rate and false
discovery rate

FPR: fraction of FP among
all genes (etc.) tested

FDR: fraction of FP among
hits called

Example:
20,000 genes, 100 hits, 10 of
them wrong.

FPR: 0.05%
FDR: 10%

“Wait a minute! Isn’t anyone here a real sheep?”



Experiment-wide type | error rates

Not
rejected Rejected Total
True null U Vv m
hypotheses
False null T S m
hypotheses
Total m-R R m

Family-wise error rate (FWER): P(V > 0), the probability of one or more
false positives. For large m,, this is difficult to keep small.

False discovery rate (FDR): E[ V/ max{R,1} ], the expected fraction of
false positives among all discoveries.



FWER: The Bonferroni correction

Suppose we conduct a hypothesis test for each gene ¢ = 1,...,m,
producing

an observed test statistic: 7,

an unadjusted p—value: p,.
Bonferroni adjusted p—values:

~

Dg = min(mpg, 1).

Selecting all genes with p, < « controls the FWER at level «, that is,
Pr(V >0) <a.



Controlling the FDR (Benjamini/Hochberg)

O FDR: the expected proportion of false positives among the significant

genes.
O Ordered unadjusted p—values: p,, < p,, < ... < p, .

O To control FDR = E(V/R) at level «, let
§* = max{j : p,; < (j/m)a}.
Reject the hypotheses H,. forj =1,... ;"

O Is valid for independent test statistics and for some types of
dependence.



Diagnostic plot: the histogram of p-values
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Observed p-values are a mix of samples from

¢ a uniform distribution (from true nulls) and

¢ from distributions concentrated at 0 (from true
alternatives)



Benjamini Hochberg multiple testing adjustment
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Benjamini Hochberg multiple testing adjustment

o0

(> — .
o //
©

([a» —

S /
BH = {

i <- length(p):1

o <- order (p, decreasing = TRUE)
ro <- order (o)
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N(p;)

How to estimate the number (not: the
identity) of differentially expressed genes

2000 4000 6000 8000

0
|

For a series of hypothesis tests
H4...Hm with p-values pi, plot

(1—pi, N(pi)) foralli

where N(p) is the number of p-
values greater than p.

Red line: (1—pi,(1—p)*m)

(1—p)*m = expected number of
p-values greater than p

Schweder T, Spjotvoll E (1982) Plots of P-values to evaluate

many tests simultaneously. Biometrika 69:493-502.
See ‘genefilter’ vignette for an example.
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log» fold change
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~logyg(pvalue)
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Independent filtering

From the set of all tests to be done,

first filter out those that seem to have insufficient power
anyway,

then formally test for differential expression on the rest.

Literature

von Heydebreck, Huber, Gentleman (2004)

Chiaretti et al., Clinical Cancer Research (2005)

McClintick and Edenberg (BMC Bioinf. 2006) and references therein
Hackstadt and Hess (BMC Bioinf. 2009)

Bourgon, Gentleman and Huber (PNAS 2010)

Many others.




Increased detection rates

Stage 1 filter: sum of counts, across samples, for each gene, and
remove the fraction (10%, 20%, ...) of genes where that is smallest

Stage 2: standard NB-GLM test
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Increased power?

Increased detection rate implies increased power
only if we are still controlling type | errors at the same level as before.
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Increased power?

Increased detection rate implies increased power

only if we are still controlling type | errors at the same level as before.

o

Concern:

Since we use a data-driven criterion in
stage 1, but do p-value and type-I error
related computations only on the genes in
stage 2, aren’t we ‘cheating’?

Informal justification:
Filter does not use covariate information
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FDR cutoff (Benjamini & Hochberg adjusted p-value)



What do we need for experiment-wide type | error
(e.g.: FDR) control?

l. Per gene p-values must be bona-fide p-values: for those genes
for which Ho holds, p must be Uniform distributed.

Il. Joint distribution of the p-values must comply with the
assumptions of the multiple testing procedure (e.g. Benjamini-
Hochberg)



What do we need for experiment-wide type | error
(e.g.: FDR) control?

l. Per gene p-values must be bona-fide p-values: for those genes
for which Ho holds, p must be Uniform distributed.

Il. Joint distribution of the p-values must comply with the
assumptions of the multiple testing procedure (e.g. Benjamini-
Hochberg)

If these conditions hold without filtering, and
if the filtering is statistically independent from the test
statistics under the null,

they still hold with filtering.
(Bourgon, Gentleman, Huber, PNAS 2010)



Independence of filter and test statistics under the
null hypothesis

For genes for which the null hypothesis is true (X, ,..., X, exchangeable),
f (filter) and g (test) are statistically independent in all of the following cases:

e NB-test (DESeq2):
f: overall count sum (or mean)

e Normally distributed data (e.g. microarray data after rma or vsn):
f: overall variance, overall mean
g: standard two-sample t-statistic, or any test statistic which is scale and
location invariant.

e Non-parametrically:
f: any function that does not depend on the
order of the arguments. E.g. overall variance, 1QR.
g: the Wilcoxon rank sum test statistic.

Also in the multi-class context: ANOVA, Kruskal-Wallis.
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Diagnostics
(see: vignettes of genefilter, DESeq2 packages)
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Conclusion

Independent filtering can substantially increase your power at same
type | error.



Conclusion

Independent filtering can substantially increase your power at same
type | error.
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