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Logical asymmetry between 
verification and falsifiability. 
!
No number of  positive outcomes at the 
level of  experimental testing can 
confirm a scientific theory, but a single 
counterexample is logically decisive: it 
shows the theory is false.



Step 1: Set up a model of  reality: null hypothesis, H0 

Step 2: Do an experiment, collect data 

Step 3: Compute the probability of  the data in this model 

Step 4: Make a decision: reject model if  the computed 
probability is deemed to small 
H0: a model of  reality that lets us make specific predictions of  
how the data should look like. The model is stated using the 
mathematical theory of  probability. 

Examples of  null hypotheses: 
• The coin is fair 
• The new drug is no better or worse than a  
placebo 
• The observed CellTitreGlo signal for my  
RNAi-treated cells is no different from that  
of  the negative controls

The four steps of  hypothesis testing



Toss a coin a certain number of  times ⇒ 

If  the coin is fair, then heads should appear half  of  the 
time (roughly).  
!
But what is “roughly”? We use combinatorics / probability 
theory to quantify this. 
!
For example, in 12 tosses with success rate p, the 
probability of  seeing exactly 8 heads is

Example



Binomial Distribution
H0 here: p = 0.5. Distribution of  number of  heads:

P(Heads ≥ 10) = 0.0193 P(Heads ≤ 2) = 0.0193
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Significance Level

If  H0 is true and  the coin is fair (p=0.5), it is improbable to 
observe extreme events such as  more than 9  heads 

0.0193 = P(Heads ≥ 10 | H0 ) = “p-value” 

If  we observe 10 heads in a trial, the null hypothesis is likely 
to be false. 
An often used (but entirely arbitrary) cutoff  is 0.05 
(“significance level α”): if  p<α, we reject H0 

!
Two views: 
Strength of  evidence for a certain (negative) statement 
Rational decision support



Statistical Testing Workflow

1. Set up hypothesis H0 (that you want to reject)  

2. Find a test statistic T that should be sensitive to 
(interesting) deviations from H0  

3. Figure out the null distribution of  T, if  H0 holds 

4. Compute the actual value of  T for the data at 
hand  

5. Compute p-value  =  the probability of  seeing that 
value, or more extreme, in the null distribution. 

6. Test Decision: Rejection of  H0  - yes / no ?



not rejected 
  (‘negative’)

rejected 
(‘positive’)

!
H

!
True negative 
(specificity)

!
False Positive  

Type I error  
α

!
!

H

      
False Negative 

Type II error 
β

        
True Positive 
(sensitivity)

Truth

Decision

Errors in hypothesis testing



t-statistic (1908, William Sealy 
Gosset, pen-name “Student”) 
!
!
!
!
compare to a fixed value  μ0   
!
Without n: z-score 
With n: t-statistic  
!
If  data are normal, null distribution 
can be computed: “t-distribution”, 
with a parameter called “degrees of  
freedom”, equal to n-1

One sample t-test

σ



One sample t-test example
Consider  the following 10 data points: 
-0.01, 0.65, -0.17, 1.77, 0.76, -0.16, 0.88, 1.09, 0.96, 0.25 
!
We are wondering if  these values come from a distribution 
with a true mean of  0: one sample t-test 
!
The 10 data points have a mean of  0.60 and a standard 
deviation of  0.62. 
!
From that, we calculate the t-statistic: 

t = 0.60 / 0.62 * 101/2 = 3.0



10 observations → compare observed t-statistic to the t-
distribution with 9 degrees of  freedom 
!
!
!
!
!
!
!
!
!
!
p-value:  P( |T9| ≧ 3.0) = 0.015 
In R:    pt(3.0, df=9, lower.tail=FALSE)

p-value and test decision
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One-sided vs two-sided test

One-sided 
  e.g. H0: µ<0

Two-sided 
  e.g. H0: µ=0
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Avoid fallacy    

The p-value is the probability that the observed data 
could happen, under the condition that the null 
hypothesis is true. 

It is not the probability that the null hypothesis is 
true. 

Absence of  evidence ⧧ evidence of  absence 



Two samples t-test
Do two different samples have the same mean ? 
!
!
!
!
!
y and x are the average of  the observations in the two 
populations 
!
SE is the standard error for the difference  
!
If  H0 is correct, test statistic follows a t-distribution with 
n+m-2 degrees of  freedom  
(n, m: number of  observations in each sample)



t-test in R

x,y: Data (only x needs to be specified for one-group 
test, specify target mu instead) 

paired: paired (e.g. repeated measurements on the 
same subjects) or unpaired 

var.equal: Can the variances in the two groups assumed 
to be equal? 
alternative: one- or two-sided test?

•

•

•

•



Comments and pitfalls

The derivation of  the t-distribution assumes that the 
observations are independent and that they follow a 
Normal distribution. 

Deviation from Normality - heavier tails: test still 
maintains type-I error control, but may no longer 
have optimal power. 

Options: Wilcoxon test, permutation tests 

If  the data are dependent, then p-values will likely 
be totally wrong (e.g., for positive correlation, too 
optimistic).



different data distributions – independent case



different data distributions – correlated case



xkcd



xkcd



The Multiple Testing Problem

When performing a large number of  tests, the type I error  
goes up:  for α=0.05  and performing n tests, the 
probability of  no false positive result is: 

!
  

!
!
⇒ The larger the number of  tests performed, the higher 

the probability  of  a false rejection!



Multiple Testing Examples 

Many data analysis approaches in genomics rely on item-

by-item (i.e. multiple) testing: 

!
Microarray or RNA-Seq expression profiles of  “normal” vs 

“perturbed” samples: gene-by-gene 

ChIP-chip: locus-by-locus 

RNAi and chemical compound screens 

Genome-wide association studies: marker-by-marker 

QTL analysis: marker-by-marker and trait-by-trait



False positive rate and false 
discovery rate

FPR: fraction of FP among 
all genes (etc.) tested 
!
FDR: fraction of FP among 
hits called 
!
Example: 
20,000 genes, 100 hits, 10 of 
them wrong. 
!
FPR: 0.05% 
FDR: 10% 



Experiment-wide type I error rates

Slide 4

Family-wise error rate (FWER): P(V > 0), the probability of  one or more 

false positives. For large m0, this is difficult to keep small. 

!
False discovery rate (FDR): E[ V / max{R,1} ], the expected fraction of  

false positives among all discoveries. 

Not 
rejected Rejected Total

True null 
hypotheses

U V m

False null 
hypotheses

T S m

Total m – R R m
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Figure 6.2. Histograms of p-values. Right: after nonspecific filtering. Left: filtered
nonspecific probe sets only.

> table(ALLsfilt$mol.biol)
BCR/ABL NEG

37 42
> tt = rowttests(ALLsfilt, "mol.biol")
> names(tt)
[1] "statistic" "dm" "p.value"

Take a look at the histogram of the resulting p-values in the left panel
of Figure 6.2.

> hist(tt$p.value, breaks=50, col=lcol1)

We see a number of probe sets with very low p-values (which correspond
to di�erentially expressed genes) and a whole range of insignificant p-values.
This is more or less what we would expect. The expression of the majority
of genes is not significantly shifted by the BCR/ABL mutation. To make
sure that the nonspecific filtering did not throw away an undue amount of
promising candidates, let us take a look at the p-values for those probe sets
that we filtered out before. We can compute t-statistics for them as well
and plot the histogram of p-values (right panel of Figure 6.2):

> ALLsrest = ALL_bcrneg[sds<sh, ]
> ttrest = rowttests(ALLsrest, "mol.biol")
> hist(ttrest$p.value, breaks=50, col=lcol2)

Exercise 6.1
Comment on the plot; do you think that the nonspecific filtering was
appropriate?

Observed p-values are a mix of  samples from  
• a uniform distribution (from true nulls) and  
• from distributions concentrated at 0 (from true 
alternatives)

Diagnostic plot: the histogram of  p-values



Benjamini Hochberg multiple testing adjustment  

slope: α / #genes



Benjamini Hochberg multiple testing adjustment  

slope: α / #genes

BH = { 
        i <- length(p):1 
        o <- order(p, decreasing = TRUE) 
        ro <- order(o) 
        pmin(1, cummin(n/i * p[o]))[ro] 
    }



For a series of  hypothesis tests 
H1...Hm with p-values pi, plot 
!

(1−pi, N(pi))      for all i 
!
where N(p) is the number of  p-
values greater than p. 
!
Red line: (1−pi,(1−p)*m) 
!
(1−p)*m = expected  number of  

p-values greater than p

Schweder T, Spjøtvoll E (1982) Plots of P-values to evaluate 
many tests simultaneously. Biometrika 69:493–502.!
See ‘genefilter’ vignette for an example.

How to estimate the number (not: the 
identity) of  differentially expressed genes



is chosen, and points will be colored red if the adjusted p-value is less than 0.1. Points
which fall out of the window are plotted as open triangles.

plotMA(dds)

Figure 1: The MA-plot shows the log2 fold changes from the treatment over the mean
of normalized counts, i.e. the average of counts normalized by size factor. The DESeq2
package incorporates a prior on log2 fold changes, resulting in moderated estimates from
genes with very low counts, as can be seen by the narrowing of spread of points on the
left side of the plot.

4.2 More information on results columns

Information about which variables and tests were used can be found by calling the
function mcols on the results object.

mcols(res, use.names=TRUE)

DataFrame with 5 rows and 2 columns

type

<character>

baseMean intermediate

log2FoldChange results

lfcSE results

pvalue results

padj results

description

<character>

baseMean the base mean over all rows

parathyroid dataset
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high Poisson noise that any biological e↵ect is drowned in the uncertainties from the read counting.
The MA plot suggests that for genes with less than one or two counts per sample, averaged over all
samples, there is no real inferential power. We loose little if we filter out these genes:

> filterThreshold <- 2.0

> keep <- rowMeans( counts( dds, normalized=TRUE ) ) > filterThreshold

> table( keep )

keep

FALSE TRUE

41503 19117

Note that none of the genes below the threshold had a significant adjusted p value

> min( res$padj[!keep], na.rm=TRUE )

[1] 0.421

At first sight, there may seem to be little benefit in filtering out these genes. After all, the test
found them to be non-significant anyway. However, these genes have an influence on the multiple
testing adjustment, whose performance improves if such genes are removed. Compare:

> table( p.adjust( res$pvalue, method="BH" ) < .1 )

FALSE TRUE

28592 505
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Figure 2: The mean of normalized counts provides an independent statistic for filtering
the tests. It is independent because the information about the variables in the design
formula is not used. By filtering out genes which fall to the left of the red line, the
majority of the low p-values are kept.

resFilt <- res[use,]

resFilt$padj <- p.adjust(resFilt$pvalue, method="BH")

sum(res$padj < .1, na.rm=TRUE)

[1] 1241

sum(resFilt$padj < .1, na.rm=TRUE)

[1] 1422

6.2 Why does it work?

Consider the p value histogram in Figure 3. It shows how the filtering ameliorates the
multiple testing problem – and thus the severity of a multiple testing adjustment – by
removing a background set of hypotheses whose p values are distributed more or less
uniformly in [0, 1].

h1 <- hist(res$pvalue[!use], breaks=50, plot=FALSE)

h2 <- hist(res$pvalue[use], breaks=50, plot=FALSE)

colori <- c( do not pass ="khaki", pass ="powderblue")

barplot(height = rbind(h1$counts, h2$counts), beside = FALSE,

col = colori, space = 0, main = "", ylab="frequency")

text(x = c(0, length(h1$counts)), y = 0, label = paste(c(0,1)),

adj = c(0.5,1.7), xpd=NA)

legend("topright", fill=rev(colori), legend=rev(names(colori)))



Independent filtering

From the set of all tests to be done,  
first filter out those that seem to have insufficient power 

anyway, 
then formally test for differential expression on the rest.
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Figure 3: Left panel: the plot shows the number of rejections (i. e. genes detected as di↵erentially expressed) as a
function of the FDR threshold (x-axis) and the filtering cuto↵ ✓ (line colours, specified as quantiles of the distribution
of the filter statistic). The plot is produced by the rejection_plot function. Note that the lines for ✓ = 0% and
10% are overplotted by the line for ✓ = 20%, since for the data shown here, these quantiles correspond all to the same
set of filtered genes (cf. Figure 1). Right panel: the number of rejections at FDR=10% as a function of ✓.

0% 10% 20% 30% 40% 50%

[1,] 0.895 0.895 0.895 NA NA NA

[2,] 0.997 0.997 0.997 0.998 0.995 0.993

[3,] 0.981 0.981 0.981 NA NA NA

[4,] 0.960 0.960 0.960 0.970 NA NA

[5,] 0.593 0.593 0.593 0.517 0.452 0.412

[6,] 0.951 0.951 0.951 0.964 0.938 0.924

The rows of this matrix correspond to the genes (i. e., the rows of res) and the columns to the BH-adjusted p-values
for the di↵erent possible choices of cuto↵ theta. A value of NA indicates that the gene was filtered out at the
corresponding filter cuto↵. The rejection_plot function takes such a matrix and shows how rejection count (R)
relates to the choice of cuto↵ for the p-values. For these data, over a reasonable range of FDR cuto↵s, increased
filtering corresponds to increased rejections.

> rejection_plot(pBH, at="sample",

+ xlim=c(0, 0.5), ylim=c(0, 2000),

+ xlab="FDR cutoff (Benjamini & Hochberg adjusted p-value)", main="")

The plot is shown in the left panel of Figure 3.

4.1 Choice of filtering cuto↵

If we select a fixed cuto↵ for the adjusted p-values, we can also look more closely at the relationship between the
fraction of null hypotheses filtered and the total number of discoveries. The filtered_R function wraps filtered_p
and just returns rejection counts. It requires you to choose a particular p-value cuto↵, specified through the argument
alpha.

> theta = seq(from=0, to=0.8, by=0.02)

> rejBH = filtered_R(alpha=0.1, filter=res$filterstat, test=res$pvalue, theta=theta, method="BH")

Because overfiltering (or use of a filter which is inappropriate for the application domain) discards both false and
true null hypotheses, very large values of ✓ reduce power in this example:

Diagnostics for independent filtering

Increased detection rates
Stage 1 filter: sum of  counts, across samples, for each gene, and 
remove the fraction (10%, 20%, …) of  genes where that is smallest 

Stage 2: standard NB-GLM test
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Diagnostics for independent filtering
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Increased power?
Increased detection rate implies increased power  

only if we are still controlling type I errors at the same level as before.
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Increased power?
Increased detection rate implies increased power  

only if we are still controlling type I errors at the same level as before.

Concern:  
 Since we use a data-driven criterion in 
stage 1, but do p-value and type-I error 
related computations only on the genes in 
stage 2, aren’t we ‘cheating’? 
!
Informal justification: 
Filter does not use covariate information



What do we need for experiment-wide type I error 
(e.g.: FDR) control?

I. Per gene p-values must be bona-fide p-values: for those genes 
for which H0 holds, p must be Uniform distributed. 
II. Joint distribution of the p-values must comply with the 
assumptions of the multiple testing procedure (e.g. Benjamini-
Hochberg)



What do we need for experiment-wide type I error 
(e.g.: FDR) control?

I. Per gene p-values must be bona-fide p-values: for those genes 
for which H0 holds, p must be Uniform distributed. 
II. Joint distribution of the p-values must comply with the 
assumptions of the multiple testing procedure (e.g. Benjamini-
Hochberg)

If these conditions hold without filtering, and  
if the filtering is statistically independent from the test 
statistics under the null,  
they still hold with filtering. 
(Bourgon, Gentleman, Huber, PNAS 2010)



Independence of filter and test statistics under the 
null hypothesis

For genes for which the null hypothesis is true (X1 ,..., Xn exchangeable),  
f (filter) and g (test) are statistically independent in all of the following cases:  

• NB-test (DESeq2): 
 f: overall count sum (or mean) 

• Normally distributed data (e.g. microarray data after rma or vsn): 
 f: overall variance, overall mean 
 g: standard two-sample t-statistic, or any test statistic which is scale and 

location invariant. 

• Non-parametrically: 
 f: any function that does not depend on the 

 order of the arguments. E.g. overall variance, IQR. 
 g: the Wilcoxon rank sum test statistic. 

Also in the multi-class context: ANOVA, Kruskal-Wallis.
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Diagnostics 
(see: vignettes of  genefilter, DESeq2 packages)

Figure 4: The number of rejections at FDR=10% as a function of ✓ (analogous to the right panel in Figure 3) for a
number of di↵erent choices of the filter statistic.

> plot(theta, rejBH, type="l",

+ xlab=expression(theta), ylab="number of rejections")

The plot is shown in the right panel of Figure 3.

4.2 Choice of filtering statistic

We can use the analysis of the previous section 4.1 also to inform ourselves about di↵erent possible choices of filter
statistic. We construct a dataframe with a number of di↵erent choices.

> filterChoices = data.frame(

+ mean = res$filterstat,

+ geneID = badfilter,

+ min = rowMin(counts(cds)),

+ max = rowMax(counts(cds)),

+ sd = rowSds(counts(cds))

+ )

> rejChoices = sapply(filterChoices, function(f)

+ filtered_R(alpha=0.1, filter=f, test=res$pvalue, theta=theta, method="BH"))

> library("RColorBrewer")

> myColours = brewer.pal(ncol(filterChoices), "Set1")

> matplot(theta, rejChoices, type="l", lty=1, col=myColours, lwd=2,

+ xlab=expression(theta), ylab="number of rejections")

> legend("bottomleft", legend=colnames(filterChoices), fill=myColours)

The result is shown in Figure 4. It indicates that for the data at hand, mean, max and sd provide similar performance,
whereas the other choices are less e↵ective.

5 Some more plots pertinent to multiple testing

5.1 Joint distribution of filter statistic and p-values

The left panel of Figure 1 shows the joint distribution of filter statistic and p-values. An alternative, perhaps simpler
view is provided by the p-value histograms in Figure 5. It shows how the filtering ameliorates the multiple testing

Diagnostics for independent filtering

Figure 1: Left: scatterplot of the rank (scaled to [0, 1]) of the filter criterion filterstat (x-axis) versus the negative
logarithm of the test pvalue (y-axis). Right: the empirical cumulative distribution function (ECDF) shows the
relationships between the values of filterstat and its quantiles.

This means that by dropping the 40% genes with lowest filterstat, we do not loose anything substantial from our
subsequent results.

For comparison, suppose you had chosen a less useful filter statistic, say, the gene identifiers interpreted as a
decimal number. The analogous scatterplot to that of Figure 1 is shown in Figure 2.

> badfilter = as.numeric(gsub("[+]*FBgn", "", rownames(res)))

> plot(rank(badfilter)/length(badfilter), -log10(res$pvalue), pch=16, cex=0.45)

Figure 2: Scatterplot analogous to Figure 1, but with badfilter.

4 How to choose the filter statistic and the cuto↵?

The filtered_p function in the genefilter package calculates adjusted p-values over a range of possible filtering
thresholds. Here, we call this function on our results from above and compute adjusted p-values using the method of
Benjamini and Hochberg (BH) for a range of di↵erent filter cuto↵s.

> library("genefilter")

> theta = seq(from=0, to=0.5, by=0.1)

> pBH = filtered_p(filter=res$filterstat, test=res$pvalue, theta=theta, method="BH")

> head(pBH)
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Conclusion
Independent filtering can substantially increase your power at same 

type I error.
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