Intermediate R / Bioconductor for Sequence Analysis

Marc Carlson, Valerie Obenchain, Hervé Pages, Paul Shannon, Dan Tenenbaum, Martin
Morgan?

14-15 February 2013

!mtmorgan@fhcre.org

mailto:mtmorgan@fhcrc.org

Contents

1 Introduction 4
I R / Bioconductor 5
2 R 6
2.1 Statistical analysis and comprehensiono oL Lo 6
2.2 Basics of R e e e e e e e 6
2.2.1 Essential data types L 7

222 S3(and S4) classes 10

2.2.3 Functions o . 10

2.3 Inandout of trouble e 15
2.3.1 Warnings, errors, and debugging oL o Lo 15

2.3.2 Efficient Rcode. e 17

2.4 Packages e e e 21
2.5 Helpl . . o o 23

3 Bioconductor 25
3.1 High-throughput sequence analysis 26
3.2 Statistical programming oL oL e 26
3.3 Bioconductor packages for high-throughput sequence analysis 28
3.4 5S4 Classes and methods L 28
3.5 Help!l . o o o e 31

4 Sequencing 32
4.1 Technologies o e e 32

4.2 Data . . . o e e 33
4.2.1 A running example: the pasilla dataset 0 oL 33

4.2.2 Work flows L e 33

5 Strings and Reads 36
5.1 DNA (and other) Strings with the Biostrings package 36
5.2 Reads and the ShortRead package i 39

6 Ranges and Alignments 44
6.1 Ranges and the GenomicRanges package oo 44
6.2 Alignments and the Rsamtools Package 50

http://bioconductor.org/packages/devel/bioc/html/Biostrings.html
http://bioconductor.org/packages/devel/bioc/html/ShortRead.html
http://bioconductor.org/packages/devel/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/devel/bioc/html/Rsamtools.html

II Differential Representation

7 RNA-seq Work Flows

7.1 Varieties of RNA-seq o o o e
7.2 Work flows and upstream analysis
7.2.1 Experimental design L e e
7.2.2 Wet-lab protocols, sequencing, and alignment
7.3 Statistical analysis oL

7.3.1 Summarizing .
7.3.2 Normalization .

7.3.3 Errormodel e
7.3.4 Multiple comparison Lo
7.3.5 Bioconductor software L

8 DESeq Work Flow Exercises

8.1 Data input and preparationo
8.2 Imference. e
8.3 Independent filtering L
8.4 Data quality assessment e

8.4.1 Preliminary transformation L o o

8.4.2 Quality assessment oL L e
8.5 Frequently asked questionso L

ITIT Variant Calls

9 Variant Work Flows

9.1 Variants e e e e e e
9.1.1 Varieties of variant-related work flows o o0 000
9.1.2 Work flows e
9.1.3 Bioconductor software oL Lo e

9.2 VariantTools e e
9.2.1 Example data: lung cancer cell lines oo L.
9.2.2 Calling single-sample variants L Lo
9.2.3 Additional work flows

10 Working with Called Variants

10.1 Variant call format (VCF) files with VariantAnnotation
10.1.1 Datainput o e e e e e

10.2 SNP Annotation e

10.3 Large-scale filtering L

IV Annotation and Visualization

11 Gene-centric Annotation

11.1 Gene-centric annotations with AnnotationDbio
11.2 biomaRt and other web-based resources

11.2.1 Using biomaRt

55

56
56
56
57
57
58
58
59
59
59
60

61
61
61
62
62
62
62
62

63

64
64
64
64
64
65
65
66
66

67
67
67
69
74

http://bioconductor.org/packages/devel/bioc/html/DESeq.html
http://bioconductor.org/packages/devel/bioc/html/VariantTools.html
http://bioconductor.org/packages/devel/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/devel/bioc/html/AnnotationDbi.html
http://bioconductor.org/packages/devel/bioc/html/biomaRt.html

12 Genomic Annotation

12.1 Whole genome sequences
12.2 Gene models

12.2.1 TxDDb.* packages for model organisms

12.3 UCSC tracks

12.3.1 Easily creating TranscriptDb objects from GTF files

13 Visualizing Sequence Data

131 Gvizo
13.2 ggbio.

13.3 shiny for easy interactive reports

References

V Appendix
A DESeq vignette

B VariantTools vignette

83
83
83
83
85
85

90
90
91
91

93

95
96

97

http://bioconductor.org/packages/devel/bioc/html/Gviz.html
http://bioconductor.org/packages/devel/bioc/html/ggbio.html
http://bioconductor.org/packages/devel/bioc/html/DESeq.html
http://bioconductor.org/packages/devel/bioc/html/VariantTools.html

Chapter 1

Introduction

Intermediate R / Bioconductor for High-Throughput Sequence Analysis introduces users with some R ex-
perience to common Bioconductor work flows for sequence analysis. The course involves a combination of
presentations and hands-on exercises. Our starting point is BAM files created by aligning short reads to
a reference genome. Topics include: exploratory analysis (GenomicRanges, Rsamtools); assessing differ-
ential expression of known genes (DESeq); detection, calling, and manipulation of variants (VariantTools,
VariantAnnotation). We learn how to integrate results with curated gene and genomic annotations (Ge-
nomicFeatures), and to visualize results (G Viz, ggbio).

The course will use the ‘devel’ version of Bioconductor. Course participants will have access to a config-
ured Amazon machine instance, with easy access through a web browser and Rstudio; the only requirement
is that users have wireless internet capabilities and have installed a modern web browser installed'. Partici-
pants wanting to use a version of Bioconductor on their own laptop should come with the ‘devel’ (to be R
3.0.0) version of R installed, and should have followed the package installation instructions available from the
course web page? shortly before (e.g., Wednesday morning) the start of the course. Software installation will
require high-speed internet access; relevant software can be installed for take-home use during the course.

There are many books to help with using R, but not yet a book-length treatment of R / Bioconductor
tools for sequence analysis. Starting points for bioinformatic analysis in R, still relevant for statistical
and informatic concepts though not directly addressing sequence analysis, are Hahne’s Bioconductor Case
Studies [8] and Gentleman’s R Programming for Bioinformatics [7]. For R novices, one place to start
is Pardis’ R for Beginners®. General R programming recommendations include Dalgaard’s Introductory
Statistics with R [6], Matloft’s The Art of R Programming [14], and Meys and de Vies’ R For Dummies [15];
an interesting internet resource for intermediate R programming is Burns’ The R Inferno®.

ISee requirements athttp://www.rstudio.com/ide/docs/advanced/optimizing_browser
?http://bioconductor.org/help/course-materials/2013/SeattleFeb2013/
3http://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf
4http://wuw.burns-stat.com/documents/books/the-r-inferno/

Table 1.1: Tentative schedule.

Day 1
Morning Part I: Up to speed with R scripts and Bioconductor packages.
Afternoon Part II: Differential expression.
Day 2
Morning Part III: Variants.
Afternoon Part IV: Annotation and Visualization.

http://bioconductor.org/packages/devel/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/devel/bioc/html/Rsamtools.html
http://bioconductor.org/packages/devel/bioc/html/DESeq.html
http://bioconductor.org/packages/devel/bioc/html/VariantTools.html
http://bioconductor.org/packages/devel/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/devel/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/devel/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/devel/bioc/html/GViz.html
http://bioconductor.org/packages/devel/bioc/html/ggbio.html
http://www.rstudio.com/ide/docs/advanced/optimizing_browser
http://bioconductor.org/help/course-materials/2013/SeattleFeb2013/
http://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf
http://www.burns-stat.com/documents/books/the-r-inferno/

Part 1

R / Bioconductor

Chapter 2

R

2.1 Statistical analysis and comprehension

R is an open-source statistical programming language. It is used to manipulate data, to perform statistical
analysis, and to present graphical and other results. R consists of a core language, additional ‘packages’
distributed with the R language, and a very large number of packages contributed by the broader community.
Packages add specific functionality to an R installation. R has become the primary language of academic
statistical analysis, and is widely used in diverse areas of research, government, and industry.

R has several unique features. It has a surprisingly ‘old school’ interface: users type commands into
a console; scripts in plain text represent work flows; tools other than R are used for editing and other
tasks. R is a flexible programming language, so while one person might use functions provided by R to
accomplish advanced analytic tasks, another might implement their own functions for novel data types. As
a programming language, R adopts syntax and grammar that differ from many other languages: objects
in R are ‘vectors’, and functions are ‘vectorized’ to operate on all elements of the object; R objects have
‘copy on change’ and ‘pass by value’ semantics, reducing unexpected consequences for users at the expense
of less efficient memory use; common paradigms in other languages, such as the ‘for’ loop, are encountered
much less commonly in R. Many authors contribute to R, so there can be a frustrating inconsistency of
documentation and interface. R grew up in the academic community, so authors have not shied away from
trying new approaches. Common statistical analysis functions are very well-developed.

2.2 Basics of R

Opening an R session results in a prompt. The user types instructions at the prompt. Here is an example:

> ## assign values 5, 4, 3, 2, 1 to variable 'x'
>x <-c¢c(5, 4, 3, 2, 1)
> x

[1] 54321

The first line starts with a # to represent a comment; the line is ignored by R. The next line creates a
variable x. The variable is assigned (using <-, we could have used = almost interchangeably) a value. The
value assigned is the result of a call to the ¢ function. That it is a function call is indicated by the symbol
named followed by parentheses, c(). The ¢ function takes zero or more arguments, and returns a vector.
The vector is the value assigned to x. R responds to this line with a new prompt, ready for the next input.
The next line asks R to display the value of the variable x. R responds by printing [1] to indicate that the
subsequent number is the first element of the vector. It then prints the value of x.

Table 2.1: Essential aspects of the R language.
Category Function Description
Vectors integer, numeric Vectors holding a single type of data length 0 or more
complex character
raw factor
List-like list Arbitrary collections of elements
data.frame List of equal-length vectors
environment Pass-by-reference data storage
Array-like matrix Two-dimensional, homogeneous types
data.frame Homogeneous columns; row- and column indexing
array 0 or more dimensions
Statistical NA, factor Essential statistical concepts, integral to the language.
Classes ‘83’ List-like structured data; simple inheritance & dispatch
‘54 Formal classes, multiple inheritance & dispatch
Functions ‘function’ A simple function with arguments, body, and return value
‘generic’ A (S3 or S4) function with associated methods
‘method’ A function implementing a generic for an S3 or S4 class

R has many features to aid common operations. Entering sequences is a very common operation, and
expressions of the form 2:4 create a sequence from 2 to 4. Sub-setting one vector by another is enabled with
[. Here we create an integer sequence from 2 to 4, and use the sequence as an index to select the second,
third, and fourth elements of x

> x[2:4]

[1] 4 32

Index values can be repeated, and if outside the domain of x return the special value NA. Negative index
values remove elements from the vector. Logical and character vectors (described below) can also be used
for sub-setting.

R functions operate on variables. Functions are usually vectorized, acting on all elements of their argu-
ment and obviating the need for explicit iteration. Functions can generate warnings when performing suspect
operations, or errors if evaluation cannot proceed; try log(-1).

> log(x)

[1] 1.6094379 1.3862944 1.0986123 0.6931472 0.0000000

2.2.1 Essential data types

R has a number of built-in data types, summarized in Table 2.1. These represent integer, numeric (floating
point), complex, character, logical (Boolean), and raw (byte) data. It is possible to convert between data
types, and to discover the type or mode of a variable.

>c(1.1, 1.2, 1.3) # numeric

[1] 1.1 1.2 1.3

> c¢(FALSE, TRUE, FALSE) # logical

[1] FALSE TRUE FALSE

> c("foo", "bar", "baz") # character, single or double quote ok

[1] ||fooll llbar" ||bazll
> as.character(x) # convert 'x' to character

[1] |I5ll |I4ll |I3ll |I2ll |I1ll

> typeof (x) # the number 5 is numeric, not integer
[1] "double"
> typeof (2L) # append 'L' to force integer

[1] "integer"
> typeof (2:4) # ':'! produces a sequence of integers
[1] "integer"

R includes data types particularly useful for statistical analysis, including factor to represent categories
and NA (used in any vector) to represent missing values.

> sex <- factor(c("Male", "Female", NA), levels=c("Female", "Male"))
> sex

[1] Male Female <NA>
Levels: Female Male

Lists, data frames, and matrices All of the vectors mentioned so far are homogeneous, consisting of a
single type of element. A 1list can contain a collection of different types of elements and, like all vectors,
these elements can be named to create a key-value association.

> 1st <- list(a=1:3, b=c("foo", "bar"), c=sex)
> 1st

$a
[11 1 2 3

$b
[1] "foo" "bar"

$c
[1] Male Female <NA>
Levels: Female Male

Lists can be subset like other vectors to get another list, or subset with [[to retrieve the actual list element;
as with other vectors, sub-setting can use names

> 1st[c(3, 1)] # another list

$c
[1] Male Female <NA>
Levels: Female Male

$a
[1] 1 2 3

> 1st[["a"]] # the element itself, selected by name
[1] 1 2 3

A data.frame is a list of equal-length vectors, representing a rectangular data structure not unlike a
spread sheet. Each column of the data frame is a vector, so data types must be homogeneous within a
column. A data.frame can be subset by row or column, and columns can be accessed with $ or [[.

> df <- data.frame(age=c(27L, 32L, 19L),
+ sex=factor(c("Male", "Female", "Male")))
> df

age sex
27 Male
32 Female
19 Male

[OVIN I

v

df[c(1, 3),]

age sex
27 Male
19 Male

w =

v

df [df$age > 20,]

age sex
1 27 Male
2 32 Female

A matrix is also a rectangular data structure, but subject to the constraint that all elements are the
same type. A matrix is created by taking a vector, and specifying the number of rows or columns the vector
is to represent. On sub-setting, R coerces a single column data.frame or single row or column matrix to a
vector if possible; use drop=FALSE to stop this behavior.

> m <- matrix(1:12, nrow=3)
>m

[,11 [,2]1 [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

>mlc(l, 3), c(2, 4)]

[,1] [,2]
[1,] 4 10
[2,] 6 12

>m[, 3]
[11] 7 8 9

> m[, 3, drop=FALSE]

[,1]
[1,] 7
[2,] 8
(3,1 9

An array is a data structure for representing homogeneous, rectangular data in higher dimensions.

2.2.2 S3 (and S4) classes

More complicated data structures are represented using the ‘S3’ or ‘S4’ object system. Objects are often
created by functions (for example, 1m, below), with parts of the object extracted or assigned using accessor
functions. The following generates 1000 random normal deviates as x, and uses these to create another 1000
deviates y that are linearly related to x but with some error. We fit a linear regression using a ‘formula’ to
describe the relationship between variables, summarize the results in a familiar ANOVA table, and access
fit (an S3 object) for the residuals of the regression, using these as input first to the var (variance) and
then sqrt (square-root) functions. Objects can be interrogated for their class.

> x <- rnorm(1000, sd=1)
>y <- x + rnorm(1000, sd=.5)

> fit <= 1m(y ~ x) # formula describes linear regression
> fit # an 'S3' object
Call:

Im(formula = y ~ x)

Coefficients:
(Intercept) X
0.02226 1.00869

> anova(fit)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)
X 1 1146.99 1146.99 4651.4 < 2.2e-16 ***
Residuals 998 246.09 0.25

Signif. codes: O 'xxx' 0.001 '#x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

> sqrt(var(resid(fit))) # residuals accessor and subsequent transforms
[1] 0.4963278

> class(fit)

(1] "1m"

Many Bioconductor packages implement S4 objects to represent data. S3 and S4 systems are quite differ-
ent from a programmer’s perspective, but fairly similar from a user’s perspective: both systems encapsulate
complicated data structures, and allow for methods specialized to different data types; accessors are used to
extract information from the objects.

2.2.3 Functions

R has a very large number of functions; Table 2.2 provides a brief list of those that might be commonly used
and particularly useful. See the help pages (e.g., ?1m) and examples (example(match)) for more details on
each of these functions.

R functions accept arguments, and return values. Arguments can be required or optional. Some functions
may take variable numbers of arguments, e.g., the columns in a data.frame

10

Table 2.2: A selection of R function.

dir, read.table (and friends), scan List files in a directory, read spreadsheet-like
data into R, efficiently read homogeneous data (e.g., a file of numeric values)
to be represented as a matrix.

c, factor, data.frame, matrix Create a vector, factor, data frame or matrix.

summary, table, xtabs Summarize, create a table of the number of times elements occur
in a vector, cross-tabulate two or more variables.

t.test, aov, lm, anova, chisq.test Basic comparison of two (t.test) groups, or several
groups via analysis of variance / linear models (aov output is probably more
familiar to biologists), or compare simpler with more complicated models (anova);
X2 tests.

dist, hclust Cluster data.

plot Plot data.

1s, str, library, search List objects in the current (or specified) workspace, or peak
at the structure of an object; add a library to or describe the search path of
attached packages.

lapply, sapply, mapply, aggregate Apply a function to each element of a list (lapply,
sapply), to elements of several lists (mapply), or to elements of a list partitioned
by one or more factors (aggregate).

with Conveniently access columns of a data frame or other element without having to
repeat the name of the data frame.

match, %in% Report the index or existence of elements from one vector that match
another.

split, cut, unlist Split one vector by an equal length factor, cut a single vector into
intervals encoded as levels of a factor, unlist (concatenate) list elements.

strsplit, grep, sub Operate on character vectors, splitting it into distinct fields,
searching for the occurrence of a patterns using regular expressions (see Tregex,
or substituting a string for a regular expression.

install.packages Install a package from an on-line repository into your R.

traceback, debug, browser Report the sequence of functions under evaluation at the
time of the error; enter a debugger when a particular function or statement is
invoked.

11

>y <= 5:1
> log(y)

[1] 1.6094379 1.3862944 1.0986123 0.6931472 0.0000000
> args(log) # arguments 'x' and 'base'; see 7log

function (x, base = exp(1))
NULL

> log(y, base=2) # 'base' is optional, with default value

[1] 2.321928 2.000000 1.584963 1.000000 0.000000

> try(log()) # 'x' required; 'try' continues even on error

> args(data.frame) # ... represents variable number of arguments

function (..., row.names = NULL, check.rows = FALSE, check.names = TRUE,
stringsAsFactors = default.stringsAsFactors())

NULL

Arguments can be matched by name or position. If an argument appears after ..., it must be named.

> log(base=2, y) # match argument 'base' by name, 'x' by position
[1] 2.321928 2.000000 1.584963 1.000000 0.000000

A function such as anova is a generic that provides an overall signature but dispatches the actual work
to the method corresponding to the class(es) of the arguments used to invoke the generic. A generic may
have fewer arguments than a method, as with the S3 function anova and its method anova.glm.

> args(anova)

function (object, ...)
NULL

> args(anova.glm)

function (object, ..., dispersion = NULL, test = NULL)
NULL
The ... argument in the anova generic means that additional arguments are possible; the anova generic

hands these arguments to the method it dispatches to.

Exercise 1
This exercise uses data describing 128 microarray samples as a basis for exploring R functions. Covariates
such as age, sex, type, stage of the disease, etc., are in a data file pData.csv.

The following command creates a variable pdataFiles that is the location of a comma-separated value
(‘csv’) file to be used in the exercise. A csv file can be created using, e.g., ‘Save as...” in spreadsheet software.

> pdataFile <- system.file(package="SequenceAnalysisData", "extdata",
+ "pData.csv")

12

Input the csv file using read.table, assigning the input to a variable pdata. Use dim to find out the
dimensions (number of rows, number of columns) in the object. Are there 128 rows? Use names or colnames
to list the names of the columns of pdata. Use summary to summarize each column of the data. What are the
data types of each column in the data frame?

A data frame is a list of equal length vectors. Select the ‘sex’ column of the data frame using [[or $.
Pause to explain to your neighbor why this sub-setting works. Since a data frame is a list, use sapply to ask
about the class of each column in the data frame. Explain to your neighbor what this produces, and why.

Use table to summarize the number of males and females in the sample. Consult the help page ?table
to figure out additional arguments required to include NA values in the tabulation.

The mol.biol column summarizes molecular biological attributes of each sample. Use table to summarize
the different molecular biology levels in the sample. Use %in} to create a logical vector of the samples that
are either BCR/ABL or NEG. Subset the original phenotypic data to contain those samples that are BCR/ABL or
NEG.

After sub-setting, what are the levels of the mol.biol column? Set the levels to be BCR/ABL and NEG, i.e.,
the levels in the subset.

One would like covariates to be similar across groups of interest. Use t.test to assess whether BCR/ABL
and NEG have individuals with similar age. To do this, use a formula that describes the response age in terms
of the predictor mol.biol. If age is not independent of molecular biology, what complications might this
introduce into subsequent analysis? Use

Solution: Here we input the data and explore basic properties.

> pdata <- read.table(pdataFile)
> dim(pdata)

[1] 128 21

> names (pdata)

[1] "cod" "diagnosis" "sex" "age"
[5] "BT" "remission" "CR" "date.cr"
[9] "t.4.11." "t.9.22." "cyto.normal" "citog"
[13] "mol.biol" "fusion.protein" "mdr" "kinet"
[17] "ccr" "relapse" "transplant" "f.ou"
[21] "date.last.seen"
> summary (pdata)
cod diagnosis sex age BT
100056 : 1 11/15/1997: 2 F :42 Min. : 5.00 B2 136
1003 1 1/15/1997 : 2 M :83 1st Qu.:19.00 B3 123
remission CR date.cr t.4.11.
CR :99 CR 196 11/11/1997: 3 Mode :logical
REF :15 DEATH IN CR ¢ 3 10/18/1999: 2 FALSE:86
t.9.22. cyto.normal citog mol.biol
Mode :logical Mode :logical normal 124 ALL1/AF4:10
FALSE:67 FALSE:69 simple alt. :16 BCR/ABL :37
fusion.protein mdr kinet ccr relapse
p190 117 NEG :101 dyploid:94 Mode :logical Mode :logical
p190/p210: 8 POS : 24 hyperd.:27 FALSE:74 FALSE:35
transplant f.u date.last.seen
Mode :logical REL 161 12/15/1997: 2
FALSE:91 CCR 123 12/31/2002: 2
[reached getOption("max.print") -- omitted 5 rows]

13

A data frame can be subset as if it were a matrix, or a list of column vectors.
> head(pdatal, "sex"], 3)

[1] MMF
Levels: F M

> head(pdata$sex, 3)

[1] MM F
Levels: F M

> head(pdatal[["sex"]], 3)

[11 MMF
Levels: F M

> sapply(pdata, class)

cod diagnosis sex age BT
"factor" "factor" "factor" "integer" "factor"
remission CR date.cr t.4.11. t.9.22.
"factor" "factor" "factor" "logical" "logical"
cyto.normal citog mol.biol fusion.protein mdr
"logical" "factor" "factor" "factor" "factor"
kinet ccr relapse transplant f.u
"factor" "logical" "logical" "logical" "factor"

date.last.seen
"factor"

The number of males and females, including NA, is
> table(pdata$sex, useNA="ifany")

F M <NA>
42 83 3

An alternative version of this uses the with function: with(pdata, table(sex, useNA="ifany")).
The mol.biol column contains the following samples:

> with(pdata, table(mol.biol, useNA="ifany"))

mol.biol
ALL1/AF4 BCR/ABL E2A/PBX1 NEG NUP-98 p15/p16
10 37 5 74 1 1

A logical vector indicating that the corresponding row is either BCR/ABL or NEG is constructed as
> ridx <- pdata$mol.biol 7inj, c("BCR/ABL", "NEG")

We can get a sense of the number of rows selected via table or sum (discuss with your neighbor what sum
does, and why the answer is the same as the number of TRUE values in the result of the table function).

> table(ridx)

ridx
FALSE TRUE
17 111

14

> sum(ridx)
[1] 111

The original data frame can be subset to contain only BCR/ABL or NEG samples using the logical vector
ridx that we created.

> pdatal <- pdatalridx,]

The levels of each factor reflect the levels in the original object, rather than the levels in the subset object,
e.g.,

> levels(pdatal$mol.biol)

[1] "ALL1/AF4" "BCR/ABL" "E2A/PBX1" "NEG" "NUP-98" "p15/pl6"

These can be re-coded by updating the new data frame to contain a factor with the desired levels.

> pdatal$mol.biol <- factor(pdatal$mol.biol)
> table(pdatal$mol.biol)

BCR/ABL NEG
37 74

To ask whether age differs between molecular biology types, we use a formula age ~ mol.biol to describe

the relationship (‘age as a function of molecular biology’) that we wish to test

> with(pdatal, t.test(age ~ mol.biol))

Welch Two Sample t-test

data: age by mol.biol
t = 4.8172, df = 68.529, p-value = 8.401e-06
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
7.13507 17.22408
sample estimates:
mean in group BCR/ABL mean in group NEG
40.25000 28.07042

This summary can be visualize with, e.g., the boxplot function

> ## not evaluated
> boxplot(age ~ mol.biol, pdatal)

Molecular biology seem to be strongly associated with age; individuals in the NEG group are considerably
younger than those in the BCR/ABL group. We might wish to include age as a covariate in any subsequent
analysis seeking to relate molecular biology to gene expression.

2.3 In and out of trouble

2.3.1 Warnings, errors, and debugging

R signals unexpected results through warnings and errors. Warnings occur when the calculation produces
an unusual result that nonetheless does not preclude further evaluation. For instance log(-1) results in a
value NaN (‘not a number’) that allows computation to continue, but at the same time signals an warning

15

Table 2.3: Tools for debugging and error-handling.

Function Description
traceback Report the ‘call stack’ at the time of an error.
options(error=) Set a handler to be executed on error, e.g., error=recover.
debug, trace Enter the browser when a function is called
browser Interactive debugging
tryCatch Handle an error condition in a script.
system.time Time required to evaluate an expression
Rprof Time spent in each function; also summaryRprof
tracemem Indicate when memory copies occur (R must be configured to support this)
> log(-1)
[1] NaN

Warning message:
In log(-1) : NaNs produced

Errors result when the inputs or outputs of a function are such that no further action can be taken, e.g.,
trying to take the square root of a character vector

> sqrt("two")
Error in sqrt("two") : Non-numeric argument to mathematical function

Warnings and errors occurring at the command prompt are usually easy to diagnose. They can be more
enigmatic when occurring in a function, and exacerbated by sometimes cryptic (when read out of context)
error messages. Some key tools for figuring out (‘debugging’) errors are summarized in Table 2.3.

An initial step in coming to terms with errors is to simplify the problem as much as possible, aiming
for a ‘reproducible’ error. The reproducible error might involve a very small (even trivial) data set that
immediately provokes the error. Often the process of creating a reproducible example helps to clarify what
the error is, and what possible solutions might be.

Invoking traceback() immediately after an error occurs provides a ‘stack’ of the function calls that
were in effect when the error occurred. This can help understand the context in which the error occurred.
Knowing the context, one might use debug (or its more elaborate cousin, trace) to enter into a browser (see
?browser) that allows one to step through the function in which the error occurred.

It can sometimes be useful to use global options (see 7options) to influence what happens when an error
occurs. Two common global options are error and warn. Setting error=recover combines the functionality
of traceback and debug, allowing the user to enter the browser at any level of the call stack in effect at the
time the error occurred. Default error behavior can be restored with options(error=NULL). Setting warn=2
causes warnings to be promoted to errors. For instance, initial investigation of an error might show that
the error occurs when one of the arguments to a function has value NaN. The error might be accompanied
by a warning message that the NaN has been introduced, but because warnings are by default not reported
immediately it is not clear where the NaN comes from. warn=2 means that the warning is treated as an error,
and hence can be debugged using traceback, debug, and so on.

It is possible to continue evaluation even after an error occurs. The simplest mechanism uses the try
function, but an only slightly more complicated version providing greater flexibility it tryCatch. tryCatch
allows one to write a handler (the error argument to tryCatch, below) to address common faults in a way
that allows a script to continue executing. Suppose a function f fails under certain conditions

> f <- function(i) {

+ if (i < 0)
+ stop("i is negative")
+ rnorm (i)

16

Table 2.4: Common ways to improve efficiency of R code.

Easy Moderate
1. Selective input 1. Know relevant packages
2. Vectorize 2. Understand algorithm complexity
3. Pre-allocate and fill 3. Use parallel evaluation
4. Avoid expensive conveniences 4. Exploit libraries and C++ code

+ }
> lapply(0:1, f)

[[1]1]

numeric(0)

[[2]1]
[1] -0.416157

but we wish to continue, e.g., replacing failed conditions with NA:

> lapply(-1:1, function(i) {

+ tryCatch ({

+ (i)

+ }, error=function(err) {
+ ## return 'NA' when error occurs, instead of stopping
+ NA_real_

+ »

+ 1

[[1]1]

[1] NA

(211

numeric(0)

[[311]

[1] 0.8123937

2.3.2 Efficient R code

There are often many ways to accomplish a result in R, but these different ways often have very different speed
or memory requirements. For small data sets these performance differences are not that important, but for
large data sets (e.g., high-throughput sequencing; genome-wide association studies, GWAS) or complicated
calculations (e.g., bootstrapping) performance can be important. Several approaches to achieving efficient
R programming are summarized in Table 2.4.

Easy solutions Several common performance bottlenecks often have easy solutions; these are outlined
here.

Text files often contain more information, for example 1000’s of individuals at millions of SNPs, when
only a subset of the data is required, e.g., during algorithm development. Reading in all the data can be
demanding in terms of both memory and time. A solution is to use arguments such as colClasses to specify

17

the columns and their data types that are required, and to use nrow to limit the number of rows input. For
example, the following ignores the first and fourth column, reading in only the second and third (as type
integer and numeric).

> ## not evaluated

> colClasses <-

+ c("NULL", "integer", "numeric", "NULL")

> df <- read.table("myfile", colClasses=colClasses)

R is vectorized, so traditional programming for loops are often not necessary. Rather than calculating
100000 random numbers one at a time, or squaring each element of a vector, or iterating over rows and
columns in a matrix to calculate row sums, invoke the single function that performs each of these operations.

> x <- runif(100000); x2 <- x°2
> m <- matrix(x2, nrow=1000); y <- rowSums (m)

This often requires a change of thinking, turning the sequence of operations ‘inside-out’. For instance,
calculate the log of the square of each element of a vector by calculating the square of all elements, followed
by the log of all elements x2 <- x"2; x3 <- log(x2), or simply logx2 <- log(x"~2).

It may sometimes be natural to formulate a problem as a for loop, or the formulation of the problem
may require that a for loop be used. In these circumstances the appropriate strategy is to pre-allocate the
result object, and to fill the result in during loop iteration.

> ## not evaluated

> result <- numeric(nrow(df))

> for (i in seq_len(nrow(df)))

+ result[[i]] <- some_calc(df[i,])

Some R operations are helpful in general, but misleading or inefficient in particular circumstances. An
example is the behavior of unlist when the list is named — R creates new names that have been made
unique. This can be confusing (e.g., when Entrez gene identifiers are ‘mangled’ to unintentionally look like
other identifiers) and expensive (when a large number of new names need to be created). Avoid creating
unnecessary names, e.g.,

> unlist(list(a=1:2)) # name 'a' becomes 'al', 'a2'

al a2
1 2

> unlist(list(a=1:2), use.names=FALSE) # no names
[1] 1 2

Names can be very useful for avoiding book-keeping errors, but are inefficient for repeated look-ups; use
vectorized access or numeric indexing.

Moderate solutions Several solutions to inefficient code require greater knowledge to implement.

Using appropriate functions can greatly influence performance; it takes experience to know when an
appropriate function exists. For instance, the 1m function could be used to assess differential expression of
each gene on a microarray, but the limma package implements this operation in a way that takes advantage
of the experimental design that is common to each probe on the microarray, and does so in a very efficient
manner.

> ## not evaluated
> library(limma) # microarray linear models
> fit <- 1lmFit(eSet, design)

18

Using appropriate algorithms can have significant performance benefits, especially as data becomes larger.
This solution requires moderate skills, because one has to be able to think about the complexity (e.g.,
expected number of operations) of an algorithm, and to identify algorithms that accomplish the same goal
in fewer steps. For example, a naive way of identifying which of 100 numbers are in a set of size 10 might
look at all 100 x 10 combinations of numbers (i.e., polynomial time), but a faster way is to create a ‘hash’
table of one of the set of elements and probe that for each of the other elements (i.e., linear time). The latter
strategy is illustrated with

> x <= 1:100; s <- sample(x, 10)
> inS <- x jinj) s

Parallel evaluation on several cores of a single Linux or MacOS computer is particularly easy to achieve
when the code is already vectorized. The solution on these operating systems is to use the parallel package
(part of the base R distribution) with functions mclapply or pvec. These functions allow the ‘master’ process
to ‘fork’ processes for parallel evaluation on each of the cores of a single machine. The forked processes
initially share memory with the master process, and only make copies when the forked process makes a copy
(‘copy on change’ semantics). The parallel package does not support fork-like behavior on windows, where
users need to more explicitly create a cluster of R workers and arrange for each to have the same data loaded
into memory; similarly, parallel evaluation across computers (e.g., in a cluster) require more elaborate efforts
to coordinate workers; this is typically done using lapply-like functions provided by the parallel package but
specialized for simple (‘snow’) or more robust (‘MPI’) communication protocols between workers. On Linux
and MacOS, the mclapply function is meant to be a ‘drop-in’ replacement for lapply, but with iterations
being evaluated on different cores. The following illustrates their use, for a toy vectorized function f:

> library(parallel)

> f <- function(i) {

+ cat("'f' called, length(i) = ", length(i), "\n")
+ sqrt (i)

+ }

> res0 <- mclapply(1:5, f, mc.cores=2)

'f' called, length(i) =
'f' called, length(i)
'f' called, length(i) =
'f' called, length(i)
'f' called, length(i)

|
N e

> resl <- pvec(1:5, f, mc.cores=2)

'f' called, length(i) = 3
'f' called, length(i) 2

> identical (unlist(res0), resl)
[1] TRUE

pvec takes a vectorized function and distributes computation of different chunks of the vector across cores.
Both functions allow the user to specify the number of cores used, and how the data are divided into chunks.
It is not uncommon for execution time to scale approximately inversely with the number of available cores.
There are several areas that require attention. The total amount of memory available on a single computer is
fixed, so one usually wants to iterate through large data in chunks. Random numbers need to be synchronized
across cores to avoid generating the same sequences on each ‘independent’ computation. Moving data to and
especially from cores to the manager can be expensive, so strategies that minimize explicit movement (e.g.,
passing file names data base queries rather than R objects read from files; reducing data on the worker before

19

transmitting results to the manager) can be important. Relevant resources include the parallel vignette [19]
and a now-dated review [24].

R is an interpreted language, and for very challenging computational problems it may be appropriate to
write critical stages of an analysis in a compiled language like C or Fortran, or to use an existing programming
library (e.g., the BOOST library) that efficiently implements advanced algorithms. R has a well-developed
interface to C or Fortran, so it is ‘easy’ to do this; the Rcpp package provides a very nice approach for those
with a little familiarity with C+4 concepts. This places a significant burden on the person implementing
the solution, requiring knowledge of two or more computer languages and of the interface between them.

Measuring performance When trying to improve performance, one wants to ensure (a) that the new
code is actually faster than the previous code, and (b) both solutions arrive at the same, correct, answer.

The system.time function is a straight-forward way to measure the length of time a portion of code takes
to evaluate.

> m <- matrix(runif (200000), 20000)
> system.time(apply(m, 1, sum))

user system elapsed
0.264 0.016 0.281

When comparing performance of different functions, it is appropriate to replicate timings to average over
vagaries of system use, and to shuffle the order in which timings of alternative algorithms are calculated to
avoid artifacts such as initial memory allocation. Rather than creating ad hoc approaches to timing, it is
convenient to use packages such as rbenchmark:

library(rbenchmark)

f0 <- function(x) apply(x, 1, sum)

f1 <- function(x) rowSums (x)

benchmark (fO(m), £1(m),
columns=c("test", "elapsed", "relative"),
replications=5)

+ + v Vv VvV

test elapsed relative
1 £0(m) 1.423 203.286
2 £1(m) 0.007 1.000

Speed is an important metric, but equivalent results are also needed. The functions identical and
all.equal provide different levels of assessing equivalence, with all.equal providing ability to ignore some
differences, e.g., in the names of vector elements.

> resl <- apply(m, 1, sum)

> res2 <- rowSums(m)

> identical(resl, res2)

[1] TRUE

> identical(c(1, -1), c(x=1, y=-1))
[1] FALSE

> all.equal(c(1, -1), c(x=1, y=-1),
+ check.attributes=FALSE)

[1] TRUE

20

http://www.boost.org/

Table 2.5: Selected base and contributed packages.

Package Description

base Data input and manipulation; scripting and programming.
stats Essential statistical and plotting functions.

lattice, ggplot2 Approaches to advanced graphics.

methods ‘'S4’ classes and methods.

parallel Facilities for parallel evaluation.

Two additional functions for assessing performance are Rprof and tracemem; these are mentioned only
briefly here. The Rprof function profiles R code, presenting a summary of the time spent in each part of
several lines of R code. It is useful for gaining insight into the location of performance bottlenecks when these
are not readily apparent from direct inspection. Memory management, especially copying large objects, can
frequently contribute to poor performance. The tracemem function allows one to gain insight into how R
manages memory; insights from this kind of analysis can sometimes be useful in restructuring code into a
more efficient sequence.

2.4 Packages

Packages provide functionality beyond that available in base R. There are over 4000 packages in CRAN
(comprehensive R archive network) and more than 600 Bioconductor packages. Packages are contributed
by diverse members of the community; they vary in quality (many are excellent) and sometimes contain
idiosyncratic aspects to their implementation. Table 2.5 outlines key base packages and selected contributed
packages; see a local CRAN mirror (including the task views summarizing packages in different domains)
and Bioconductor for additional contributed packages.

The lattice package illustrates the value packages add to base R. lattice is distributed with R but not
loaded by default. It provides a very expressive way to visualize data. The following example plots yield
for a number of barley varieties, conditioned on site and grouped by year. Figure 2.1 is read from the lower
left corner. Note the common scales, efficient use of space, and not-too-pleasing default color palette. The
Morris sample appears to be mis-labeled for ‘year’, an apparent error in the original data. Find out about
the built-in data set used in this example with ?barley.

> library(lattice)
> plt <- dotplot(variety ~ yield | site, data = barley, groups = year,
+ xlab = "Barley Yield (bushels/acre)" , ylab=NULL,

+ key = simpleKey(levels(barley$year), space = "top",
+ columns=2),

+ aspect=0.5, layout = c(2,3))

> print(plt)

New packages can be added to an R installation using install.packages. A package is installed only
once per R installation, but needs to be loaded (with 1ibrary) in each session in which it is used. Loading a
package also loads any package that it depends on. Packages loaded in the current session are displayed with
search. The ordering of packages returned by search represents the order in which the global environment
(where commands entered at the prompt are evaluated) and attached packages are searched for symbols; it
is possible for a package earlier in the search path to mask symbols later in the search path; these can be
disambiguated using : :.

> length(search())

[1] 22

21

http://cran.fhcrc.org
http://cran.fhcrc.org/web/views/
http://bioconductor.org

1932 1931 -

20 30 40 50 60

1 Il 1 1 1 1

1 1
Crookston Waseca
. _Trebi ° o > >
Wisconsin No. 38 o ° ®
No. 457 o ° o °
Glabron o ° ° o
Peat ?nd ° o o °
Velvet o o ° °
No, 475 o ° o o
Manchuria o o
. ° ° °
Svansota ° o o
University Farm Morris
. . Trebi ° o oo
Wisconsin No. 38 0 o o
No. 457 o ° ° °
Gla?rog o o o o
Peatl an o o o °
Velvet ° ° ° °
0, 475 o ° °
Manchuria ° °
No. 462 ° °
Svansota - R— o
Grand Rapids Duluth
. . Trebi ° r
Wisconsin No. 38 ° °
No. 4 ° °
Glabron | < ° °
Peatlan: o o ®
Velvet ° o °
0,475 | o o o o
Manchuria ° ° o o
No. 462 o o o o
Svansota [_o . o oo

20 30 40 50 60
Barley Yield (bushels/acre)

Figure 2.1: Variety yield conditional on site and grouped by year, for the barley data set. What’s up with
Morris?

> search()

[1] ".GlobalEnv" "package:lattice"

[3] "package:rbenchmark" "package:SequenceAnalysisData"
[5] "package:edgeR" "package:1limma"

[7] "package:GenomicFeatures" "package:AnnotationDbi"
[9] "package:Biobase" "package:GenomicRanges"
[11] "package:IRanges" "package:BiocGenerics"
[13] "package:parallel" "package:BiocInstaller"
[15] "package:stats" "package:graphics"

[17] "package:grDevices" "package:utils"

[19] "package:datasets" "package:methods"

[21] "Autoloads" "package:base"

> base::1log(1:3)
[1] 0.0000000 0.6931472 1.0986123

Exercise 2

Use the library function to load the IntermediateSequenceAnalysis2013 package. Use the sessionInfo func-
tion to verify that you are using R version 2.15.2 and current packages, similar to those reported here. What
other packages were loaded along with IntermediateSequenceAnalysis20137

Solution:

> library(IntermediateSequenceAnalysis2013)
> sessionInfo()

22

2.5 Help!

Find help using the R help system. Start a web browser with
> help.start()

The ‘Search Engine and Keywords’ link is helpful in day-to-day use.

Manual pages Use manual pages to find detailed descriptions of the arguments and return values of
functions, and the structure and methods of classes. Find help within an R session as

> ?data.frame

> 7lm

> 7anova # a generic function

> ?anova.lm # an S3 method, specialized for 'Im' objects

S3 methods can be queried interactively. For S3,

> methods (anova)

[1] anova.glm anova.glmlist anova.lm anova.loess* anova.MAList
[6] anova.mlm anova.nls*

Non-visible functions are asterisked

> methods (class="glm")

[1] addl.glm* anova.glm confint.glm*
[4] cooks.distance.glm* deviance.glm* dropl.glm*
[7] effects.glm* extractAIC.glm* family.glm*
[10] formula.glm* influence.glm* logLik.glm*
[13] model.frame.glm nobs.glm* predict.glm
[16] print.glm residuals.glm rstandard.glm
[19] rstudent.glm summary.glm vcov. glmk

[22] weights.glm*

Non-visible functions are asterisked

It is often useful to view a method definition, either by typing the method name at the command line or, for
‘non-visible’ methods, using getAnywhere:

> anova.lm
> getAnywhere ("anova.loess")

For instance, the source code of a function is printed if the function is invoked without parentheses. Here we
discover that the function head (which returns the first 6 elements of anything) defined in the utils package,
is an S3 generic (indicated by UseMethod) and has several methods. We use head to look at the first six lines
of the head method specialized for matrix objects.

> utils: :head

function (x, ...)
UseMethod ("head")
<environment: namespace:utils>

> methods (head)

23

[1] head.data.frame* head.defaultx* head.ftablex* head.functionx*
[5] head.matrix head.table*

Non-visible functions are asterisked
> head(head.matrix)

1 function (x, n = 6L, ...)

2 {

3 stopifnot(length(n) == 1L)
4 n <- if (n < OL)

5 max (nrow(x) + n, OL)
6 else min(n, nrow(x))

Vignettes Vignettes, especially in Bioconductor packages, provide an extensive narrative describing overall
package functionality. Use

> vignette(package="IntermediateSequenceAnalysis2013")

to see, in your web browser, vignettes available in the IntermediateSequenceAnalysis2013 package. Vignettes
usually consist of text with embedded R code, a form of literate programming. The vignette can be read as
a PDF document, while the R source code is present as a script file ending with extension .R. The script
file can be sourced or copied into an R session to evaluate exactly the commands used in the vignette. For
Bioconductor packages, vignettes are available on the package ‘landing page’, e.g., for IRanges'

Ihttp://bioconductor.org/packages/devel/bioc/html/IRanges.html

24

http://bioconductor.org/packages/devel/bioc/html/IRanges.html

Chapter 3

Bioconductor

Bioconductor is a collection of R packages for the analysis and comprehension of high-throughput genomic
data. Bioconductor started more than 10 years ago. It gained credibility for its statistically rigorous
approach to microarray pre-processing and analysis of designed experiments, and integrative and reproducible
approaches to bioinformatic tasks. There are now more than 600 Bioconductor packages for expression and
other microarrays, sequence analysis, flow cytometry, imaging, and other domains. The Bioconductor web
site provides installation, package repository, help, and other documentation.

The Bioconductor web site is at bioconductor.org. Features include:

e Introductory work flows.

e A manifest of Bioconductor packages arranged in BiocViews.

e Annotation (data bases of relevant genomic information, e.g., Entrez gene ids in model organisms,
KEGG pathways) and experiment data (containing relatively comprehensive data sets and their anal-
ysis) packages.

e Mailing lists, including searchable archives, as the primary source of help.

e Course and conference information, including extensive reference material.

e General information about the project.

e Package developer resources, including guidelines for creating and submitting new packages.

Exercise 3

Scavenger hunt. Spend five minutes tracking down the following information.

a. From the Bioconductor web site, instructions for installing or updating Bioconductor packages.

Nov 10, 2012 - Dec 10, 2012: & Unique Visitors
Nov 12, 2011 - Dec 12, 2011: & Unique Visitors
b 3,000
w 153 §H \ J \ J \ J

1 R 25755

Figure 3.1: Bioconductor Google analytics, 1-month access, 10 December 2012. Left: access by country.
Right: daily access in 2011 (orange) and 2012 (blue).

25

http://bioconductor.org
http://bioconductor.org
bioconductor.org
http://bioconductor.org/help/workflows/
http://bioconductor.org/packages/release/bioc/
http://bioconductor.org/packages/release/BiocViews.html
http://bioconductor.org/packages/release/data/annotation/
http://bioconductor.org/packages/release/data/experiment/
http://bioconductor.org/help/mailing-list/
http://bioconductor.org/help/course-materials/
http://bioconductor.org/about/
http://bioconductor.org/developers/

b. A list of all packages in the current release of Bioconductor.
c. The URL of the Bioconductor mailing list subscription page.

Solution: Possible solutions from the Bioconductor web site are, e.g., http://bioconductor.org/install/
(installation instructions), http://bioconductor.org/packages/release/bioc/ (current software pack-
ages), http://bioconductor.org/help/mailing-1list/ (mailing lists).

3.1 High-throughput sequence analysis

Recent technological developments introduce high-throughput sequencing approaches. A variety of exper-
imental protocols and analysis work flows address gene expression, regulation, and encoding of genetic
variants. Experimental protocols produce a large number (tens of millions per sample) of short (e.g., 35-150,
single or paired-end) nucleotide sequences. These are aligned to a reference or other genome. Analysis
work flows use the alignments to infer levels of gene expression (RNA-seq), binding of regulatory elements
to genomic locations (ChIP-seq), or prevalence of structural variants (e.g., SNPs, short indels, large-scale
genomic rearrangements). Sample sizes range from minimal replication (e.g,. 2 samples per treatment group)
to thousands of individuals.

3.2 Statistical programming

Many academic and commercial software products are available; why would one use R and Bioconductor?
One answer is to ask about the demands high-throughput genomic data places on effective computational
biology software.

Effective computational biology software High-throughput questions make use of large data sets.
This applies both to the primary data (microarray expression values, sequenced reads, etc.) and also to the
annotations on those data (coordinates of genes and features such as exons or regulatory regions; participation
in biological pathways, etc.). Large data sets place demands on our tools that preclude some standard
approaches, such as spread sheets. Likewise, intricate relationships between data and annotation, and the
diversity of research questions, require flexibility typical of a programming language rather than a narrowly-
enabled graphical user interface.

Analysis of high-throughput data is necessarily statistical. The volume of data requires that it be ap-
propriately summarized before any sort of comprehension is possible. The data are produced by advanced
technologies, and these introduce artifacts (e.g., probe-specific bias in microarrays; sequence or base calling
bias in RNA-seq experiments) that need to be accommodated to avoid incorrect or inefficient inference.
Data sets typically derive from designed experiments, requiring a statistical approach both to account for
the design and to correctly address the large number of observed values (e.g., gene expression or sequence
tag counts) and small number of samples accessible in typical experiments.

Research needs to be reproducible. Reproducibility is both an ideal of the scientific method, and a
pragmatic requirement. The latter comes from the long-term and multi-participant nature of contemporary
science. An analysis will be performed for the initial experiment, revisited again during manuscript prepa-
ration, and revisited during reviews or in determining next steps. Likewise, analysis typically involve a team
of individuals with diverse domains of expertise. Effective collaborations result when it is easy to reproduce,
perhaps with minor modifications, an existing result, and when sophisticated statistical or bioinformatic
analysis can be effectively conveyed to other group members.

Science moves very quickly. This is driven by the novel questions that are the hallmark of discovery, and
by technological innovation and accessibility. Rapidity of scientific development places significant burdens
on software, which must also move quickly. Effective software cannot be too polished, because that requires
that the correct analyses are ‘known’ and that significant resources of time and money have been invested in
developing the software; this implies software that is tracking the trailing edge of innovation. On the other

26

http://bioconductor.org/install/
http://bioconductor.org/packages/release/bioc/
http://bioconductor.org/help/mailing-list/

hand, leading-edge software cannot be too idiosyncratic; it must be usable by a wider audience than the
creator of the software, and fit in with other software relevant to the analysis.

Effective software must be accessible. Affordability is one aspect of accessibility. Another is transparent
implementation, where the novel software is sufficiently documented and source code accessible enough for
the assumptions, approaches, practical implementation decisions, and inevitable coding errors to be assessed
by other skilled practitioners. A final aspect of affordability is that the software is actually usable. This is
achieved through adequate documentation, support forums, and training opportunities.

Bioconductor as effective computational biology software What features of R and Bioconductor
contribute to its effectiveness as a software tool?

Bioconductor is well suited to handle extensive data and annotation. Bioconductor ‘classes’ represent
high-throughput data and their annotation in an integrated way. Bioconductor methods use advanced
programming techniques or R resources (such as transparent data base or network access) to minimize
memory requirements and integrate with diverse resources. Classes and methods coordinate complicated data
sets with extensive annotation. Nonetheless, the basic model for object manipulation in R involves vectorized
in-memory representations. For this reason, particular programming paradigms (e.g., block processing of data
streams; explicit parallelism) or hardware resources (e.g., large-memory computers) are sometimes required
when dealing with extensive data.

R is ideally suited to addressing the statistical challenges of high-throughput data. Three examples
include the development of the ‘RMA’ and other normalization algorithm for microarray pre-processing,
use of moderated t-statistics for assessing microarray differential expression, and development of negative
binomial approaches to estimating dispersion read counts necessary for appropriate analysis of RNAseq
designed experiments.

Many of the ‘old school” aspects of R and Bioconductor facilitate reproducible research. An analysis is
often represented as a text-based script. Reproducing the analysis involves re-running the script; adjusting
how the analysis is performed involves simple text-editing tasks. Beyond this, R has the notion of a ‘vi-
gnette’, which represents an analysis as a ITEX document with embedded R commands. The R commands
are evaluated when the document is built, thus reproducing the analysis. The use of I/ TEX means that the
symbolic manipulations in the script are augmented with textual explanations and justifications for the ap-
proach taken; these include graphical and tabular summaries at appropriate places in the analysis. R includes
facilities for reporting the exact version of R and associated packages used in an analysis so that, if needed,
discrepancies between software versions can be tracked down and their importance evaluated. While users
often think of R packages as providing new functionality, packages are also used to enhance reproducibility
by encapsulating a single analysis. The package can contain data sets, vignette(s) describing the analysis,
R functions that might have been written, scripts for key data processing stages, and documentation (via
standard R help mechanisms) of what the functions, data, and packages are about.

The Bioconductor project adopts practices that facilitate reproducibility. Versions of R and Bioconductor
are released twice each year. Each Bioconductor release is the result of development, in a separate branch,
during the previous six months. The release is built daily against the corresponding version of R on Linux,
Mac, and Windows platforms, with an extensive suite of tests performed. The biocLite function ensures
that each release of R uses the corresponding Bioconductor packages. The user thus has access to stable and
tested package versions. R and Bioconductor are effective tools for reproducible research.

R and Bioconductor exist on the leading portion of the software life cycle. Contributors are primarily
from academic institutions, and are directly involved in novel research activities. New developments are made
available in a familiar format, i.e., the R language, packaging, and build systems. The rich set of facilities
in R (e.g., for advanced statistical analysis or visualization) and the extensive resources in Bioconductor
(e.g., for annotation using third-party data such as Biomart or UCSC genome browser tracks) mean that
innovations can be directly incorporated into existing work flows. The ‘development’ branches of R and
Bioconductor provide an environment where contributors can explore new approaches without alienating
their user base.

R and Bioconductor also fair well in terms of accessibility. The software is freely available. The source

27

Table 3.1: Selected Bioconductor packages for high-throughput sequence analysis.

Concept Packages

Data representation IRanges, GenomicRanges, GenomicFeatures, Biostrings, BSgenome,
girafe.

Input / output ShortRead (fastq), Rsamtools (bam), rtracklayer (gff, wig, bed), Vari-
antAnnotation (vcf), R453Plus1Toolbox (454).

Annotation GenomicFeatures, ChIPpeakAnno, VariantAnnotation.

Alignment gmapR, Rsubread, Biostrings.

Visualization ggbio, Gviz.

Quality assessment qrqc, seqbias, ReQON, htSeqTools, TEQC, Rolexa, ShortRead.

RNA-seq BitSeq, cqn, cummeRbund, DESeq, DEXSeq, EDASeq, edgeR, gage,
goseq, iASeq, tweeDEseq.

ChIP-seq, etc. BayesPeak, baySeq, ChIPpeakAnno, chipseq, ChIPseqR, ChIPsim,

CSAR, DiffBind, MEDIPS, mosaics, NarrowPeaks, nucleR, PICS,
PING, REDseq, Repitools, TSSi.

Variants Variant Annotation, VariantTools, gmapR

SNPs snpStats, GWASTools, hapFabia, GGtools

Copy number cn.mops, genoset, CNAnorm, exomeCopy, seqmentSeq.

Motifs MotifDb, BCRANK, cosmo, cosmoGUI, MotlV , seqLogo, rGADEM.

3C, etc. HiTC, r3Cseq.

Microbiome phyloseq, DirichletMultinomial, clstutils, manta, mcaGUI.

Work flows QuasR, easyRNASeq, ArrayExpressHTS, Genominator, oneChannel-
GUI, rnaSeqMap.

Database SRAdb.

code is easily and fully accessible for critical evaluation. The R packaging and check system requires that all
functions are documented. Bioconductor requires that each package contain vignettes to illustrate the use
of the software. There are very active R and Bioconductor mailing lists for immediate support, and regular
training and conference activities for professional development.

3.3 Bioconductor packages for high-throughput sequence analysis

Table 3.1 enumerates many of the packages available for sequence analysis. The table includes packages
for representing sequence-related data (e.g., GenomicRanges, Biostrings), as well as domain-specific anal-
ysis such as RNA-seq (e.g., edgeR, DEXSeq), ChIP-seq (e.g,. ChIPpeakAnno, DiffBind), variants (e.g.,
VariantAnnotation, VariantTools, and SNPs and copy number variation (e.g., genoset, ggtools).

3.4 S4 Classes and methods

Bioconductor makes extensive use of ‘S4’ classes. Essential operations are sketched in Table 3.2. Bioconduc-
tor has tried to develop and use ‘best practices’ for use of S4 classes. Usually instances are created by a call to
a constructor, such as GRanges (an object representing genomic ranges, with information on sequence, strand,
start, and end coordinate of each range), or are returned by a function call that makes the object ‘behind
the scenes’ (e.g., readFastq). Objects can have complicated structure, but users are not expected to have to
concern themselves with the internal representation, just as the details of the S3 object returned by the 1m
function are not of direct concern. Instead, one might query the object to retrieve information; functions
providing this functionality are sometimes called accessors, e.g., seqnames; the data that is returned by the
accessor may involve some calculation, e.g., querying a data base, that the user can remain blissfully unaware
of. It can be important to appreciate that objects can be related to one another, in particular inheriting

28

http://bioconductor.org/packages/devel/bioc/html/IRanges.html
http://bioconductor.org/packages/devel/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/devel/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/devel/bioc/html/Biostrings.html
http://bioconductor.org/packages/devel/bioc/html/BSgenome.html
http://bioconductor.org/packages/devel/bioc/html/girafe.html
http://bioconductor.org/packages/devel/bioc/html/ShortRead.html
http://bioconductor.org/packages/devel/bioc/html/Rsamtools.html
http://bioconductor.org/packages/devel/bioc/html/rtracklayer.html
http://bioconductor.org/packages/devel/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/devel/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/devel/bioc/html/R453Plus1Toolbox.html
http://bioconductor.org/packages/devel/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/devel/bioc/html/ChIPpeakAnno.html
http://bioconductor.org/packages/devel/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/devel/bioc/html/gmapR.html
http://bioconductor.org/packages/devel/bioc/html/Rsubread.html
http://bioconductor.org/packages/devel/bioc/html/Biostrings.html
http://bioconductor.org/packages/devel/bioc/html/ggbio.html
http://bioconductor.org/packages/devel/bioc/html/Gviz.html
http://bioconductor.org/packages/devel/bioc/html/qrqc.html
http://bioconductor.org/packages/devel/bioc/html/seqbias.html
http://bioconductor.org/packages/devel/bioc/html/ReQON.html
http://bioconductor.org/packages/devel/bioc/html/htSeqTools.html
http://bioconductor.org/packages/devel/bioc/html/TEQC.html
http://bioconductor.org/packages/devel/bioc/html/Rolexa.html
http://bioconductor.org/packages/devel/bioc/html/ShortRead.html
http://bioconductor.org/packages/devel/bioc/html/BitSeq.html
http://bioconductor.org/packages/devel/bioc/html/cqn.html
http://bioconductor.org/packages/devel/bioc/html/cummeRbund.html
http://bioconductor.org/packages/devel/bioc/html/DESeq.html
http://bioconductor.org/packages/devel/bioc/html/DEXSeq.html
http://bioconductor.org/packages/devel/bioc/html/EDASeq.html
http://bioconductor.org/packages/devel/bioc/html/edgeR.html
http://bioconductor.org/packages/devel/bioc/html/gage.html
http://bioconductor.org/packages/devel/bioc/html/goseq.html
http://bioconductor.org/packages/devel/bioc/html/iASeq.html
http://bioconductor.org/packages/devel/bioc/html/tweeDEseq.html
http://bioconductor.org/packages/devel/bioc/html/BayesPeak.html
http://bioconductor.org/packages/devel/bioc/html/baySeq.html
http://bioconductor.org/packages/devel/bioc/html/ChIPpeakAnno.html
http://bioconductor.org/packages/devel/bioc/html/chipseq.html
http://bioconductor.org/packages/devel/bioc/html/ChIPseqR.html
http://bioconductor.org/packages/devel/bioc/html/ChIPsim.html
http://bioconductor.org/packages/devel/bioc/html/CSAR.html
http://bioconductor.org/packages/devel/bioc/html/DiffBind.html
http://bioconductor.org/packages/devel/bioc/html/MEDIPS.html
http://bioconductor.org/packages/devel/bioc/html/mosaics.html
http://bioconductor.org/packages/devel/bioc/html/NarrowPeaks.html
http://bioconductor.org/packages/devel/bioc/html/nucleR.html
http://bioconductor.org/packages/devel/bioc/html/PICS.html
http://bioconductor.org/packages/devel/bioc/html/PING.html
http://bioconductor.org/packages/devel/bioc/html/REDseq.html
http://bioconductor.org/packages/devel/bioc/html/Repitools.html
http://bioconductor.org/packages/devel/bioc/html/TSSi.html
http://bioconductor.org/packages/devel/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/devel/bioc/html/VariantTools.html
http://bioconductor.org/packages/devel/bioc/html/gmapR.html
http://bioconductor.org/packages/devel/bioc/html/snpStats.html
http://bioconductor.org/packages/devel/bioc/html/GWASTools.html
http://bioconductor.org/packages/devel/bioc/html/hapFabia.html
http://bioconductor.org/packages/devel/bioc/html/GGtools.html
http://bioconductor.org/packages/devel/bioc/html/cn.mops.html
http://bioconductor.org/packages/devel/bioc/html/genoset.html
http://bioconductor.org/packages/devel/bioc/html/CNAnorm.html
http://bioconductor.org/packages/devel/bioc/html/exomeCopy.html
http://bioconductor.org/packages/devel/bioc/html/seqmentSeq.html
http://bioconductor.org/packages/devel/bioc/html/MotifDb.html
http://bioconductor.org/packages/devel/bioc/html/BCRANK.html
http://bioconductor.org/packages/devel/bioc/html/cosmo.html
http://bioconductor.org/packages/devel/bioc/html/cosmoGUI.html
http://bioconductor.org/packages/devel/bioc/html/MotIV.html
http://bioconductor.org/packages/devel/bioc/html/seqLogo.html
http://bioconductor.org/packages/devel/bioc/html/rGADEM.html
http://bioconductor.org/packages/devel/bioc/html/HiTC.html
http://bioconductor.org/packages/devel/bioc/html/r3Cseq.html
http://bioconductor.org/packages/devel/bioc/html/phyloseq.html
http://bioconductor.org/packages/devel/bioc/html/DirichletMultinomial.html
http://bioconductor.org/packages/devel/bioc/html/clstutils.html
http://bioconductor.org/packages/devel/bioc/html/manta.html
http://bioconductor.org/packages/devel/bioc/html/mcaGUI.html
http://bioconductor.org/packages/devel/bioc/html/QuasR.html
http://bioconductor.org/packages/devel/bioc/html/easyRNASeq.html
http://bioconductor.org/packages/devel/bioc/html/ArrayExpressHTS.html
http://bioconductor.org/packages/devel/bioc/html/Genominator.html
http://bioconductor.org/packages/devel/bioc/html/oneChannelGUI.html
http://bioconductor.org/packages/devel/bioc/html/oneChannelGUI.html
http://bioconductor.org/packages/devel/bioc/html/rnaSeqMap.html
http://bioconductor.org/packages/devel/bioc/html/SRAdb.html
http://bioconductor.org/packages/devel/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/devel/bioc/html/Biostrings.html
http://bioconductor.org/packages/devel/bioc/html/edgeR.html
http://bioconductor.org/packages/devel/bioc/html/DEXSeq.html
http://bioconductor.org/packages/devel/bioc/html/ChIPpeakAnno.html
http://bioconductor.org/packages/devel/bioc/html/DiffBind.html
http://bioconductor.org/packages/devel/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/devel/bioc/html/VariantTools.html
http://bioconductor.org/packages/devel/bioc/html/genoset.html
http://bioconductor.org/packages/devel/bioc/html/ggtools.html

Table 3.2: Using S4 classes and methods.

Best practices

gr <- GRanges() ‘Constructor’; create an instance of the GRanges class
seqnames (gr) ‘Accessor’, extract information from an instance
countOverlaps(grl, gr2) A method implementing a generic with useful func-
tionality
Older packages
s <- new("MutliSet) A constructor
s@annotation A ‘slot’ accessor
Help
class(gr) Discover class of instance
getClass(gr) Display class structure, e.g., inheritance
showMethods (f indOverlaps) Classes for which methods of findOverlaps are imple-
mented

showMethods (class="GRanges", where=search())
Generics with methods implemented for the GRanges
class, limited to currently loaded packages.
class?GRanges Documentation for the GRanges class.
method?"findOverlaps,GRanges,GRanges"
Documentation for the findOverlaps method when the
two arguments are both GRanges instances.
selectMethod (findOverlaps, c("GRanges", "GRanges"))
View source code for the method, including method
‘dispatch’

parts of its internal structure and external behavior from other classes. For instance, the GRanges class
inherits structure and behavior from the GenomicRanges class. The details of structural inheritance should
not be important to the user, but the fact that once class inherits from another can be useful information to
know.

One often calls a function in which one or more objects are arguments, e.g., countOverlaps can take two
GRanges instances. The role of the function is to transform inputs into outputs. In the case of countOverlaps
the transformation is to summarize the number of ranges in the second argument (the subject function
argument) overlap with ranges in the first argument (the query) argument. This establishes a kind of
contract, e.g., the return value of countOverlaps should be a non-negative integer vector, with as many
elements as there are ranges in the query argument, and with a one-to-one correspondence between elements
in the query input argument and the output. Having established such a contract, it can be convenient to
write variations of countOverlaps that fulfill the contract but for different objects, e.g., when the arguments
are instances of class IRanges, which do not have information about chromosomal sequence or strand. To
indicate that the same contract is being fulfilled, and perhaps to simplify software development, one typically
makes countOverlaps a generic function, and implements methods for different types of arguments.

Attending course and reading vignettes pages are obviously an excellent way to get an initial orientation
about classes and methods that are available. It can be very helpful, as one becomes more proficient, to
use the interactive help system to discover what can be done with the objects one has or the functions one
knows about.

The showMethods function is a key entry point into discovery of available methods, e.g., showMeth-
ods ("countOverlaps") to show methods defined on the countOverlaps generic, or showMethods (class="GRanges",
where=search()) to discover methods available to transform GRanges instances. The definition of a method
can be retrieved as

> selectMethod (countOverlaps, c("GRanges", "GRanges"))

29

Exercise 4
Load the GenomicRanges package.

a. Use getClass to discover the class structure of GRanges, paying particular attention to inheritance
relationships summarized in the “Extends:” section of the display.

b. Use showMethods to see what methods are defined for the countOverlaps function.

c. There are many methods defined for countOverlaps, but none are listed for the GRanges, GRanges
combination of arguments. Yet countOverlaps does work when provided with two GRanges arguments.
Why is that?

Solution: Here we load the package and ask about class structure.

> library(GenomicRanges)
> getClass("GRanges")

Class "GRanges" [package "GenomicRanges"]

Slots:

Name: seqnames ranges strand elementMetadata
Class: Rle IRanges Rle DataFrame
Name: seqinfo metadata

Class: Seqinfo list

Extends:

Class "GenomicRanges", directly

Class "Vector", by class "GenomicRanges", distance 2

Class "GenomicRangesORmissing", by class "GenomicRanges", distance 2
Class "Annotated", by class "GenomicRanges", distance 3

Class "GenomicRangesORGRangesList", by class "GenomicRanges", distance 2

GRanges extends several classes, including GenomicRanges. Method defined on the countOverlaps generic
can be discovered with

> showMethods ("countOverlaps")

Function: countOverlaps (package IRanges)
query="ANY", subject="missing"

query="ANY", subject="Vector"
query="GappedAlignmentPairs", subject="Vector"
query="GappedAlignments", subject="GappedAlignments"
query="GappedAlignments", subject="Vector"
query="GenomicRanges", subject="GenomicRanges"
query="GenomicRanges", subject="Vector"
query="GRangesList", subject="GRangesList"
query="GRangesList", subject="Vector"
query="RangedData", subject="RangedData"
query="RangedData", subject="RangesList"
query="RangesList", subject="RangedData"
query="RangesList", subject="RangesList"
query="SummarizedExperiment", subject="SummarizedExperiment"
query="SummarizedExperiment", subject="Vector"
query="Vector", subject="GappedAlignments"

30

http://bioconductor.org/packages/devel/bioc/html/GenomicRanges.html

query="Vector", subject="GenomicRanges"
query="Vector", subject="GRangesList"
query="Vector", subject="SummarizedExperiment"
query="Vector", subject="ViewsList"
query="ViewsList", subject="Vector"
query="ViewsList", subject="ViewsList"

(quotation marks are, in this case, optional). Note that there is no method defined for the GRanges, GRanges
combination of arguments. Yet countOverlaps does work. .. (skim over the details of the se objects; we are
using a constructor to make genomic ranges on plus strand of chromosome 1; there are two ranges in gro,
and one in gri.

> gr0 <- GRanges("chrl", IRanges(start=c(10, 20), width = 5), "+")
> grl <- GRanges("chr1", IRanges(start=12, end=18), "+")
> countOverlaps(gr0, gri)

[1] 10

grl overlaps the first range of gro, but not the second, and we end up with a vector of counts c(1, 0).
The reason that this ‘works’ is because of inheritance — GRanges extends GenomicRanges, and we end up
selecting the inherited method countOverlaps, GenomicRanges, GenomicRanges-method.

3.5 Help!

S4 classes, generics, and methods To illustrate how help work with S4 classes and generics, consider
the DNAStringSet class complement generic in the Biostrings package:

> library(Biostrings)
> showMethods (complement)

Function: complement (package Biostrings)
x="DNAString"

x="DNAStringSet"

x="MaskedDNAString"

x="MaskedRNAString"

x="RNAString"

x="RNAStringSet"

x="XStringViews"

(Most) methods defined on the DNAStringSet class of Biostrings and available on the current search path can
be found with

> showMethods (class="DNAStringSet", where=search())
Obtaining help on S4 classes and methods requires syntax such as

> class 7 DNAStringSet
> method ? "complement,DNAStringSet"

The specification of method and class in the latter must not contain a space after the comma.

31

http://bioconductor.org/packages/devel/bioc/html/Biostrings.html
http://bioconductor.org/packages/devel/bioc/html/Biostrings.html

Chapter 4

Sequencing

4.1 Technologies

The most common ‘second generation’ technologies readily available to labs are

e Illumina single- and paired-end reads. Short (= 100 per end) and very numerous. Flow cell, lane,
bar-code.

e Roche 454. 100’s of nucleotides, 100,000’s of reads.

e Life Technologies SOLiD. Unique ‘color space’ model.

e Complete Genomics. Whole genome sequence / variants / etc as a service; end user gets derived results.

Figure 4.1 illustrates Illumina and 454 sequencing. Bioconductor has good support for Illumina and Roche
454 sequencing products, and for derived data such as aligned reads or called variants; use of SOLiD color
space reads typically requires conversion to FASTQ files that undermine the benefit of the color space model.

All second-generation technologies rely on PCR and other techniques to generate reads from samples
that represent aggregations of many DNA molecules. ‘Third-generation’ technologies shift to single-molecule
sequencing, with relevant players including Pacific Biosciences and IonTorent. This data is not widely
available, and will not be discussed further.

The most common data in Bioconductor work flows is from Illumina sequencers. Reads are either single-
end or paired-end. Single-end reads represent 30— = 100 nucleotides sequenced from DNA that has been
sheared into ~ 300 nucleotide fragments. Paired-end reads represent 30— = 100 nucleotide reads that are
paired, and from both ends of the ~ 300 fragment.

Sequence data can be derived from a tremendous diversity of experiments. Some of the most common
include:

RNA-seq Sequencing of reverse-complemented mRNA from the entire expressed transcriptome, typically.
Used for differential expression studies like micro-arrays, or for novel transcript discovery.

DNA-seq Sequencing of whole or targeted (e.g., exome) genomic DNA. Common goals include SNP detec-
tion, indel and other structural polymorphisms, and CNV (copy number variation). DNA-seq is also
used for de nmovo assembly, but de novo assembly is not an area where Bioconductor contributes.

ChIP-seq ChIP (chromatin immuno-precipitation) is used to enrich genomic DNA for regulatory elements,
followed by sequencing and mapping of the enriched DNA to a reference genome. The initial statistical
challenge is to identify regions where the mapped reads are enriched relative to a sample that did not
undergo ChIP[18]; a subsequent task is to identify differential binding across a designed experiment,
e.g., [21].

Metagenomics Sequencing generates sequences from samples containing multiple species, typically mi-
crobial communities sampled from niches such as the human oral cavity. Goals include inference of
species composition (when sequencing typically targets phylogenetically informative genes such as 16S)
or metabolic contribution.

32

AC‘GTGGGCCTATAGCTACTCGGACACCTAQG{‘ATATCGCCC‘G\
(]

|)
\QTATAGCGGGQ/

a

Natpare

q -5 iy : Oxyluflfenn luciferin
* : light
’ 7

B

Figure 4.1: High-throughput sequencing. Left: Illumina bridge PCR [2]; mis-call errors. Right: Roche
454 [22]; homopolymer errors.

4.2 Data

4.2.1 A running example: the pasilla data set

As a running example, we use the pasilla data set, derived from [3]. The authors investigate conservation of
RNA regulation between D. melanogaster and mammals. Part of their study used RNAi and RNA-seq to
identify exons regulated by Pasilla (ps), the D. melanogaster ortholog of mammalian NOVA1 and NOVAZ2.
Briefly, their experiment compared gene expression as measured by RNAseq in S2-DRSC cells cultured
with, or without, a 444bp dsRNA fragment corresponding to the ps mRNA sequence. Their assessment
investigated differential exon use, but our worked example will focus on gene-level differences. For several
examples we look at a subset of the ps data, corresponding to reads obtained from lanes of their RNA-seq
experiment, and to the same reads aligned to a D. melanogaster reference genome. Reads were obtained
from GEO and the Short Read Archive (SRA), and were aligned to the D. melanogaster reference genome
dmd3 as described in the pasilla experiment data package.

4.2.2 Work flows

At a very high level, one can envision a work flow that starts with a challenging biological question (how
does ps influence gene and transcript regulation?). The biological question is framed in terms of wet-lab
protocols coupled with an appropriate and all-important experimental design. There are several well-known
statistical at this stage, common to any experimental data What treatments are going to be applied? How
many replicates will there be of each? Is there likely to be sufficient power to answer the biologically relevant
question? Reality is also important at this stage, as evidenced in the pasilla data where, as we will see,
samples were collected using different methods (single versus paired end reads) over a time when there
were rapid technological changes. Such reality often introduces confounding factors that require appropriate
statistical treatment in subsequent analysis.

The work flow proceeds with data generation, involving both a wet-lab (sample preparation) component
and actual sequencing. It is essential to acknowledge the biases and artifacts that are introduced at each
of these stages. Sample preparation involves non-trivial amounts of time and effort. Large studies are
likely to have batch effects (e.g., because work was done by different lab members, or different batches of
reagent). Samples might have been prepared in ways that are likely to influence down-stream analysis,
e.g., using a protocol involving PCR and hence introducing opportunities for sample-specific bias. DNA
isolation protocols may introduce many artifacts, e.g., non-uniform representation of reads across the length

33

Table 4.1: Common file types (e.g., http://genome.ucsc.edu/FAQ/FAQformat.html) and Bioconductor
packages used for input.

Description File Package
Unaligned sequences: identifier, sequence, and encoded quality FASTQ ShortRead
score tuples

Aligned sequences: identifier, sequence, reference sequence name, BAM Rsamtools
strand position, cigar and additional tags

Gene annotations: reference sequence name, data source, feature GFF, GTF rtracklayer
type, start and end positions, strand, etc.

Range-based annotation: reference sequence name, start, end co- BED rtracklayer
ordinates.

‘Continuous’ single-nucleotide annotation. WIG, bigWig rtracklayer
Called single nucleotide, indel, copy number, and structural vari- VCF VariantAnnotation
ants, often compressed and indexed (with Rsamtools bgzip, in-

dexTabix)

of expressed genes in RNA-seq. The sequencing reaction itself is far from bias-free, with known artifacts of
called base frequency, cycle-dependent accuracy and bias, non-uniform coverage, etc. At a minimum, the
research needs to be aware of the opportunities for bias that can be introduced during sample preparation
and sequencing.

The informatics component of work flows becomes increasing important during and after sequence gen-
eration. The sequencer is often treated as a ‘black box’, producing short reads consisting of 10’s to 100’s of
nucleotides and with associated quality scores. Usually, the chemistry and informatics processing pipeline
are sufficiently well documented that one can arrive at an understanding of biases and quality issues that
might be involved; such an understanding is likely to be particularly important when embarking on questions
or using protocols that are at the fringe of standard practice (where, after all, the excitement is).

The first real data seen by users are fastq files (Table 4.1). These files are often simple text files consisting
of many millions of records, and are described in greater detail in Section 5.2. The center performing the
sequencing typically vets results for quality, but these quality measures are really about the performance of
their machines. It is very important to assess quality with respect to the experiment being undertaken —
Are the numbers of reads consistent across samples? Is the GC content and other observable aspects of the
reads consistent with expectation? Are there anomalies in the sequence results that reflect primers or other
reagents used during sample preparation? Are well-known artifacts of the protocol used evident in the reads
in hand?

The next step in many work flows involves alignment of reads to a reference genome. There are many
aligners available, including BWA [12], Bowtie / Bowtie2 [11], and GSNAP; merits of these are discussed
in the literature. Bioconductor packages ‘wrapping’ these tools are increasingly common (e.g., Rbowtie,
gmapR; cummeRbund for parsing output of the cufflinks transcript discovery pathway). There are also
alignment algorithms implemented in Bioconductor (e.g., matchPDict in the Biostrings package, and the
Rsubread package); matchPDict is particularly useful for flexible alignment of moderately sized subsets of
data. Most main-stream aligners produce output in ‘SAM’ or ‘BAM’ (binary alignment) format. BAM
files are the primary starting point for many analyses, and their manipulation and use in Bioconductor is
introduced in Section 6.2.

Common analyses often use well-established third-party tools for initial stages of the analysis; some of
these have Bioconductor counterparts that are particularly useful when the question under investigation
does not meet the assumptions of other facilities. Some common work flows (a more comprehensive list is
available on the SeqAnswers wiki') include:

ChIP-seq ChIP-seq experiments typically use DNA sequencing to identify regions of genomic DNA enriched

lhttp://seqanswers.com/wiki/RNA-Seq

34

http://genome.ucsc.edu/FAQ/FAQformat.html
http://bioconductor.org/packages/devel/bioc/html/ShortRead.html
http://bioconductor.org/packages/devel/bioc/html/Rsamtools.html
http://bioconductor.org/packages/devel/bioc/html/rtracklayer.html
http://bioconductor.org/packages/devel/bioc/html/rtracklayer.html
http://bioconductor.org/packages/devel/bioc/html/rtracklayer.html
http://bioconductor.org/packages/devel/bioc/html/Rsamtools.html
http://bioconductor.org/packages/devel/bioc/html/VariantAnnotation.html
http://bio-bwa.sourceforge.net/
http://bowtie-bio.sourceforge.net/
http://bowtie-bio.sourceforge.net/bowtie2/
http://research-pub.gene.com/gmap/
http://bioconductor.org/packages/devel/bioc/html/Rbowtie.html
http://bioconductor.org/packages/devel/bioc/html/gmapR.html
http://bioconductor.org/packages/devel/bioc/html/cummeRbund.html
http://bioconductor.org/packages/devel/bioc/html/Biostrings.html
http://bioconductor.org/packages/devel/bioc/html/Rsubread.html
http://seqanswers.com/wiki/RNA-Seq

in prepared samples relative to controls. A central task is thus to identify peaks, with common tools
including MACS and PeakRanger.

RNA-seq In addition to the aligners mentioned above, RNA-seq for differential expression might use the
HTSeq? python tools for counting reads within regions of interest (e.g., known genes) or a pipeline
such as the bowtie (basic alignment) / tophat (splice junction mapper) / cufflinks (esimated isoform
abundance) (e.g., *) or RSEM* suite of tools for estimating transcript abundance.

DNA-seq especially variant calling can be facilitated by software such as the GATK® toolkit.

There are many R packages that replace or augment the analyses outlined above, as summarized in Table 3.1.

Programs such as those outlined the previous paragraph often rely on information about gene or other
structure as input, or produce information about chromosomal locations of interesting features. The GTF
and BED file formats are common representations of this information. Representing these files as R data
structures is often facilitated by the rtracklayer package. We explore these files in Chapter 12. Variants are
very commonly represented in VCF (Variant Call Format) files; these are explored in Chapter 10.

2http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html
Shttp://bowtie-bio.sourceforge.net/index.shtml
4http://deweylab.biostat.wisc.edu/rsem/
Shttp://www.broadinstitute.org/gatk/

35

http://bioconductor.org/packages/devel/bioc/html/rtracklayer.html
http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html
http://bowtie-bio.sourceforge.net/index.shtml
http://deweylab.biostat.wisc.edu/rsem/
http://www.broadinstitute.org/gatk/

Chapter 5

Strings and Reads

5.1 DNA (and other) Strings with the Biostrings package

The Biostrings package provides tools for working with sequences. The essential data structures are DNAS-
tring and DNAStringSet, for working with one or multiple DNA sequences. The Biostrings package contains
additional classes for representing amino acid and general biological strings. The BSgenome and related pack-
ages (e.g., BSgenome.Dmelanogaster.UCSC.dm3) are used to represent whole-genome sequences. Table 5.2
summarizes common operations; The following exercise explores these packages.

Exercise 5
The objective of this exercise is to calculate the GC content of the exons of a single gene. We jump into
the middle of some of the data structures common in Bioconductor; these are introduced more thoroughly
in later exercises..

Load the BSgenome.Dmelanogaster. UCSC.dm3 data package, containing the UCSC representation of D.
melanogaster genome assembly dm3. Discover the content of the package by evaluating Dmelanogaster.

Load the SequenceAnalysisData package, and evaluate the command data(ex) to load an example of
a GRangesList object. the GRangesList represents coordinates of exons in the D. melanogaster genome,
grouped by gene.

Look at ex[1]. These are the genomic coordinates of the first gene in the ex object. Load the D.
melanogaster chromosome that this gene is on by subsetting the Dmelanogaster object.

Use Views to create views on to the chromosome that span the start and end coordinates of all exons in
the first gene; the start and end coordinates are accessed with start(ex[[1]]) and similar.

Develop a function gcFunction to calculate GC content. Use this to calculate the GC content in each of
the exons.

Solution: Here we load the D. melanogaster genome, select a single chromosome, and create Views that
reflect the ranges of the FBgn0002183.

Table 5.1: Selected Bioconductor packages for representing strings and reads.

Package Description

Biostrings ~ Classes (e.g., DNAStringSet) and methods (e.g., alphabetFrequency, pair-
wiseAlignment) for representing and manipulating DNA and other biological
sequences.

BSgenome Representation and manipulation of large (e.g., whole-genome) sequences.

ShortRead 1/O and manipulation of FASTQ files.

36

http://bioconductor.org/packages/devel/bioc/html/Biostrings.html
http://bioconductor.org/packages/devel/bioc/html/Biostrings.html
http://bioconductor.org/packages/devel/bioc/html/Biostrings.html
http://bioconductor.org/packages/devel/bioc/html/BSgenome.html
http://bioconductor.org/packages/devel/data/annotation/html/BSgenome.Dmelanogaster.UCSC.dm3.html
http://bioconductor.org/packages/devel/data/annotation/html/BSgenome.Dmelanogaster.UCSC.dm3.html
http://bioconductor.org/packages/devel/bioc/html/Biostrings.html
http://bioconductor.org/packages/devel/bioc/html/BSgenome.html
http://bioconductor.org/packages/devel/bioc/html/ShortRead.html

Table 5.2: Operations on strings in the Biostrings package.

Function

Description

Access

Compare

Edit

Count

Match

1/0

length, names

[, head, tail, rev
c

width, nchar

Views

==, = match, %inJ,
duplicated, unique
sort, order

split, relist
subseq, subseq<-
reverse, complement
reverseComplement
translate

chartr
replaceletterAt
trimLRPatterns
alphabetFrequency
letterFrequency

Number and names of sequences

Subset, first, last, or reverse sequences

Concatenate two or more objects

Number of letters of each sequence

Light-weight sub-sequences of a sequence
Element-wise comparison

Analog to duplicated and unique on character vectors
Locale-independent sort, order

Split or relist objects to, e.g., DNAStringSetList
Extract or replace sub-sequences in a set of sequences
Reverse, complement, or reverse-complement DNA

Translate DNA to Amino Acid sequences
Translate between letters

Replace letters at a set of positions by new letters
Trim or find flanking patterns

Tabulate letter occurrence

letterFrequencyInSlidingView

consensusMatrix
dinucleotideFrequency
trinucleotideFrequency

oligonucleotideFrequency

nucleotideFrequencyAt

matchPattern, countPattern
vmatchPattern, vcountPattern

matchPDict, countPDict
whichPDict, vcountPDict
vwhichPDict
pairwiseAlignment
matchPWM, countPWM
matchProbePair
findPalindromes

stringDist
readDNAStringSet

writeXStringSet
writePairwiseAlignments

readDNAMultipleAlignment

write.phylip

Nucleotide x position summary of letter counts
2-mer, 3-mer, and k-mer counting

Nucleotide counts at fixed sequence positions
Short patterns in one or many (v*) sequences

Short patterns in one or many (v*) sequences (mismatch only)

Needleman-Wunsch, Smith-Waterman, etc. pairwise alignment
Occurrences of a position weight matrix

Find left or right flanking patterns

Palindromic regions in a sequence. Also
findComplementedPalindromes

Levenshtein, Hamming, or pairwise alignment scores

FASTA (or sequence only from FASTQ). Also

readBStringSet, readRNAStringSet, readAAStringSet

Write pairwiseAlignment as “pair” format
Multiple alignments (FASTA, “stockholm”, or “clustal”). Also
readRNAMultipleAlignment, readAAMultipleAlignment

37

http://bioconductor.org/packages/devel/bioc/html/Biostrings.html

> library(BSgenome.Dmelanogaster.UCSC.dm3)
> Dmelanogaster

Fly genome

organism: Drosophila melanogaster (Fly)
provider: UCSC

provider version: dm3

release date: Apr. 2006

release name: BDGP Release 5

chr2L chr2R chr3L chr3R chr4
chrM chr2LHet chr2RHet chr3LHet chr3RHet
chrUextra

multiple sequences (see '7mseqnames'):

|

|

|

|

|

|

|

| single sequences (see '7seqgnames'):
|

|

|

|

[

| upstream1000 upstream2000 upstream5000
|

|

chrX
chrXHet

(use the '$' or '[[' operator to access a given sequence)

> library(SequenceAnalysisData)
> data(ex)
> ex[1]

GRangesList of length 1:

$FBgn0002183
GRanges with 9 ranges and O metadata columns:
segnames ranges strand
<Rle> <IRanges> <Rle>

[1] chr3L [1871574, 1871917] -
[2] chr3L [1872354, 1872470] -
[3] chr3L [1872582, 1872735] -
[4] chr3L [1872800, 1873062] -
(5] chr3L [1873117, 1873983] -
(6] chr3L [1874041, 1875218] -
[7] chr3L [1875287, 1875586] -
(8] chr3L [1875652, 1875915] -
[9] chr3L [1876110, 1876336] -

seqlengths:
chr2l. chr2LHet chr2R chr2RHet ... chrXHet
23011544 368872 21146708 3288761 ... 204112

> nm <- "chr3L"
> chr <- Dmelanogaster[[nm]]
> v <- Views(chr, start=start(ex[[1]]), end=end(ex[[1]]))

Here is the gcFunction helper function to calculate GC content:

> gcFunction <-
+ function(x)

38

chrYHet
347038

chrU
chrYHet

chrM
19517

+ {

+ alf <- alphabetFrequency(x, as.prob=TRUE)
+ rowSums (alf[,c("G", "C")])
+ F

The gcFunction is really straight-forward: it invokes the function alphabetFrequency from the Biostrings
package. This returns a simple matrix of exon x nucleotide probabilities. The row sums of the G and C
columns of this matrix are the GC contents of each exon.

The subject GC content is

> subjectGC <- gcFunction(v)

5.2 Reads and the ShortRead package

Short read formats The Illumina GAII and HiSeq technologies generate sequences by measuring incor-
poration of florescent nucleotides over successive PCR cycles. These sequencers produce output in a variety
of formats, but FAST(Q is ubiquitous. Each read is represented by a record of four components:

@SRR031724.1 HWI-EAS299_4_30M2BAAXX:5:1:1513:1024 length=37
GTTTTGTCCAAGTTCTGGTAGCTGAATCCTGGGGCGC
+SRR031724.1 HWI-EAS299_4_30M2BAAXX:5:1:1513:1024 length=37
IITIIIIIIIIIITIITIIIIIIIIIIITI+HIIIIKIE

The first and third lines (beginning with @ and + respectively) are unique identifiers. The identifier produced
by the sequencer typically includes a machine id followed by colon-separated information on the lane, tile, x,
and y coordinate of the read. The example illustrated here also includes the SRA accession number, added
when the data was submitted to the archive. The machine identifier could potentially be used to extract
information about batch effects. The spatial coordinates (lane, tile, x, y) are often used to identify optical
duplicates; spatial coordinates can also be used during quality assessment to identify artifacts of sequencing,
e.g., uneven amplification across the flow cell, though these spatial effects are rarely pursued.

The second and fourth lines of the FASTQ record are the nucleotides and qualities of each cycle in the
read. This information is given in 5’ to 3’ orientation as seen by the sequencer. A letter N in the sequence is
used to signify bases that the sequencer was not able to call. The fourth line of the FAST(Q record encodes
the quality (confidence) of the corresponding base call. The quality score is encoded following one of several
conventions, with the general notion being that letters later in the visible ASCII alphabet

P #$8%&" () *+,-./0123456789: ; <=>7QABCDEFGHIJKLMNO
PQRSTUVWXYZ[\]~_~abcdefghijklmnopqrstuvwxyz{|}~

are of higher quality; this is developed further below. Both the sequence and quality scores may span multiple
lines.

Technologies other than Illumina use different formats to represent sequences. Roche 454 sequence data
is generated by ‘flowing’ labeled nucleotides over samples, with greater intensity corresponding to longer
runs of A, C, G, or T. This data is represented as a series of ‘flow grams’ (a kind of run-length encoding of
the read) in Standard Flowgram Format (SFF). The Bioconductor package R453PluslToolbox has facilities
for parsing SFF files, but after quality control steps the data are frequently represented (with some loss of
information) as FASTQ. SOLiD technologies produce sequence data using a ‘color space’ model. This data
is not easily read in to R, and much of the error-correcting benefit of the color space model is lost when
converted to FASTQ; SOLID sequences are not well-handled by Bioconductor packages.

39

http://bioconductor.org/packages/devel/bioc/html/Biostrings.html
http://bioconductor.org/packages/devel/bioc/html/ShortRead.html
http://bioconductor.org/packages/devel/bioc/html/R453Plus1Toolbox.html

Short reads in R FASTQ files can be read in to R using the readFastq function from the ShortRead
package. Use this function by providing the path to a FASTQ file. There are sample data files available in
the SequenceAnalysisData package, each consisting of 1 million reads from a lane of the Pasilla data set.

> library(ShortRead)

bigdata <- system.file("bigdata", package="SequenceAnalysisData")
fastqDir <- file.path(bigdata, "fastq")

fastqFiles <- dir(fastqDir, full=TRUE)

fq <- readFastq(fastqFiles[1])

fq

class: ShortReadQ

length: 1000000 reads; width: 37 cycles

vV VvV Vv Vv Vv

The data are represented as an object of class ShortRead(@.
> head(sread(fq), 3)

A DNAStringSet instance of length 3
width seq
[1] 37 GTTTTGTCCAAGTTCTGGTAGCTGAATCCTGGGGCGC
(2] 37 GTTGTCGCATTCCTTACTCTCATTCGGGAATTCTGTT
(3] 37 GAATTTTTTGAGAGCGAAATGATAGCCGATGCCCTGA

> head(quality(fq), 3)
class: FastqQuality
quality:
A BStringSet instance of length 3
width seq
[1] 37 ITITIIIIIIIIIIIIIIIIIIITIIIII+HIIIILIE

[2] 37 ITIITIIIIIIIIITIIIIITIIIIIIIIIIIIINIIII
[3] 37 ITIITIIIIIIIIIIIIIITIII'IIIIIGBIIIIZI+

> head(id(fqg), 3)

A BStringSet instance of length 3
width seq
[1] 58 SRR031724.1 HWI-EAS299_4_30M2BAAXX:5:1:1513:1024 length=37
(2] 57 SRR031724.2 HWI-EAS299_4_30M2BAAXX:5:1:937:1157 length=37
(3] 58 SRR031724.4 HWI-EAS299_4_30M2BAAXX:5:1:1443:1122 length=37

The ShortRead(class illustrates class inheritance. It extends the ShortRead class
> getClass("ShortReadQ")

Class "ShortReadQ" [package "ShortRead"]
Slots:

Name: quality sread id
Class: QualityScore DNAStringSet BStringSet

Extends:
Class "ShortRead", directly
Class ".ShortReadBase", by class "ShortRead", distance 2

Known Subclasses: "AlignedRead"

40

http://bioconductor.org/packages/devel/bioc/html/ShortRead.html

Methods defined on ShortRead are available for ShortRead@.
> showMethods (class="ShortRead", where="package:ShortRead")
For instance, the width can be used to demonstrate that all reads consist of 37 nucleotides.

> table(width(fq))

37
1000000

The alphabetByCycle function summarizes use of nucleotides at each cycle in a (equal width) ShortRead@ or
DNAStringSet instance.

> abc <- alphabetByCycle(sread(fq))
> abc[1:4, 1:8]

cycle
alphabet [,11 [,21 [,3] [,4] [,5]1 [,6] [,71 [,8]
A 78194 153156 200468 230120 283083 322913 162766 220205
C 439302 265338 362839 251434 203787 220855 253245 287010
G 397671 270342 258739 356003 301640 247090 227811 246684
T 84833 311164 177954 162443 211490 209142 356178 246101

FASTQ files are getting larger. A very common reason for looking at data at this early stage in the
processing pipeline is to explore sequence quality. In these circumstances it is often not necessary to parse
the entire FASTQ file. Instead create a representative sample

> sampler <- FastqSampler(fastqFiles[1], 1000000)
> yield(sampler) # sample of 1000000 reads

class: ShortReadQ
length: 1000000 reads; width: 37 cycles

A second common scenario is to pre-process reads, e.g., trimming low-quality tails, adapter sequences, or
artifacts of sample preparation. The FastqStreamer class can be used to ‘stream’ over the fastq files in
chunks, processing each chunk independently.

ShortRead contains facilities for quality assessment of FASTQ files. Here we generate a report from a
sample of 1 million reads from each of our files and display it in a web browser

> gasO <- Map(function(fl, nm) {

+ fq <- FastqgSampler(f1l)

+ qa(yield(fq), nm)

+ }, fastqgFiles,

+ sub("_subset.fastq", "", basename(fastqFiles)))
> gas <- do.call(rbind, gasO)

> rpt <- report(qas, dest=tempfile())

> browseURL (rpt)

A report from a larger subset of the experiment is available

> rpt <- system.file("GSM461176_81_qa_report", "index.html",
+ package="SequenceAnalysisData")
> browseURL (rpt)

41

http://bioconductor.org/packages/devel/bioc/html/ShortRead.html

Exercise 6
Use the file path bigdata and the file.path and dir functions to locate the fastq file from [3] (the file was
obtained as described in the pasilla experiment data package).

Input the fastq files using readFastq from the ShortRead package.

Use alphabetFrequency to summarize the GC content of all reads (hint: use the sread accessor to extract
the reads, and the collapse=TRUE argument to the alphabetFrequency function). Using the helper function
gcFunction defined elsewhere in this document, draw a histogram of the distribution of GC frequencies across
reads.

Use alphabetByCycle to summarize the frequency of each nucleotide, at each cycle. Plot the results using
matplot, from the graphics package.

As an advanced exercise, and if on Mac or Linux, use the parallel package and mclapply to read and
summarize the GC content of reads in two files in parallel.

Solution: Discovery:
> dir(bigdata)

[1] "bam" "dm3.ensGene.txdb.sqlite"
[3] "fastq"

> fls <- dir(file.path(bigdata, "fastq"), full=TRUE)
Input:

> fq <- readFastq(fls[1])

GC content:

> alf0 <- alphabetFrequency(sread(fq), as.prob=TRUE, collapse=TRUE)
> sum(alfOo[c("G", "C")])

[1] 0.5457237

A histogram of the GC content of individual reads is obtained with

> gc <- gcFunction(sread(fq))
> hist(gc)

Alphabet by cycle:

> abc <- alphabetByCycle(sread(fq))
> matplot(t(abc[c("A”, ncn’ ”G", HT”)’J), type=”l”)

Advanced (Mac, Linux only): processing on multiple cores.

> library(parallel)

> gc0 <- mclapply(fls, function(fl) {

+ fq <- readFastq(f1l)

+ gc <- gcFunction(sread(fq))

+ table(cut(gc, seq(0, 1, .05)))

+ 3

> ## simplify list of length 2 to 2-D array
> gc <- simplify2array(gc0)

> matplot(gc, type="s")

42

http://bioconductor.org/packages/devel/bioc/html/ShortRead.html

Exercise 7
Use quality to extract the quality scores of the short reads. Interpret the encoding qualitatively.

Convert the quality scores to a numeric matrix, using as. Inspect the numeric matrix (e.g., using dim)
and understand what it represents.

Use colMeans to summarize the average quality score by cycle. Use plot to visualize this.

Solution:
> head(quality(fq))

class: FastqQuality
quality:
A BStringSet instance of length 6
width seq

[1] 37 ITITIIIIIIIIIIIIIIIIIIITIIIII+HIIIILIE
[2] 37 ITIIIIIIIITIIIIIIIIIIIIIITIIIIIIIIINIIIII
(3] 37 ITIIIIIIIITIIIIIIIIIIIII'ITIIIIGBIIII2I+
[4] 37 ITIIIIIIIIIIIIIIIIIIIIIII,II*E,&4HI++B
[5] 37 IIIIIIIIITIIIIIIIIIIIIIIITIIIIINIIIII&.$
(el 37 III.IIIIIIIIIIIIIIIIIII/IIE(-EIH<IIII

> qual <- as(quality(fq), "matrix")
> dim(qual)

[1] 1000000 37

> plot(colMeans(qual), type="b")

Exercise 8

As an independent exercise, visit the qrqc landing page and explore the package vignette. Use the qrqc
package (you may need to install this) to generate base and average quality plots for the data, like those in
the report generated by ShortRead.

43

http://bioconductor.org/packages/devel/bioc/html/qrqc.html
http://bioconductor.org/packages/devel/bioc/html/qrqc.html
http://bioconductor.org/packages/devel/bioc/html/ShortRead.html

Chapter 6

Ranges and Alignments

Ranges describe both features of interest (e.g., genes, exons, promoters) and reads aligned to the genome.
Bioconductor has very powerful facilities for working with ranges, some of which are summarized in Table 6.1.

6.1 Ranges and the GenomicRanges package

Next-generation sequencing data consists of a large number of short reads. These are, typically, aligned to a
reference genome. Basic operations are performed on the alignment, asking e.g., how many reads are aligned
in a genomic range defined by nucleotide coordinates (e.g., in the exons of a gene), or how many nucleotides
from all the aligned reads cover a set of genomic coordinates. How is this type of data, the aligned reads
and the reference genome, to be represented in R in a way that allows for effective computation?

The IRanges, GenomicRanges, and GenomicFeatures Bioconductor packages provide the essential infras-
tructure for these operations; we start with the GRanges class, defined in GenomicRanges.

GRanges Instances of GRanges are used to specify genomic coordinates. Suppose we wish to represent two
D. melanogaster genes. The first is located on the positive strand of chromosome 3R, from position 19967117
to 19973212. The second is on the minus strand of the X chromosome, with ‘left-most’ base at 18962306,
and right-most base at 18962925. The coordinates are I-based (i.e., the first nucleotide on a chromosome is
numbered 1, rather than 0), left-most (i.e., reads on the minus strand are defined to ‘start’ at the left-most
coordinate, rather than the 5 coordinate), and closed (the start and end coordinates are included in the
range; a range with identical start and end coordinates has width 1, a O-width range is represented by the
special construct where the end coordinate is one less than the start coordinate).
A complete definition of these genes as GRanges is:

Table 6.1: Selected Bioconductor packages for representing and manipulating ranges, strings, and other data
structures.

Package Description

IRanges Defines important classes (e.g., [Ranges, Rle) and methods (e.g., findOver-
laps, countOverlaps) for representing and manipulating ranges of consecu-
tive values. Also introduces DataFrame, SimpleList and other classes tai-
lored to representing very large data.

GenomicRanges Range-based classes tailored to sequence representation (e.g., GRanges,
GRangesList), with information about strand and sequence name.

GenomicFeatures Foundation for manipulating data bases of genomic ranges, e.g., representing
coordinates and organization of exons and transcripts of known genes.

44

http://bioconductor.org/packages/devel/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/devel/bioc/html/IRanges.html
http://bioconductor.org/packages/devel/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/devel/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/devel/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/devel/bioc/html/IRanges.html
http://bioconductor.org/packages/devel/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/devel/bioc/html/GenomicFeatures.html

> genes <- GRanges (seqnames=c("3R", "X"),

+ ranges=IRanges (

+ start=c(19967117, 18962306),

+ end=c (19973212, 18962925)),

+ strand=c("+", "-"),

+ seqlengths=c(3R =27905053L, "X =22422827L))

The components of a GRanges object are defined as vectors, e.g., of seqnames, much as one would define a
data.frame. The start and end coordinates are grouped into an IRanges instance. The optional seqlengths
argument specifies the maximum size of each sequence, in this case the lengths of chromosomes 3R and X
in the ‘dm2’ build of the D. melanogaster genome. This data is displayed as

> genes

GRanges with 2 ranges and O metadata columns:

seqnames ranges strand
<Rle> <IRanges> <Rle>
[1] 3R [19967117, 19973212] +
(2] X [18962306, 18962925] -
seqlengths:
3R X

27905053 22422827

For the curious, the gene coordinates and sequence lengths are derived from the org.Dm.eg.db package for
genes with Flybase identifiers FBgn0039155 and FBgn0085359, using the annotation facilities described in
Chapter 11.

The GRanges class has many useful methods defined on it. Consult the help page

> ?GRanges
and package vignettes (especially ‘An Introduction to GenomicRanges’)
> vignette (package="GenomicRanges")

for a comprehensive introduction. A GRanges instance can be subset, with accessors for getting and updating
information.

> genes[2]

GRanges with 1 range and O metadata columns:

segnames ranges strand
<Rle> <IRanges> <Rle>
[1] X [18962306, 18962925] -
seqlengths:
3R X

27905053 22422827
> strand(genes)

factor-Rle of length 2 with 2 runs
Lengths: 1 1
Values : + -

Levels(3): + - *

45

http://bioconductor.org/packages/devel/data/annotation/html/org.Dm.eg.db.html
http://bioconductor.org/packages/devel/bioc/html/GenomicRanges.html

> width(genes)
[1] 6096 620
> length(genes)
[1]1 2

> names (genes) <- c("FBgn0039155", "FBgn0085359")
> genes # now with names

GRanges with 2 ranges and O metadata columns:

segnames ranges strand
<Rle> <IRanges> <Rle>
FBgn0039155 3R [19967117, 19973212] +
FBgn0085359 X [18962306, 18962925] -
seqlengths:
3R X

27905063 22422827

strand returns the strand information in a compact representation called a run-length encoding, this is
introduced in greater detail below. The ‘names’ could have been specified when the instance was constructed;
once named, the GRanges instance can be subset by name like a regular vector.

As the GRanges function suggests, the GRanges class extends the IRanges class by adding informa-
tion about seqnames, strand, and other information particularly relevant to representing ranges that are on
genomes. The IRanges class and related data structures (e.g., RangedData) are meant as a more general
description of ranges defined in an arbitrary space. Many methods implemented on the GRanges class are
‘aware’ of the consequences of genomic location, for instance treating ranges on the minus strand differently
(reflecting the 5’ orientation imposed by DNA) from ranges on the plus strand.

Operations on ranges The GRanges class has many useful methods from the IRanges class; some of these
methods are illustrated here. We use IRanges to illustrate these operations to avoid complexities associated
with strand and seqnames, but the operations are comparable on GRanges. We begin with a simple set of
ranges:

> ir <- IRanges(start=c(7, 9, 12, 14, 22:24),
+ end=c(15, 11, 12, 18, 26, 27, 28))

These and some common operations are illustrated in the upper panel of Figure 6.1 and summarized in
Table 6.2.
Methods on ranges can be grouped as follows:

Intra-range methods act on each range independently. These include flank, narrow, reflect, resize,
restrict, and shift, among others. An illustration is shift, which translates each range by the
amount specified by the shift argument. Positive values shift to the right, negative to the left; shift
can be a vector, with each element of the vector shifting the corresponding element of the IRanges
instance. Here we shift all ranges to the right by 5, with the result illustrated in the middle panel of
Figure 6.1.

> ghift(ir, 5)

IRanges of length 7
start end width
[1] 1220 9

46

Origina

||]
|]]
|]
5 10 15 20 25 30 35
Shift
||]
||] |

| |

5 10 15 20 25 30 35
Reduce

5 10 15 20 25 30 35

Figure 6.1: Ranges

[2] 14 16
[3] 17 17
[4] 19 23
[5] 27 31
(6] 28 32
[7] 29 33

oo oo, W

Inter-range methods act on the collection of ranges as a whole. These include disjoin, reduce, gaps, and
range. An illustration is reduce, which reduces overlapping ranges into a single range, as illustrated in
the lower panel of Figure 6.1.

> reduce(ir)

IRanges of length 2

start end width
[1] 7 18 12
(2] 22 28 7

coverage is an inter-range operation that calculates how many ranges overlap individual positions.
Rather than returning ranges, coverage returns a compressed representation (run-length encoding)

> coverage(ir)

integer-Rle of length 28 with 12 rums
Lengths: 6 24123311311
Values : 012121012321

The run-length encoding can be interpreted as ‘a run of length 6 of nucleotides covered by 0 ranges,
followed by a run of length 2 of nucleotides covered by 1 range...’ .

Between methods act on two (or sometimes more) IRanges instances. These include intersect, setdiff,
union, pintersect, psetdiff, and punion.
The count0Overlaps and findOverlaps functions operate on two sets of ranges. countOverlaps takes its
first argument (the query) and determines how many of the ranges in the second argument (the subject)
each overlaps. The result is an integer vector with one element for each member of query. findOverlaps
performs a similar operation but returns a more general matrix-like structure that identifies each pair
of query / subject overlaps. Both arguments allow some flexibility in the definition of ‘overlap’.

Common operations on ranges are summarized in Table 6.2.

47

Table 6.2: Common operations on IRanges, GRanges and GRangesList.

Category Function Description
Accessors start, end, width Get or set the starts, ends and widths
names Get or set the names
mcols, metadata Get or set metadata on elements or object
length Number of ranges in the vector
range Range formed from min start and max end
Ordering <, <=, >, >= == I= Compare ranges, ordering by start then width
sort, order, rank Sort by the ordering
duplicated Find ranges with multiple instances
unique Find unique instances, removing duplicates
Arithmetic T+XxT-Xx7T%*X Shrink or expand ranges r by number x
shift Move the ranges by specified amount
resize Change width, anchoring on start, end or mid
distance Separation between ranges (closest endpoints)
restrict Clamp ranges to within some start and end
flank Generate adjacent regions on start or end
Set operations reduce Merge overlapping and adjacent ranges

Overlaps

Coverage
Extraction

Split, combine

intersect, union, setdiff
pintersect, punion, psetdiff
gaps, pgap

disjoin

findOverlaps
countOverlaps

nearest

precede, follow

x %ink y

coverage

r[i]

r[[il]

subsetByOverlaps

head, tail, rev, rep
split

c

Set operations on reduced ranges

Parallel set operations, on each x[i], y[i]
Find regions not covered by reduced ranges
Ranges formed from union of endpoints
Find all overlaps for each x in y

Count overlaps of each x range in y

Find nearest neighbors (closest endpoints)
Find nearest y that x precedes or follows
Find ranges in x that overlap range in y
Count ranges covering each position

Get or set by logical or numeric index

Get integer sequence from start[i] to end[i]
Subset x for those that overlap in y
Conventional R semantics

Split ranges by a factor into a RangesList
Concatenate two or more range objects

48

mcols and metadata The GRanges class (actually, most of the data structures defined or extending those in
the IRanges package) has two additional very useful data components. The mcols function allows information
on each range to be stored and manipulated (e.g., subset) along with the GRanges instance. The element
metadata is represented as a DataFrame, defined in IRanges and acting like a standard R data.frame but
with the ability to hold more complicated data structures as columns (and with element metadata of its own,
providing an enhanced alternative to the Biobase class AnnotatedDataFrame).

> mcols(genes) <- DataFrame(EntrezId=c("42865", "2768869"),
+ Symbol=c("kal-1", "CG34330"))

metadata allows addition of information to the entire object. The information is in the form of a list; any
data can be provided.

> metadata(genes) <-
+ list(CreatedBy="A. User", Date=date())

GRangesList The GRanges class is extremely useful for representing simple ranges. Some next-generation
sequence data and genomic features are more hierarchically structured. A gene may be represented by several
exons within it. An aligned read may be represented by discontinuous ranges of alignment to a reference.
The GRangesList class represents this type of information. It is a list-like data structure, which each element
of the list itself a GRanges instance. The gene FBgn0039155 contains several exons, and can be represented
as a list of length 1, where the element of the list contains a GRanges object with 7 elements:

GRangesList of length 1:

$FBgn0039155

GRanges with 7 ranges and 2 metadata columns:
seqnames ranges strand | exon_id exon_name
<Rle> <IRanges> <Rle> | <integer> <character>
[1] chr3R [19967117, 19967382] + | 45515 <NA>
(2] chr3R [19970915, 19971592] + | 45516 <NA>
[3] chr3R [19971652, 19971770] + | 45517 <NA>
[4] chr3R [19971831, 19972024] + 45518 <NA>
(5] chr3R [19972088, 19972461] + | 45519 <NA>
(6] chr3R [19972523, 19972589] + | 45520 <NA>
[7] chr3R [19972918, 19973212] + | 45521 <NA>

seqlengths:
chr3R
27905053

The GRangesList object has methods one would expect for lists (e.g., length, sub-setting). Many of the
methods introduced for working with IRanges are also available, with the method applied element-wise.

The GenomicFeatures package Many public resources provide annotations about genomic features. For
instance, the UCSC genome browser maintains the ‘knownGene’ track of established exons, transcripts, and
coding sequences of many model organisms. The GenomicFeatures package provides a way to retrieve, save,
and query these resources. The underlying representation is as sqlite data bases, but the data are available
in R as GRangesList objects. The following exercise explores the GenomicFeatures package and some of the
functionality for the IRanges family introduced above.

Exercise 9
Load the TxDb.Dmelanogaster. UCSC.dm3.ensGene annotation package, and create an alias txdb pointing
to the TranscriptDb object this class defines.

49

http://bioconductor.org/packages/devel/bioc/html/IRanges.html
http://bioconductor.org/packages/devel/bioc/html/IRanges.html
http://bioconductor.org/packages/devel/bioc/html/Biobase.html
http://bioconductor.org/packages/devel/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/devel/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/devel/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/devel/data/annotation/html/TxDb.Dmelanogaster.UCSC.dm3.ensGene.html

Extract all exon coordinates, organized by gene, using exonsBy. What is the class of this object? How
many elements are in the object? What does each element correspond to? And the elements of each
element? Use elementLengths and table to summarize the number of exons in each gene, for instance, how
many single-exon genes are there?

Select just those elements corresponding to flybase gene ids FBgn0002183, FBgn0003360, FBgn0025111,
and FBgn0036449. Use reduce to simplify gene models, so that exons that overlap are considered ‘the same’.

Solution:

> library(TxDb.Dmelanogaster.UCSC.dm3. ensGene)

> txdb <- TxDb.Dmelanogaster.UCSC.dm3.ensGene # alias
> ex0 <- exonsBy(txdb, "gene")

> head(table(elementLengths (ex0)))

1 2 3 4 5 6
3182 2608 2070 1628 1133 886

> ids <- C(”FBgn0002183”, "FBgn0003360", "FBgn0025111", ”FBgnOO36449”)
> ex <- reduce(ex0[ids])

6.2 Alignments and the Rsamtools Package

Most down-stream analysis of short read sequences is based on reads aligned to reference genomes.

Alignment formats Most main-stream aligners produce output in SAM (text-based) or BAM format. A
SAM file is a text file, with one line per aligned read, and fields separated by tabs. Here is an example of a
single SAM line, split into fields.

> f1 <- system.file("extdata", "exl.sam", package="Rsamtools")
> strsplit(readLines(f1l, 1), "\t")[[1]]

[1] "B7_591:4:96:693:509"

[2] "73"
[3] "seql"
[4] "1"
[5] "99"
[6] "36M"
[7] "x"
[8] IIOIl
[9] "o"

[10] "CACTAGTGGCTCATTGTAAATGTGTGGTTTAACTCG"
[11] "<<<<KKLLLLLLLLLL; KLLLLLLL LB 057"

[12] "MF:i:18"

[13] "Aq:i:73"
[14] "NM:i:0"
[15] "UQ:i:0"
[16] "HO:i:1"
[17] "H1:i:0"

Fields in a SAM file are summarized in Table 6.3. We recognize from the FASTQ file the identifier string,
read sequence and quality. The alignment is to a chromosome ‘seql’ starting at position 1. The strand of

50

http://bioconductor.org/packages/devel/bioc/html/Rsamtools.html

Table 6.3: Fields in a SAM record. From http://samtools.sourceforge.net/samtools.shtml

Field Name Value

1 QNAME Query (read) NAME

2 FLAG Bitwise FLAG, e.g., strand of alignment
3 RNAME Reference sequence NAME

4 POS 1-based leftmost POSition of sequence

5 MAPQ MAPping Quality (Phred-scaled)

6 CIGAR Extended CIGAR string

7 MRNM Mate Reference sequence NaMe

8 MPOS 1-based Mate POSition

9 ISIZE Inferred insert SIZE

10 SEQ Query SEQuence on the reference strand
11 QUAL Query QUALity

12+ OPT OPTional fields, format TAG:VTYPE:VALUE

alignment is encoded in the ‘flag’ field. The alignment record also includes a measure of mapping quality,
and a CIGAR string describing the nature of the alignment. In this case, the CIGAR is 36M, indicating
that the alignment consisted of 36 Matches or mismatches, with no indels or gaps; indels are represented by
I and D; gaps (e.g., from alignments spanning introns) by N.

BAM files encode the same information as SAM files, but in a format that is more efficiently parsed by
software; BAM files are the primary way in which aligned reads are imported in to R.

Aligned reads in R The readGappedAlignments function from the GenomicRanges package reads essen-
tial information from a BAM file in to R. The result is an instance of the GappedAlignments class. The
GappedAlignments class has been designed to allow useful manipulation of many reads (e.g., 20 million)
under moderate memory requirements (e.g., 4 GB).

> alnFile <- system.file("extdata", "exl.bam", package="Rsamtools")
> aln <- readGappedAlignments(alnFile)
> head(aln, 3)

GappedAlignments with 3 alignments and O metadata columns:

seqnames strand cigar qwidth start end width
<Rle> <Rle> <character> <integer> <integer> <integer> <integer>
[1] seql + 36M 36 1 36 36
[2] seql + 35M 35 3 37 35
(3] seql + 35M 35 5 39 35
ngap
<integer>
[1] 0
[2] 0
(3] 0
seqlengths:
seql seq2
1575 1584

The readGappedAlignments function takes an additional argument, param, allowing the user to specify regions
of the BAM file (e.g., known gene coordinates) from which to extract alignments.

51

http://samtools.sourceforge.net/samtools.shtml
http://bioconductor.org/packages/devel/bioc/html/GenomicRanges.html

A GappedAlignments instance is like a data frame, but with accessors as suggested by the column names.
It is easy to query, e.g., the distribution of reads aligning to each strand, the width of reads, or the cigar
strings

> table(strand(aln))

+ - *
1647 1624 0

> table(width(aln))

30 31 32 33 34 35 36 38 40
2 21 1 8 37 2804 285 1 112

> head(sort(table(cigar(aln)), decreasing=TRUE))

35M 36M 40M 34M 33M 14M4I17M
2804 283 112 37 6 4

Exercise 10
Use bigdata, file.path and dir to obtain file paths to the BAM files. These are a subset of the aligned
reads, overlapping just four genes.

Input the aligned reads from one file using readGappedAlignments. Explore the reads, e.g., using table or
xtabs, to summarize which chromosome and strand the subset of reads is from.

The object ex created earlier contains coordinates of four genes. Use countOverlaps to first determine the
number of genes an individual read aligns to, and then the number of uniquely aligning reads overlapping
each gene. Since the RNAseq protocol was not strand-sensitive, set the strand of aln to *.

Write the sequence of steps required to calculate counts as a simple function, and calculate counts on
each file. On Mac or Linux, can you easily parallelize this operation?

Solution: We discover the location of files using standard R commands:

> bigdata <- system.file("bigdata", package="SequenceAnalysisData")
> fls <- dir(file.path(bigdata, "bam"), ".bam$", full=TRUE) #$
> names (fls) <- sub("_.*", "" basename(fls))

Use readGappedAlignments to input data from one of the files, and standard R commands to explore the data.

> ## input
> aln <- readGappedAlignments(fls[1])
> xtabs(“seqnames + strand, as.data.frame(aln))

strand
seqnames - +
chr3L 5974 5402
chrX 2283 2278

To count overlaps in regions defined in a previous exercise, load the regions.
> data(ex) # from an earlier exercise

Many RNA-seq protocols are not strand aware, i.e., reads align to the plus or minus strand regardless of the
strand on which the corresponding gene is encoded. Adjust the strand of the aligned reads to indicate that
the strand is not known.

> strand(aln) <- "*" # protocol not strand-aware

52

One important issue when counting reads is to make sure that the reference names in both the annotation
and the read files are identical.

Exercise 11
Check the reference name in both the ex and aln. If they are not similar, how could you correct them?

For simplicity, we are interested in reads that align to only a single gene. Count the number of genes a
read aligns to...

> hits <- countOverlaps(aln, ex)
> table(hits)

hits
0 1 2
772 15026 139

and reverse the operation to count the number of times each region of interest aligns to a uniquely overlapping
alignment.

> cnt <- countOverlaps(ex, alnl[hits==1])

A simple function for counting reads is

> counter <-

+ function(filePath, range)

+ {

+ aln <- readGappedAlignments (filePath)
+ strand(aln) <- "*"

+ hits <- countOverlaps(aln, range)

+ countOverlaps (range, aln[hits==1])

+ 7

This can be applied to all files using sapply
> counts <- sapply(fls, counter, ex)

The counts in one BAM file are independent of counts in another BAM file. This encourages us to count
reads in each BAM file in parallel, decreasing the length of time required to execute our program. On Linux
and Mac OS, a straight-forward way to parallelize this operation is:

> if (require(parallel))
+ simplify2array(mclapply(fls, counter, ex))

Flexible BAM parsing with Rsamtools The GappedAlignments class inputs only some of the fields
of a BAM file, and may not be appropriate for all uses. In these cases the scanBam function in Rsamtools
provides greater flexibility. The idea is to view BAM files as a kind of data base. Particular regions of
interest can be selected, and the information in the selection restricted to particular fields. These operations
are determined by the values of a ScanBamParam object, passed as the named param argument to scanBam.

Exercise 12
Consult the help page for ScanBamParam, and construct an object that restricts the information returned
by a scanBam query to the aligned read DNA sequence. Your solution will use the what parameter to the
ScanBamParam function.

Use the ScanBamParam object to query a BAM file, and calculate the GC content of all aligned reads.
Summarize the GC content as a histogram (Figure 6.2).

53

http://bioconductor.org/packages/devel/bioc/html/Rsamtools.html
http://bioconductor.org/packages/devel/bioc/html/Rsamtools.html

Histogram of readGC

o
o _
o
<
o
o |
o
= ™
Q
c
Q
>
5 3 |
L R
o
o _|
o
—
o -
I T T 1
0.2 0.4 0.6 0.8
readGC

Figure 6.2: GC content in aligned reads

Solution:

gcFunction <-

function(x)

{

alf <- alphabetFrequency(x, as.prob=TRUE)
rowSums (alf[,c("G", "C")])

param <- ScanBamParam(what="seq")
seqs <- scanBam(fls[[1]], param=param)
readGC <- gcFunction(seqs[[1]][["seq"]])

>
+
+
+
+
+ }
>
>
>
> hist (readGC)

54

Part 11

Differential Representation

55

Chapter 7

RNA-seq Work Flows

7.1 Varieties of RNA-seq

RNA-seq experiments typically ask about differences in transcription of genes or other features across ex-
perimental groups. The analysis of designed experiments is statistical, and hence an ideal task for R. The
overall structure of the analysis, with tens of thousands of features and tens of samples, is reminiscent of mi-
croarray analysis; some insights from the microarray domain will apply, at least conceptually, to the analysis
of RNA-seq experiments.

The most straight-forward RN A-seq experiments quantify abundance for known gene models. The known
models are derived from reference databases, reflecting the accumulated knowledge of the community respon-
sible for the data. The ‘knownGenes’ track of the UCSC genome browser represents one source of such data.
A track like this describes, for each gene, the transcripts and exons that are expected based on current data.
The GenomicFeatures package allows ready access to this information by creating a local database out of the
track information. This data base of known genes is coupled with high throughput sequence data by counting
reads overlapping known genes and modeling the relationship between treatment groups and counts.

A more ambitious approach to RNA-seq attempts to identify novel transcripts. This requires that se-
quenced reads be assembled into contigs that, presumably, correspond to expressed transcripts that are then
located in the genome. Regions identified in this way may correspond to known transcripts, to novel ar-
rangements of known exons (e.g., through alternative splicing), or to completely novel constructs. We will
not address the identification of completely novel transcripts here, but will instead focus on the analysis of
the designed experiments: do the transcript abundances, novel or otherwise, differ between experimental
groups?

7.2 Work flows and upstream analysis

RNA-seq work flows aim at measuring gene expression through assessment of mRNA abundance. Work flows
involve:

Experimental design.

Wet-lab protocols for mRNA extraction and reverse transcription to cDNA.

Sequencing.

Alignment of sequenced reads to a reference genome.

Summarizing of the number of reads aligning to a region.

Normalization of samples to accommodate purely technical differences in preparation.

Statistical assessment of differential representation, including specification of an appropriate error
model.

8. Interpretation of results in the context of original biological questions.

N otk N

56

http://bioconductor.org/packages/devel/bioc/html/GenomicFeatures.html

The inference is that higher levels of gene expression translate to more abundant cDNA, and greater numbers
of reads aligned to the reference genome. The enumeration above seems simplistic, but oddly enough one
has concerns and commentary on each point.

7.2.1 Experimental design

Obviously one should follow best practices for designing experiments appropriate for the data under analysis.
A typical experiment will have one or several groups. Because there is uncertainty in each measurement, we
require replication. Previous work shows that technical replication (repeating identical wet-lab and sequenc-
ing protocols on a single biological sample) introduces variation that is small [13] compared to biological
replicates (using different samples). Most RNA-seq experiments require biological replication, and seldom
include technical replicates.

How many biological replicates? It is helpful to think in terms of orders of magnitude — biological
treatments with strong and consistent consequences for gene expression will be detected with a handful — 2
or 3 — replicates per treatment. Conversely, statistically subtle effects will not be much revealed by samples
of say 5 or 8, but will instead require 10’s or 100’s of samples.

How complicated an experimental design? The advice must be to ‘keep it simple’. There are many
interesting biological questions that one could ask, but experimental designs with more than one or at most
two factors, or with multiple levels per factor, will undermine statistical power and complicate analysis.
There are exceptions of course, for instance a time course design or an experiment with two or more factors,
but these require strong a priori motivation and confidence that the design is amenable to analysis even in
the face of wet-lab or sequencing catastrophe.

What kind of treatment? Two ‘lessons learned’ from microarray analysis and applicable to RNA-seq
inform this question. (a) It is necessary to normalize observations between samples to accommodate purely
technical variation in overall patterns of expression. For example, samples provided to the sequencer have
different amounts of DNA, resulting in variation in total numbers of sequenced and aligned reads indepen-
dent of any difference in gene-level differential representation. This implies that the treatment should affect
only a fraction of the genes assayed, otherwise treatment effects and protocol artifacts are confounded. (b)
Between-gene measures of expression differ for reasons unrelated to levels of expression. For instance, stan-
dard protocols mean that a long gene is sequenced more often than a short gene, even when the number of
mRNA molecules of the two genes are identical. This means that the most productive approach to differential
representation will compare genes across samples, rather than compare levels of representation of different
genes (gene set enrichment analysis and other approaches to between-gene comparison are statistically inter-
esting in part because of the need to overcome between-gene differences arising for purely technical reasons).
The combination of lessons (a) and (b) dictate that the treatment should affect only a subset of the genes
under study, and that ‘interesting’ results correspond to treatment groups with differences at the gene level.
A priori motivation, e.g., about well-defined pathways as targets of differential representation, may trump
part (b) of this guideline.

The reality of executing designed experiments may mean that there are known but unavoidable factors
that confound the analysis, but that are not of fundamental biological interest. Perhaps samples are being
processed by different groups, or processing is spread over several months to accommodate personnel or
sequencer availability. It is essential to avoid confounding such factors with biologically relevant parts of the
experiment. Having acknowledged a potentially confounding factor, what is to be done? A first reaction
might be randomization — arrange for samples to be processed in a random order, for instance, rather than
by treatment group — but a better strategy is usually to include a blocking factor, e.g., processed by lab
‘A’ versus lab ‘B’ and to ensure that treatments are represented by replicates in each blocking factor. The
down-stream analysis can then use replication to statistically accommodate such effects.

7.2.2 Wet-lab protocols, sequencing, and alignment

The important point here is that wet-lab protocols, sequencing reactions, and alignment introduce artifacts
that need to be acknowledged and, if possible, accommodated in down-stream analysis. These artifacts and

57

Table 7.1: Statistical issues in RNA-seq differential expression.

Analysis stage Issues

Summarizing Counts versus RPKM and other summaries.

Normalization Robust estimates of library size.

Differential expression Appropriate error model (Negative Binomial, Poisson, ...); dispersion (un-

der negative binomial) as parameter requiring estimation; ‘shrinkage’ to
balance accuracy of per-gene estimates with precision of experiment-wide

estimates.
Testing Filtering to reduce multiple comparisons & false discovery rate.
(a) RMA-Sa ib) DMHA-Saqg (€) RNA-Saq cther pratocots

Bosition
DNA-Siny CHP-Sey
Brdey = ki

FANA bagmortaton, Ma
Ran hes peming Rai
— Bart

— Wang DNA m— M
— Ching
— Mot — phiX

Figure 7.1: Nucleotide frequency versus position relative to start of alignment, various experiments and
protocols; see [9].

approaches to their remediation are discussed in the following sections.

7.3 Statistical analysis

Important statistical issues are summarized in Table 7.1.

7.3.1 Summarizing

The Summarizing process tallies the number of reads aligning in each region (e.g., gene) of interest. The
simplest method is to simply count reads overlapping each region, dividing by the length of the region of
interest to accommodate differences in gene length. This is the ‘RPKM’ (reads per kilobase per million
reads) of Mortazavi et al. [16]. One problem with this approach is that reads are not sampled uniformly
across genes (Figure 7.1; [9]), so gene length (the ‘PK’ part of RPKM) is not a good proxy for expression
level.

More fundamentally, each read represents an observation, and contributes to the certainty with which
a gene is measured as ‘expressed’. A summary measure like RPKM fails to incorporate uncertainty — a
particular value of RPKM might result from alignment of one or 100 reads. This contrasts with a simple
count of the number of reads in the region of interest. Furthermore, count data has known statistical

58

properties that can be exploited in down-stream statistical analysis. Thus the result of summarization most
useful for assessing differential expression is read count.

How to count? For instance, should a read that partly overlaps a 5° UTR or an intron be included in a
tally? What about reads that overlap multiple genes? This is a non-trivial question because alignment is
only approximate (reflecting sequencing and other biases) and because sample preparation protocols and or-
ganism biology (e.g., whether the UTR or fully mature mRNA is sequenced) may dictate particular counting
strategies; more elaborate counting strategies might be entertained for paired end reads. Anders enumerates
some counting strategies'; these are implemented in his HTSeq python scripts, in summarizeOverlaps in the
GenomicRanges package, or in functions in the (linux-only) Rsubread and gmapR packages.

7.3.2 Normalization

Normalization arises from the need to correct for purely technical differences between samples. The most
common symptom of the need for normalization is differences in the total number of aligned reads. The
‘M’ part of RPKM measure mentioned in the context of summarization is one way of normalizing for total
count. This normalization is not appropriate, because the distribution of aligned reads across genes within
a sample is not uniform — some regions receive many more alignments than do others — and this distribution
may differ between samples.

The overall strategy with normalization is to choose an appropriate baseline, and express sample counts
relative to that baseline. There are several approaches to choice of appropriate baseline. One might choose
total count for normalization, but this is a poor choice when one or a few regions of interest are very well
represented — we are normalizing to the well-represented genes rather than to sequencing depth in each
sample. Other straight-forward approaches include use of house-keeping genes, or the expression level from
a particular quantile of the distribution of gene expression values of each sample [4]. One might attempt a
robust estimate of sample abundance that is less sensitive to extreme outliers, e.g., the trimmed geometric
mean of counts [1]. Another approach is TMM [20], which measures the trimmed mean of M and A values
(M values are the log fold change in the number of reads aligning to a region of interest measured relative
to an average or arbitrary sample, A is the average count of a gene; the trimmed mean discards regions of
interest that have extreme M or A values and calculates the mean M value of the remainder); the inverse
of this mean is used to weight samples. More data-driven approaches exploiting the gene-specific properties
include conditional quantile normalization (implemented in the cqn package; [10]).

Another approach to normalization, increasingly popular as experiment size and data consistency in-
creases, is to perform a data transformation and apply normalization methods developed for analysis of
microarrays. Examples of this approach include varianceStabilizingTransformation from the DESeq pack-
age, and voom from the limma package; see the corresponding help pages of these functions for details).

7.3.3 Error model

1. Negative binomial error model often appropriate — combination of Poisson (‘shot’ noise, technical
variation in read counts) and variation between biological samples.

Requires estimate of ‘dispersion’

‘Shrinkage’ of gene-specific estimates to average.

DESeq, edgeR take different approaches, especially to dealing with outlier / extreme values.
Addition modeling approaches possible, e.g., implemented in the DSS package [26].

i N

7.3.4 Multiple comparison

1. Increase statistical power and reduce false discovery rate by filtering regions of interest prior to analysis.

Thttp://www-huber.embl.de/users/anders/HTSeq/doc/count . html

59

http://bioconductor.org/packages/devel/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/devel/bioc/html/Rsubread.html
http://bioconductor.org/packages/devel/bioc/html/gmapR.html
http://bioconductor.org/packages/devel/bioc/html/cqn.html
http://bioconductor.org/packages/devel/bioc/html/DESeq.html
http://bioconductor.org/packages/devel/bioc/html/limma.html
http://bioconductor.org/packages/devel/bioc/html/DESeq.html
http://bioconductor.org/packages/devel/bioc/html/edgeR.html
http://bioconductor.org/packages/devel/bioc/html/DSS.html
http://www-huber.embl.de/users/anders/HTSeq/doc/count.html

Table 7.2: Selected Bioconductor packages for RNA-seq analysis.

Package Description

EDASeq Exploratory analysis and QA; also qrqc, ShortRead, DESeq.

edgeR, DESeq Generalized Linear Models using negative binomial error.

BitSeq Bayesian inference of individual transcript abundances followed by differen-
tial expression.

DEXSeq Exon-level differential representation.

DSS, vsn, cqn RNA-seq normalization methodologies. Also voom in limma.

goseq Gene set enrichment tailored to RNAseq count data; also limma’s roast or
camera after transformation with voom.

easyRNASeq Workflow; also ArrayExpressHTS, rnaSeqMap, oneChannel GUI.

Rsubread Alignment (Linux only); also gmapR; Biostrings matchPDict for special-

cummeRbund

purpose alignments.
Exploration and analysis of Cufflinks results.

2. Motivation (a): just because genes are assayed does not mean, a priori, that they represent something
requiring a statistical test. (b) Some observations, e.g., zero counts across all samples, cannot possibly

be statistically significant, independent of hypothesis under investigation.

3. Approach — detection or ‘K over A’-style filter; representation of a minimum of A (normalized) read
counts in at least K samples. A usually measured as counts per million. Guidelines for choice of
values a little ad hoc; see, e.g., the edgeR user manual. Variance filter, e.g., IQR (inter-quartile range)

provides a robust estimate of variability; can be used to rank and discard least-varying regions.

7.3.5 Bioconductor software

Bioconductor packages play a role in several stages of an RNA-seq analysis (Table 7.2; a more compre-
hensive list is under the RNAseq and HighThroughputSequencing BiocViews terms). The GenomicRanges
infrastructure can be effectively employed to quantify known exon or transcript abundances. Quantified
abundances are in essence a matrix of counts, with rows representing features and columns samples. The
edgeR [20] and DESeq [1] packages facilitate analysis of this data in the context of designed experiments, and
are appropriate when the questions of interest involve between-sample comparisons of relative abundance.
The DEXSeq package extends the approach in edgeR and DESeq to ask about within-gene, between group

differences in exon use, i.e., for a given gene, do groups differ in their exon use?

60

http://bioconductor.org/packages/devel/bioc/html/EDASeq.html
http://bioconductor.org/packages/devel/bioc/html/qrqc.html
http://bioconductor.org/packages/devel/bioc/html/ShortRead.html
http://bioconductor.org/packages/devel/bioc/html/DESeq.html
http://bioconductor.org/packages/devel/bioc/html/edgeR.html
http://bioconductor.org/packages/devel/bioc/html/DESeq.html
http://bioconductor.org/packages/devel/bioc/html/BitSeq.html
http://bioconductor.org/packages/devel/bioc/html/DEXSeq.html
http://bioconductor.org/packages/devel/bioc/html/DSS.html
http://bioconductor.org/packages/devel/bioc/html/vsn.html
http://bioconductor.org/packages/devel/bioc/html/cqn.html
http://bioconductor.org/packages/devel/bioc/html/limma.html
http://bioconductor.org/packages/devel/bioc/html/goseq.html
http://bioconductor.org/packages/devel/bioc/html/limma.html
http://bioconductor.org/packages/devel/bioc/html/easyRNASeq.html
http://bioconductor.org/packages/devel/bioc/html/ArrayExpressHTS.html
http://bioconductor.org/packages/devel/bioc/html/rnaSeqMap.html
http://bioconductor.org/packages/devel/bioc/html/oneChannelGUI.html
http://bioconductor.org/packages/devel/bioc/html/Rsubread.html
http://bioconductor.org/packages/devel/bioc/html/gmapR.html
http://bioconductor.org/packages/devel/bioc/html/Biostrings.html
http://bioconductor.org/packages/devel/bioc/html/cummeRbund.html
http://bioconductor.org/packages/devel/bioc/html/edgeR.html
http://bioconductor.org/packages/2.10/BiocViews.html#___RNAseq
http://bioconductor.org/packages/2.10/BiocViews.html#___HighThroughputSequencing
http://bioconductor.org/packages/devel/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/devel/bioc/html/edgeR.html
http://bioconductor.org/packages/devel/bioc/html/DESeq.html
http://bioconductor.org/packages/devel/bioc/html/DEXSeq.html
http://bioconductor.org/packages/devel/bioc/html/edgeR.html
http://bioconductor.org/packages/devel/bioc/html/DESeq.html

Chapter 8

DESeq Work Flow Exercises

This chapter walks through an RNA-seq differential expression work flow. It is based on the DESeq vignette,
reproduced in the Appendix A. Anders and Huber [1] provide additional information.

Exercise 13
a. Visit the DESeq landing page'.

b. Retrieve a copy of the ‘Analyzing RNA-Seq data with the “DESeq” package’ vignette pdf.
c. Retrieve a copy of the R script corresponding to the vignette.

d. How can the vignette function be used to access the vignette and script from within R, without needing
to visit the Bioconductor web site?

8.1 Data input and preparation

Exercise 14
a. Read through sections 1 and 2 of the DESeq vignette.

b. Evaluate the code chunks (numbered 1 through 16) corresponding to sections 1 and 2. Step through
these one at a time, reflecting on the commands that you are evaluating and the decisions that are
being made about your data.

c. Summarize key steps that have been taken to this point, emphasizing analysis decisions you have made,
the assumptions underlying these decisions, and the possible consequences of an incorrect decision.

8.2 Inference

Exercise 15
a. Read through section 3.1 of the DESeq vignette.

b. Evaluate the code chunks (17 through 28) corresponding to section 3.1.

c. Summarize key steps that have been taken to this point, emphasizing analysis decisions you have made,
the assumptions underlying these decisions, and the possible consequences of an incorrect decision.

Thttp://bioconductor.org/packages/release/bioc/html/DESeq.html

61

http://bioconductor.org/packages/devel/bioc/html/DESeq.html
http://bioconductor.org/packages/devel/bioc/html/DESeq.html
http://bioconductor.org/packages/devel/bioc/html/DESeq.html
http://bioconductor.org/packages/devel/bioc/html/DESeq.html
http://bioconductor.org/packages/devel/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html

8.3 Independent filtering

Exercise 16
a. Read through section 5 of the DESeq vignette.

b. Evaluate the code chunks corresponding to section 5.

c. How do you know when independent filtering is appropriate and effective?

8.4 Data quality assessment

8.4.1 Preliminary transformation

Many of the data quality challenges associated with RNA-seq differential expression data are similar to those
seen in microarray studies. A convenient approach to data assessment is then to transform the count data
to an approximately appropriate scale, and to use transformed data and microarray quality assessment best
practices to guide RNA-seq differential expression best practices. The DESeq vignette adopts this approach,
using the variance stabilizing transformation outlined in section 6.

Exercise 17
a. Read through the introductory part of section 6 of the DESeq vignette to gain at least a superficial
understanding of the variance stabilizing transformation.

8.4.2 Quality assessment

Exercise 18
a. Read through section 7 of the DESeq vignette.

b. Evaluate the code chunks corresponding to sections 7.1 to 7.3.

c. Compare the two panels of the vignette Figure 15. What is the importance of data transformation
prior to quality assessment?
8.5 Frequently asked questions

No or incomplete replicates See sections 3.2 and 3.3 of the DESeq vignette.
Complicated designs We discuss complicated designs in Section ?77.

Different results from different analyses Making different decisions can lead to different results. Which
result is correct? The underlying decision might involve a single package (e.g., choice of dispersion estimates)
or might arise from choice of packages used in an analysis (e.g., use of DESeq versus edgeR). Unfortunately,
there is no straight-forward answer to which analysis is ‘correct’. The appropriate analysis is the one that
makes assumptions that most closely match the nature of the individual data set, or for which results are
relatively robust to violations of the assumptions of the analysis.

Any rules of thumb to help identify a robust analysis?

62

http://bioconductor.org/packages/devel/bioc/html/DESeq.html
http://bioconductor.org/packages/devel/bioc/html/DESeq.html
http://bioconductor.org/packages/devel/bioc/html/DESeq.html
http://bioconductor.org/packages/devel/bioc/html/DESeq.html
http://bioconductor.org/packages/devel/bioc/html/DESeq.html
http://bioconductor.org/packages/devel/bioc/html/DESeq.html
http://bioconductor.org/packages/devel/bioc/html/edgeR.html

Part 111

Variant Calls

63

Chapter 9

Variant Work Flows

9.1 Variants

9.1.1 Varieties of variant-related work flows

Single nucleotide polymorphism
e Copy number change

Structural variation

e Long-range interaction

9.1.2 Work flows
e Alignment. requires tools sensitive to variation, e.g., GSNAP, BWA; Bowtie not optimized for this.

Variant calling, e.g., GATK.

Filter.

Biological context — variant annotation.

Integrative analysis, e.g., GWAS, genetical genomics.

9.1.3 Bioconductor software

Selected Bioconductor software relevant to DNA-seq work flows are summarized in Table 9.1. The gmapR
package provides access to the well-respected GSNAP aligner. VariantTools is an emerging tool that works
with aligned reads to call single-sample and sample-specific variants; we will work with VariantTools as part of
this course. Packages such as cn.mops and exomeCopy identify copy number variants from high-throughput
sequence data; r3Cseq provides tools to analyze and visualize long-range genomic interactions.

VariantAnnotation provides facilities for manipulated called variants stored in VCF files; the facilities
are very flexible, including simple range-based filtering, look-up in dbSNP, and coding and effect prediction
using standard data bases. VariantAnnotation plays well with ensemblVEP to feed data through the Ensembl
Variant Effect Predictor perl script, and to Bioconductor facilities for SNP analysis and genetical genomics
like snpStats and GGtools.

Thttp://www.broadinstitute.org/gatk/

64

http://bioconductor.org/packages/devel/bioc/html/gmapR.html
http://bioconductor.org/packages/devel/bioc/html/VariantTools.html
http://bioconductor.org/packages/devel/bioc/html/VariantTools.html
http://bioconductor.org/packages/devel/bioc/html/cn.mops.html
http://bioconductor.org/packages/devel/bioc/html/exomeCopy.html
http://bioconductor.org/packages/devel/bioc/html/r3Cseq.html
http://bioconductor.org/packages/devel/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/devel/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/devel/bioc/html/ensemblVEP.html
http://bioconductor.org/packages/devel/bioc/html/snpStats.html
http://bioconductor.org/packages/devel/bioc/html/GGtools.html
http://www.broadinstitute.org/gatk/

Table 9.1: Selected Bioconductor packages for DNA-seq analysis.

Package Description

gmapR Alignment (Linux only)

VariantTools Single-sample and tumor specific variant calls
deepSNV Sub-clonal SNVs in deep sequencing experiments
cn.mops Mixture of Poissons copy number variation estimates
exomeCopy Hidden Markov copy number variation estimates
r3Cseq Long-range genomic interactions

VariantAnnotation Manipulating and annotating VCF files
ensemblVEP Interface to the Ensembl Variant Effect Predictor
snpStats Down-stream GWAS; also GWAStools, GGtools

9.2 VariantTools

WARNING: This portion of the course is only available on Linux. The VariantTools package represents a
work in progress.

9.2.1 Example data: lung cancer cell lines

Exercise 19
Load the LungCancerLines experiment data package. Check out the package description (e.g., help (package="LungCancerLines
for a brief description of the data. Use tools from previous exercises to explore the FAST(Q and BAM files
that are available in this package.
Open the VariantTools package vignette and associated script.

Solution: Here we load the package and discover paths to the BAM and FASTQ files, exploration is up to
youl!

> library(LungCancerLines)
> library(ShortRead)
> FastqFileList(LungCancerFastqFiles())

FastqFileList of length 4
names(4): H1993.first H1993.last H2073.first H2073.last

> LungCancerBamFiles ()

BamFileList of length 2
names (2) : H1993 H2073

Open the VariantTools vignette with
> vignette(package="VariantTools", "VariantTools")

or by visiting the package landing page?.

%http://bioconductor.org/packages/devel/bioc/html/VariantTools.html

65

http://bioconductor.org/packages/devel/bioc/html/gmapR.html
http://bioconductor.org/packages/devel/bioc/html/VariantTools.html
http://bioconductor.org/packages/devel/bioc/html/deepSNV.html
http://bioconductor.org/packages/devel/bioc/html/cn.mops.html
http://bioconductor.org/packages/devel/bioc/html/exomeCopy.html
http://bioconductor.org/packages/devel/bioc/html/r3Cseq.html
http://bioconductor.org/packages/devel/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/devel/bioc/html/ensemblVEP.html
http://bioconductor.org/packages/devel/bioc/html/snpStats.html
http://bioconductor.org/packages/devel/bioc/html/GWAStools.html
http://bioconductor.org/packages/devel/bioc/html/GGtools.html
http://bioconductor.org/packages/devel/bioc/html/VariantTools.html
http://bioconductor.org/packages/devel/bioc/html/VariantTools.html
http://bioconductor.org/packages/devel/data/experiment/html/LungCancerLines.html
http://bioconductor.org/packages/devel/bioc/html/VariantTools.html
http://bioconductor.org/packages/devel/bioc/html/VariantTools.html
http://bioconductor.org/packages/devel/bioc/html/VariantTools.html

9.2.2 Calling single-sample variants

Exercise 20
Create the data objects p53, bams, bam, and tally.params in section 2.1 of the vignette. In particular, consult
the help page ?VariantTallyParam to gain insight on the parameters that you have established.

Follow section 2.2 of the VariantTools vignette, paying particular attention to each function and the
return value.

Exercise 21
Filter variants based on standard quality filters, as in section 2.3 of the vignette.

Are there additional filters that might be appropriate at this stage of the analysis? Implement and
additional filter following the hints in the brief section 2.4.

Exercise 22
Return to the bottom of page 2 of the VariantTools package, and identify variants overlapping exons in the
pH3 gene.

Exercise 23

As a simple exercise, export called variants to a VCF file following section 4 of the vignette. Spend the time
to discover the relationship between the variants you have identified, their representation in R, and their
representation on disk.

9.2.3 Additional work flows

Exercise 24
As time permits, explore sections of the vignette addressing variants called across samples

The previous exercise called variants in the metastatic sample, H1993. Conduct a similar analysis for the
tumor sample H2073.

Explore section 3.1, calling sample-specific variants.

66

http://bioconductor.org/packages/devel/bioc/html/VariantTools.html
http://bioconductor.org/packages/devel/bioc/html/VariantTools.html

Chapter 10

Working with Called Variants

A major product of DNASeq experiments are catalogs of called variants (e.g., SNPs, indels). We will use
the VariantAnnotation package to explore this type of data. Sample data included in the package are a
subset of chromosome 22 from the 1000 Genomes project. Variant Call Format (VCF; full description) text
files contain meta-information lines, a header line with column names, data lines with information about a
position in the genome, and optional genotype information on samples for each position.

Important operations on VCF files available with the VariantAnnotation package are summarized in
Table 10.1.

10.1 Variant call format (VCF) files with VariantAnnotation

10.1.1 Data input

Exercise 25
The objective of this exercise is to compare the quality of called SNPs that are located in dbSNP, versus
those that are novel.

Locate the sample data in the file system. Explore the metadata (information about the content of the
file) using scanVcfHeader. Discover the ‘info’ fields VT (variant type), and RSQ (genotype imputation quality).

Input the sample data using readVcf. You'll need to specify the genome build (genome="hg19") on which
the variants are annotated. Take a peak at the rowData to see the genomic locations of each variant.

Data resource often adopt different naming conventions for sequences. For instance, dbSNP uses abbrevi-
ations such as ch22 to represent chromosome 22, whereas our VCF file uses 22. Use rowData and seqlevels<-
to extract the row data of the variants, and rename the chromosomes.

Solution: Explore the header:

> library(VariantAnnotation)
> f1 <- system.file("extdata", "chr22.vcf.gz", package="VariantAnnotation")
> (hdr <- scanVcfHeader (f1))

class: VCFHeader

samples(5): HGO0096 HGO0097 HGO0099 HGO0100 HGO0101
meta(1l): fileformat

fixed(1): ALT

info(22): LDAF AVGPOST ... VT SNPSOURCE

geno(3): GT DS GL

> info(hdr) [c("VT", "RSQ"),]

67

http://bioconductor.org/packages/devel/bioc/html/VariantAnnotation.html
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20110521/
http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41
http://bioconductor.org/packages/devel/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/devel/bioc/html/VariantAnnotation.html

Table 10.1: Working with VCF files and data.

Category Function Description
Read scanVcfHeader Retrieve file header information
scanVcfParam Select fields to read in
readVcf Read VCF file into a VCF class
scanVcf Read VCF file into a list
Filter filterVcf Filter a VCF from one file to another
Write writeVct Write a VCF file to disk
Annotate locateVariants Identify where variant overlaps a gene annotation
predictCoding Amino acid changes for variants in coding regions
summarizeVariants Summarize variant counts by sample
SNPs genotypeToSnpMatrix Convert genotypes to a SnpMatrix
GLtoGP Convert genotype likelihoods to genotypes
snpSummary Counts and distribution statistics for SNPs
Manipulate expand Convert CompressedVCF to ExpandedVCF

cbind, rbind

Combine by column or row

DataFrame with 2 rows and 3 columns

Type

Description
<character>

String indicates what type of variant the line represents

Number
<character> <character>

VT 1

RSQ 1

Float

Input the data and peak at their locations:

> (vcf <- readVcf(f1l, "hgl9"))

class: CollapsedVCF

Genotype imputation quality from MaCH/Thunder

dim: 10376 5
rowData(vct):

GRanges with 5 metadata columns: paramRangeID, REF, ALT, QUAL, FILTER
info(vcf):

DataFrame with 22 columns: LDAF, AVGPOST, RSQ, ERATE, THETA, CIEND, CIPOS, END, HOMLEN, HOMSEQ, SVLEN
info(header(vcf)):

Number Type Description

LDAF 1 Float MLE Allele Frequency Accounting for LD

AVGPOST 1 Float Average posterior probability from MaCH/Thunder

RSQ 1 Float Genotype imputation quality from MaCH/Thunder

ERATE 1 Float Per-marker Mutation rate from MaCH/Thunder

THETA 1 Float Per-marker Transition rate from MaCH/Thunder

CIEND 2 Integer Confidence interval around END for imprecise va...

CIPOS 2 Integer Confidence interval around POS for imprecise va...

END 1 Integer End position of the variant described in this r...

HOMLEN Integer Length of base pair identical micro-homology at...

HOMSEQ . String Sequence of base pair identical micro-homology ...

SVLEN 1 Integer Difference in length between REF and ALT alleles

SVTYPE 1 String Type of structural variant

AC . Integer Alternate Allele Count

AN 1 Integer Total Allele Count

AA 1 String Ancestral Allele, ftp://ftp.1000genomes.ebi.ac....

AF 1 Float Global Allele Frequency based on AC/AN

68

[reached getOption("max.print") -- omitted 6 rows]

geno (vcf):
SimplelList of length 3: GT, DS, GL
geno (header (vef)) :
Number Type Description
GT 1 String Genotype
DS 1 Float Genotype dosage from MaCH/Thunder
GL . Float Genotype Likelihoods

> head(rowData(vcf), 3)

GRanges with 3 ranges and 5 metadata columns:

seqnames ranges strand | paramRangeID
<Rle> <IRanges> <Rle> | <factor>
rs7410291 22 [50300078, 50300078] * | <NA>
rs147922003 22 [50300086, 50300086] * | <NA>
rs114143073 22 [50300101, 50300101] * | <NA>
REF ALT QUAL FILTER
<DNAStringSet> <DNAStringSetList> <numeric> <character>
rs7410291 A G 100 PASS
rs147922003 C T 100 PASS
rs114143073 G A 100 PASS
seqlengths:
22
NA

Rename chromosome levels:

> seqlevels(vcf, force=TRUE) <- c("22"="ch22")

10.2 SNP Annotation

Variants can be easily identified according to region such as coding, intron, intergenic, spliceSite etc.
Amino acid coding changes are computed for the non-synonymous variants. SIFT and PolyPhen databases
provide predictions of how severely the coding changes affect protein function. Additional annotations are
easily crafted using the GenomicRanges and GenomicFeatures software in conjunction with Bioconductor
and broader community annotation resources.

Exercise 26
The SNPIlocs.Hsapiens.dbSNP.20101109 contains information about SNPs in a particular build of dbSNP.
Load the package.

Review the following short helper function to query whether SNPs are in the data base (a version of this
function will be introduced to VariantAnnotation before the next release)

.isInDbSNP <-
function(vcf, sequname, rsid=TRUE)

>
+
+{
+ snpLocs <- getSNPlocs (seqname)

+ idx <- # correct seqname, width of variant ==
+ ((seqnames (vcf) == seqname) & (width(rowData(vcf)) == 1L))

69

http://bioconductor.org/packages/devel/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/devel/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/devel/data/annotation/html/SNPlocs.Hsapiens.dbSNP.20101109.html
http://bioconductor.org/packages/devel/bioc/html/VariantAnnotation.html

Figure 10.1: Quality scores of variants in dbSNP, compared to those not in dbSNP.

Table 10.2: Variant locations

Location Details

coding Within a coding region

fiveUTR Within a 5’ untranslated region
threeUTR Within a 3’ untranslated region
intron Within an intron region

intergenic Not within a transcript associated with a gene
spliceSite Overlaps any of the first or last 2 nucleotides of an intron

idx <- as.vector(idx)
snps <- rowData(vcf) [idx]
result <- rep(NA, nrow(vcf))
result[idx] <- if (rsid) {
sub("rs", "", names(snps)) /in}), snpLocs[["RefSNP_id"]]
} else {
start (snps) J/inj, snpLocs[["loc"]]
}

result

+ + + + 4+ + + + + +

}

Create a data frame containing the dbSNP membership status and imputation quality of each SNP.
Create a density plot to illustrate the results.

Solution: Discover whether SNPs are located in dbSNP, using our helper function.

> library(SNPlocs.Hsapiens.dbSNP.20101109)
> inDbSNP <- .isInDbSNP(vcf, "ch22")
> table(inDbSNP)

Create a data frame summarizing SNP quality and dbSNP membership:

> metrics <-
+ data.frame (inDbSNP=inDbSNP, RSQ=info (vcf)$RSQ)

Finally, visualize the data, e.g., using ggplot2 (Figure 10.1).

> library(ggplot2)

> ggplot(metrics, aes(RSQ, fill=inDbSNP)) +

+ geom_density(alpha=0.5) +

scale_x_continuous (name="MaCH / Thunder Imputation Quality") +
scale_y_continuous (name="Density") +

theme (legend.position="top")

+ + +

Locating variants in and around genes Variant location with respect to genes can be identified with
the locateVariants function. Regions are specified in the region argument and can be one of the following
constructors: CodingVariants(), IntronVariants(), FiveUTRVariants (), ThreeUTRVariants(), IntergenicVari-
ants(), SpliceSiteVariants(), or AllVariants(). Location definitions are shown in Table 10.2.

70

Exercise 27
Load the TxDb.Hsapiens.UCSC.hg19.knownGene annotation package, and read in the chr22.vcf.gz exam-
ple file from the VariantAnnotation package.
Remembering to re-name sequence levels, use the locateVariants function to identify coding variants.
Summarize aspects of your data, e.g., did any coding variants match more than one gene? How many
coding variants are there per gene ID?

Solution: Here we open the known genes data base, and read in the VCF file.

library(TxDb.Hsapiens.UCSC.hg19.knownGene)

txdb <- TxDb.Hsapiens.UCSC.hgl9.knownGene

fl <- system.file("extdata", "chr22.vcf.gz", package="VariantAnnotation")
vef <- readVcf (f1, "hgl9")

seqlevels(vcf, force=TRUE) <- c("22"="chr22")

V VvV Vv VvV

The next lines locate coding variants.

> rd <- rowData(vcf)
> loc <- locateVariants(rd, txdb, CodingVariants())
> head(loc, 3)

GRanges with 3 ranges and 7 metadata columns:

segnames ranges strand | LOCATION QUERYID TXID
<Rle> <IRanges> <Rle> | <factor> <integer> <integer>
[1] chr22 [50301422, 50301422] * | coding 24 73482
(2] chr22 [50301476, 50301476] x| coding 25 73482
[3] chr22 [50301488, 50301488] * | coding 26 73482
CDSID GENEID PRECEDEID FOLLOWID
<integer> <character> <character> <character>
[1] 217009 79087 <NA> <NA>
(2] 217009 79087 <NA> <NA>
(3] 217009 79087 <NA> <NA>
seqlengths:
chr22
NA

To answer gene-centric questions data can be summarized by gene regardless of transcript.

> ## Did any coding variants match more than one gene?
> splt <- split(1oc$GENEID, 1oc$QUERYID)
> table(sapply(splt, function(x) length(unique(x)) > 1))

FALSE TRUE
956 15

> ## Summarize the number of coding variants by gene ID
> splt <- split(loc$QUERYID, 1loc$GENEID)
> head(sapply(splt, function(x) length(unique(x))), 3)

113730 1890 23209
22 15 30

71

http://bioconductor.org/packages/devel/data/annotation/html/TxDb.Hsapiens.UCSC.hg19.knownGene.html
http://bioconductor.org/packages/devel/bioc/html/VariantAnnotation.html

Amino acid coding changes predictCoding computes amino acid coding changes for non-synonymous
variants. Only ranges in query that overlap with a coding region in subject are considered. Reference
sequences are retrieved from either a BSgenome or fasta file specified in seqSource. Variant sequences are
constructed by substituting, inserting or deleting values in the varAllele column into the reference sequence.
Amino acid codes are computed for the variant codon sequence when the length is a multiple of 3.

The query argument to predictCoding can be a GRanges or VCF. When a GRanges is supplied the varAllele
argument must be specified. In the case of a VCF object, the alternate alleles are taken from alt(<VCF>) and
the varAllele argument is not specified.

The result is a modified query containing only variants that fall within coding regions. Each row represents
a variant-transcript match so more than one row per original variant is possible.

> library(BSgenome.Hsapiens.UCSC.hg19)
> coding <- predictCoding(vcf, txdb, seqSource=Hsapiens)
> coding[5:9]

GRanges with 5 ranges and 17 metadata columns:
segnames ranges strand | paramRangeID
<Rle> <IRanges> <Rle> | <factor>
22:50301584 chr22 [50301584, 50301584] - <NA>
REF ALT QUAL FILTER
<DNAStringSet> <DNAStringSetList> <numeric> <character>
22:50301584 C T 100 PASS
varAllele CDSLOC PROTEINLOC QUERYID
<DNAStringSet> <IRanges> <CompressedIntegerList> <integer>
22:50301584 A (777, T77] 259 28
TXID CDSID GENEID CONSEQUENCE REFCODON
<character> <integer> <character> <factor> <DNAStringSet>
22:50301584 73482 217009 79087 synonymous CCG
VARCODON REFAA VARAA
<DNAStringSet> <AAStringSet> <AAStringSet>
22:50301584 CCA P P
[reached getOption("max.print") -- omitted 4 rows]
seqlengths:
chr22
NA

Using variant rs114264124 as an example, we see varAllele A has been substituted into the refCodon CGG to
produce varCodon CAG. The refCodon is the sequence of codons necessary to make the variant allele substitution
and therefore often includes more nucleotides than indicated in the range (i.e. the range is 50302962,
50302962, width of 1). Notice it is the second position in the refCodon that has been substituted. This
position in the codon, the position of substitution, corresponds to genomic position 50302962. This genomic
position maps to position 698 in coding region-based coordinates and to triplet 233 in the protein. This is a
non-synonymous coding variant where the amino acid has changed from R (Arg) to Q (Gln).

When the resulting varCodon is not a multiple of 3 it cannot be translated. The consequence is considered
a frameshift and varAA will be missing.

> coding[coding$CONSEQUENCE == "frameshift"]
GRanges with 1 range and 17 metadata columns:
segnames ranges strand | paramRangeID
<Rle> <IRanges> <Rle> | <factor>
22:50317001 chr22 [50317001, 50317001] + <NA>

72

REF ALT QUAL FILTER
<DNAStringSet> <DNAStringSetList> <numeric> <character>

22:50317001 G GCACT 233 PASS
varAllele CDSLOC PROTEINLOC QUERYID
<DNAStringSet> <IRanges> <CompressedIntegerList> <integer>
22:50317001 GCACT [808, 808] 270 359
TXID CDSID GENEID CONSEQUENCE REFCODON
<character> <integer> <character> <factor> <DNAStringSet>
22:50317001 72592 214765 79174 frameshift GCC
VARCODON REFAA VARAA
<DNAStringSet> <AAStringSet> <AAStringSet>
22:50317001 ACC A
seqlengths:
chr22
NA

SIFT and PolyPhen databases From predictCoding we identified the amino acid coding changes for the
non-synonymous variants. For this subset we can retrieve predictions of how damaging these coding changes
may be. SIFT (Sorting Intolerant From Tolerant) and PolyPhen (Polymorphism Phenotyping) are methods
that predict the impact of amino acid substitution on a human protein. The SIFT method uses sequence
homology and the physical properties of amino acids to make predictions about protein function. PolyPhen
uses sequence-based features and structural information characterizing the substitution to make predictions
about the structure and function of the protein.

Collated predictions for specific dbSNP builds are available as downloads from the SIFT and PolyPhen
web sites. These results have been packaged into SIFT.Hsapiens.dbSNP132.db and PolyPhen.Hapiens.dbSNP131.db
and are designed to be searched by rsid. Variants that are in dbSNP can be searched with these database
packages. When working with novel variants, SIFT and PolyPhen must be called directly. See references for
home pages.

Identify the non-synonymous variants and obtain the rsids.

nms <- names (coding)

idx <- coding$CONSEQUENCE == "nonsynonymous"

nonsyn <- coding[idx]

names (nonsyn) <- nms[idx]

rsids <- unique(names (nonsyn) [grep("rs", names(nonsyn), fixed=TRUE)])

vV V. Vv Vv Vv

Detailed descriptions of the database columns can be found with ?SIFTDbColumns and ?PolyPhenDbColumns.
Variants in these databases often contain more than one row per variant. The variant may have been reported
by multiple sources and therefore the source will differ as well as some of the other variables.

> library(SIFT.Hsapiens.dbSNP132)
> ## rsids in the package
> head(keys (SIFT.Hsapiens.dbSNP132), 3)

[1] "rs10000692" "rs10001580" "rs10002700"

> ## list available columns
> cols(SIFT.Hsapiens.dbSNP132)

[1] "RSID" "PROTEINID" "AACHANGE" "METHOD" "AA"
[6] "PREDICTION" "SCORE" "MEDIAN" "POSTIONSEQS" "TOTALSEQS"

73

select a subset of columns

a warning is thrown when a key is not found in the database
subst <- c("RSID", "PREDICTION", "SCORE", "AACHANGE", "PROTEINID")
sift <- select(SIFT.Hsapiens.dbSNP132, keys=rsids, cols=subst)
head(sift, 3)

vV V.V Vv Vv

RSID PROTEINID AACHANGE PREDICTION SCORE
1 rs114264124 NP_077010 R233Q TOLERATED 0.59
2 rs114264124 NP_077010 R233Q TOLERATED 1.00
3 rs114264124 NP_077010 R233Q TOLERATED 0.20

PolyPhen provides predictions using two different training datasets and has considerable information
about 3D protein structure. See ?PolyPhenDbColumns or the PolyPhen web site listed in the references for
more details.

10.3 Large-scale filtering

One source of VCF files is from whole-genome sequencing and variant calling; an example data set is from
Complete Genomics, and a subset is available on the Amazon Machine instance accompanying this course

> vefDir <- "“/Seattle-Feb-2013"
> dir(vefDir)
> vcfFile <- dir(vcfDir, ".gz$", full=TRUE)

The data were retrieved from the Complete Genomics web site, the first 750,000 of about 14 million variants
selected, and the resulting file compressed and indexed. Indexing makes them accessible to fast queries using
which argument to ScanVcfParam.

Exercise 28
The objective of this exercise is to filter the larger VCF file to a subset of interesting variants that we might
wish to study in depth at a later date. We use the filterVcf function of the VariantAnnotation package to
perform the filtering.

Start by taking a look at the (complicated) header information

> hdr <- scanVcfHeader (vcfFile)

We’ll be paying attention to the SS INFO field, and the AD GENO field. Determine the data types and
possible values for these fields, using commands like

> info(hdr)
> geno (hdr)

What data type would you use to represent the SS field for a single or several VCF records in R? What
about the AD field, across all samples?

This VCF file is big. While we can read this into memory all at once, we will often want to ‘chunk’
through a file, reading many (e.g., a million) records at a time. We do this by creating a TabizFile and
specifying a yieldSize representing the size of the file that we’d like to read at each go. Create a TabizFile
with yieldSize=100000 and verify with a simple loop that the entire file appears to be processed in chunks
of the specified size, along the lines of. . .

tbx <- TabixFile(vcfFile, yieldSize=100000)

open (tbx)

while (len <- nrow(readVcf (tbx, "hgl9")))
cat("read", len, "rows\n")

+ VvV Vv Vv

74

http://bioconductor.org/packages/devel/bioc/html/VariantAnnotation.html

As you can see from the chunking exercise, it takes quite a bit of time to process these lines. To filter 14
million variants effectively, it can pay to do a cheaper ‘pre-filter’. Specifically, we’re interested in variants
tagged ‘Germline’. If we were to represents each VCF record as an element of a character vector x, then we
could write a one-liner that returned TRUE if the line contained the word ‘Germline’:

> grepl("Germline", x, fixed=TRUE)

This would be fast to read in to R, and fast to perform the filter. The filterVcf function allows us to specify
a pre-filter that works just like this. The filters are constructed using the FilterRules constructor in IRanges,
by translating our one-liner into a simple function call, and placing the function call into a list.

> isGermline <- function(x)
+ grepl ("Germline", x, fixed=TRUE)
> filters <- FilterRules(list(isGermline=isGermline))

The idea is that several filters are chained together. Each filter returns a logical vector indicating the subset
of data to be processed by the next filter.
Here is our pre-filter in action:

> destination <- tempfile() # temporary location
> filterVcf (vcfFile, "hgl19", destination, prefilters=filters)

This is pretty fast, and drops the number of variants under consideration quite substantially, to about 110000.

Our next filter is more challenging to write. We’re interested in allelic depth, a summary of the evidence
for the variant summarized in the AD GENO field. There are many variants, each sample has two values of
AD, and there are two samples. This means that AD is a three-dimensional array. Our filter criteria is that
the ratio of (‘alternate allele’ of the tumor sample or the ‘reference allele’ of the the normal sample) to total
reads is greater than 0.1. Here’s function implementing this:

> allelicDepth <- function(x)

+{

+ ## ratio of AD of the 'alternate allele' for the tumor sample
+ ## OR 'reference allele' for normal samples to total reads for
+ ## the sample should be greater than some threshold (say 0.1,
+ ## that is: at least 10), of the sample should have the allele
+ ## of interest)

+ ad <- geno(x)[["AD"]]

+ tumorPct <- adl[,1,2,drop=FALSE] / rowSums(ad[,1,,drop=FALSE])
+ normPct <- ad[,2,1, drop=FALSE] / rowSums(ad[,2,,drop=FALSE])
+ test <- (tumorPct > 0.1) | (normPct > 0.1)

+ !is.na(test) & test

+ F

We can add it to our list of filters

> filters <- FilterRules(list(isGermline=isGermline,
+ allelicDepth=allelicDepth))

To use this filter, we actually need to fully parse the VCF file into the VCF instance; the pre-filter trick used
for germline filtering is not enough. filterVcf allows us to perform a filter on the VCF instance, too, and
does so after pre-filtering

> destination <- tempfile()
> filterVcf(vcfFile, "hgl9", destination, prefilters=filters[1],
+ filters=filters[2])

75

http://bioconductor.org/packages/devel/bioc/html/IRanges.html

And finally input our interesting variants, confirming that we’ve done our filtering as desired.

> vcf <- readVcf(destination, "hg19")
> all(info(vcf)$SS == "Germline")
> table(allelicDepth(vct))

76

Part 1V

Annotation and Visualization

77

Chapter 11

(Gene-centric Annotation

Bioconductor provides extensive annotation resources, summarized in Figure 11.1. These can be gene-,
or genome-centric. Annotations can be provided in packages curated by Bioconductor, or obtained from
web-based resources. Gene-centric AnnotationDbi packages include:

Organism level: e.g. org.Mm.eg.db, Homo.sapiens.

Platform level: e.g. hgul33plus2.db, hgul33plus2.probes, hgul33plus2.cdf.
Homology level: e.g. hom.Dm.inp.db.

System biology level: GO.db, KEGG.db, Reactome.db.

Examples of genome-centric packages include:

e (GenomicFeatures, to represent genomic features, including constructing reproducible feature or tran-
script data bases from file or web resources.

e Pre-built transcriptome packages, e.g. TxDb.Hsapiens. UCSC.hg19.knownGene based on the H. sapiens
UCSC hgl9 knownGenes track.

e BSgenome for whole genome sequence representation and manipulation.

e Pre-built genomes, e.g., BSgenome.Hsapiens. UCSC.hg19 based on the H. sapiens UCSC hgl9 build.

Web-based resources include

e biomaRt to query biomart resource for genes, sequence, SNPs, and etc.
e rtracklayer for interfacing with browser tracks, especially the UCSC genome browser.

11.1 Gene-centric annotations with AnnotationDbi

Organism-level (‘org’) packages contain mappings between a central identifier (e.g., Entrez gene ids) and
other identifiers (e.g. GenBank or Uniprot accession number, RefSeq id, etc.). The name of an org package
is always of the form org.<Sp>.<id>.db (e.g. org.Sc.sgd.db) where <Sp> is a 2-letter abbreviation of the
organism (e.g. Sc for Saccharomyces cerevisiae) and <id> is an abbreviation (in lower-case) describing the
type of central identifier (e.g. sgd for gene identifiers assigned by the Saccharomyces Genome Database,
or eg for Entrez gene ids). The “How to use the ‘.db’ annotation packages” vignette in the AnnotationDbi
package (org packages are only one type of “.db” annotation packages) is a key reference. The ‘.db’ and most
other Bioconductor annotation packages are updated every 6 months.

Annotation packages contain an object named after the package itself. These objects are collectively
called AnnotationDb objects, with more specific classes named OrgDb, ChipDb or TranscriptDb objects.
Methods that can be applied to these objects include cols, keys, keytypes and select. Common operations
for retrieving annotations are summarized in Table 11.1.

78

http://bioconductor.org/packages/devel/bioc/html/AnnotationDbi.html
http://bioconductor.org/packages/devel/data/annotation/html/org.Mm.eg.db.html
http://bioconductor.org/packages/devel/data/annotation/html/Homo.sapiens.html
http://bioconductor.org/packages/devel/data/annotation/html/hgu133plus2.db.html
http://bioconductor.org/packages/devel/data/annotation/html/hgu133plus2.probes.html
http://bioconductor.org/packages/devel/data/annotation/html/hgu133plus2.cdf.html
http://bioconductor.org/packages/devel/data/annotation/html/hom.Dm.inp.db.html
http://bioconductor.org/packages/devel/bioc/html/GO.db.html
http://bioconductor.org/packages/devel/bioc/html/KEGG.db.html
http://bioconductor.org/packages/devel/bioc/html/Reactome.db.html
http://bioconductor.org/packages/devel/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/devel/data/annotation/html/TxDb.Hsapiens.UCSC.hg19.knownGene.html
http://bioconductor.org/packages/devel/bioc/html/BSgenome.html
http://bioconductor.org/packages/devel/data/annotation/html/BSgenome.Hsapiens.UCSC.hg19.html
http://bioconductor.org/packages/devel/bioc/html/biomaRt.html
http://www.biomart.org/
http://bioconductor.org/packages/devel/bioc/html/rtracklayer.html
http:://genome.ucsc.edu
http://bioconductor.org/packages/devel/bioc/html/AnnotationDbi.html
http://bioconductor.org/packages/devel/data/annotation/html/org.Sc.sgd.db.html
http://bioconductor.org/packages/devel/bioc/html/AnnotationDbi.html

PLATFORM
PKGS

GENE ID

HOMOLOGY
PKGS

GENE ID

\

SYSTEM
BIOLOGY
(GO, KEGG)

ONTO ID’'S

ORG
PKGS
GENE ID TRANSCRIPT
ONTO ID \L PKGS
GENE ID

Figure 11.1: Annotation Packages: the big picture

Table 11.1: Common operations for retrieving and manipulating annotations.

Category Function Description
Discover cols List the kinds of columns that can be returned

keytypes List columns that can be used as keys

keys List values that can be expected for a given keytype

select Retrieve annotations matching keys, keytype and cols
Manipulate setdiff, union, intersect Operations on sets

duplicated, unique Mark or remove duplicates

%in%, match Find matches

any, all Are any TRUE? Are all?

merge Combine two different data.frames based on shared keys
GRanges* transcripts, exons, cds Features (transcripts, exons, coding sequence) as GRanges.

transcriptsBy , exonsBy

cdsBy

Features group by gene, transcript, etc., as GRangesList.

79

Exercise 29
What is the name of the org package for Drosophila? Load it. Display the OrgDb object for the org.Dm.eg.db
package. Use the cols method to discover which sorts of annotations can be extracted from it.

Use the keys method to extract UNIPROT identifiers and then pass those keys in to the select method
in such a way that you extract the SYMBOL (gene symbol) and KEGG pathway information for each.

Use select to retrieve the ENTREZ and SYMBOL identifiers of all genes in the KEGG pathway 00310.

Solution: The OrgDb object is named org.Dm.eg.db.

> library(org.Dm.eg.db)
> cols(org.Dm.eg.db)

[1] "ENTREZID" "ACCNUM"

[6] "CHRLOCEND" "ENZYME"

[11] "REFSEQ" "SYMBOL"

[16] "ENSEMBLTRANS" "GENENAME"
[21] "ONTOLOGY" "GOALL"

[26] "FLYBASECG" "FLYBASEPROT"

> keytypes(org.Dm.eg.db)

[1] "ENTREZID" "ACCNUM"

[6] "CHRLOCEND" "ENZYME"

[11] "REFSEQ" "SYMBOL"

[16] "ENSEMBLTRANS" "GENENAME"
[21] "ONTOLOGY" "GOALL"

[26] "FLYBASECG" "FLYBASEPROT"

"ALIAS"

"MAP"
"UNIGENE"
"UNIPROT"
"EVIDENCEALL"

"ALTAS"

IIMAPII
"UNIGENE"
"UNIPROT"
"EVIDENCEALL"

IICHRII

"PATH n
"ENSEMBL"
IIGOII
"ONTOLOGYALL"

n CHRII

IIPATH n
"ENSEMBL"

n GO n
"ONTOLOGYALL"

> uniprotKeys <- head(keys(org.Dm.eg.db, keytype="UNIPROT"))

> cols <- c("SYMBOL",

IIPATHH)

"CHRLOC"
"PMID"
"ENSEMBLPROT"
"EVIDENCE"
"FLYBASE"

"CHRLOC"

n PMID n
"ENSEMBLPROT"
"EVIDENCE"
"FLYBASE"

> select(org.Dm.eg.db, keys=uniprotKeys, cols=cols, keytype="UNIPROT")

UNIPROT
Q8IRZO
QO95RP8
Q95RU8
QOW5H1
P39205
Q24312

DO WN -

SYMBOL
CG3038
CG3038

CG13377
cin
ewg

PATH
<NA>
<NA>

G9a 00310

<NA>
<NA>
<NA>

Selecting UNIPROT and SYMBOL ids of KEGG pathway 00310 is very similar:

> kegg <- select(org.Dm.eg.db, "00310", c("UNIPROT", "SYMBOL"), "PATH")
> nrow(kegg)

(1] 36

> head(kegg, 3)

PATH UNIPROT SYMBOL
1 00310 Q95RU8

G9a

2 00310 QOW5EO0 Hmt4-20
3 00310 QOW3N9 CG10932

80

http://bioconductor.org/packages/devel/bioc/html/org.Dm.eg.db.html

Table 11.2: Selected packages querying web-based annotation services.

Package Description

biomaRt http://biomart.org, Ensembl and other annotations
uniprot.ws http://uniprot.org, protein annotations

KEGGREST http://www.genome. jp/kegg, KEGG pathways

SRAdb http://www.ncbi.nlm.nih.gov/sra, sequencing experiments.
rtracklayer http://genome.ucsc.edu, genome tracks.

GEOquery http://www.ncbi.nlm.nih.gov/geo/, array and other data
ArrayExpress http://www.ebi.ac.uk/arrayexpress/, array and other data

Exercise 30

For convenience, 1rTest, a DGEGLM object from the RNA-seq chapter, is included in the SequenceAnaly-
sisData package. The following code loads this data and creates a ‘top table’ of the ten most differentially
represented genes. This top table is then coerced to a data.frame.

library(SequenceAnalysisData)
library(edgeR)

library(org.Dm.eg.db)

data(lrTest)

tt <- as.data.frame(topTags(1rTest))

vV VvV Vv Vv Vv

Extract the Flybase gene identifiers (FLYBASE) from the row names of this table and map them to their
corresponding Entrez gene (ENTREZID) and symbol ids (SYMBOL) using select. Use merge to add the results of
select to the top table.

Solution:

> fbids <- rownames(tt)

> cols <- c("ENTREZID", "SYMBOL")

> anno <- select(org.Dm.eg.db, fbids, cols, "FLYBASE")
> ttanno <- merge(tt, anno, by.x=0, by.y="FLYBASE")

> dim(ttanno)

[1] 10 8

> head(ttanno, 3)

Row.names logConc logFC LR.statistic PValue FDR ENTREZID SYMBOL
1 FBgn0000071 -11 2.8 183 1.1e-41 1.1e-38 40831 Ama
2 FBgn0024288 -12 -4.7 179 7.1e-41 6.3e-38 45039 Sox100B
3 FBgn0033764 -12 3.5 188 6.8e-43 7.8e-40 <NA> <NA>

11.2 biomaRt and other web-based resources
A short summary of select Bioconductor packages enabling web-based queries is in Table 11.2.

11.2.1 Using biomaRt

The biomaRt package offers access to the online biomart resource. this consists of several data base resources,
referred to as ‘marts’. Each mart allows access to multiple data sets; the biomaRt package provides methods
for mart and data set discovery, and a standard method getBM to retrieve data.

81

http://bioconductor.org/packages/devel/bioc/html/biomaRt.html
http://biomart.org
http://bioconductor.org/packages/devel/bioc/html/uniprot.ws.html
http://uniprot.org
http://bioconductor.org/packages/devel/bioc/html/KEGGREST.html
http://www.genome.jp/kegg
http://bioconductor.org/packages/devel/bioc/html/SRAdb.html
http://www.ncbi.nlm.nih.gov/sra
http://bioconductor.org/packages/devel/bioc/html/rtracklayer.html
http://genome.ucsc.edu
http://bioconductor.org/packages/devel/bioc/html/GEOquery.html
http://www.ncbi.nlm.nih.gov/geo/
http://bioconductor.org/packages/devel/bioc/html/ArrayExpress.html
http://www.ebi.ac.uk/arrayexpress/
http://bioconductor.org/packages/devel/bioc/html/biomaRt.html
http://bioconductor.org/packages/devel/bioc/html/biomaRt.html
http://www.biomart.org
http://bioconductor.org/packages/devel/bioc/html/biomaRt.html

Exercise 31
Load the biomaRt package and list the available marts. Choose the ensembl mart and list the datasets for
that mart. Set up a mart to use the ensembl mart and the hsapiens_gene_ensembl dataset.

A biomaRt dataset can be accessed via getBM. In addition to the mart to be accessed, this function

takes filters and attributes as arguments. Use filterOptions and listAttributes to discover values for these
arguments. Call getBM using filters and attributes of your choosing.

Solution:

> library(biomaRt)

> head(listMarts(), 3) ## list the marts
> head(listDatasets (useMart("ensembl")), 3) ## mart datasets

> ensembl <- ## fully specified mart
+ useMart ("ensembl", dataset = "hsapiens_gene_ensembl")

> head(listFilters(ensembl), 3) ## filters

> myFilter <- "chromosome_name"

> head(filterOptions(myFilter, ensembl), 3) ## return values

> myValues <- c("21", "22")

> head(listAttributes (ensembl), 3) ## attributes

> myAttributes <- c("ensembl_gene_id","chromosome_name")

> ## assemble and query the mart

> res <- getBM(attributes = myAttributes, filters = myFilter,
+ values = myValues, mart = ensembl)

Use head(res) to see the results.

82

http://bioconductor.org/packages/devel/bioc/html/biomaRt.html
http://bioconductor.org/packages/devel/bioc/html/biomaRt.html

Chapter 12

(Genomic Annotation

12.1 Whole genome sequences

There are a diversity of packages and classes available for representing large genomes. Several include:

TxDb.* For transcript and other genome / coordinate annotation.

BSgenome For whole-genome representation. See available.packages for pre-packaged genomes, and the
vignette ‘How to forge a BSgenome data package’ in the

Homo.sapiens For integrating TxDb* and org.* packages.

SNPIlocs.* For model organism SNP locations derived from dbSNP.

FaFile (Rsamtools) for accessing indexed FASTA files.

SIFT.*, PolyPhen Variant effect scores.

12.2 Gene models
12.2.1 TxDb.* packages for model organisms

Genome-centric packages are very useful for annotations involving genomic coordinates. It is straight-forward,
for instance, to discover the coordinates of coding sequences in regions of interest, and from these retrieve
corresponding DNA or protein coding sequences. Other examples of the types of operations that are easy
to perform with genome-centric annotations include defining regions of interest for counting aligned reads
in RNA-seq experiments and retrieving DNA sequences underlying regions of interest in ChIP-seq analysis,
e.g., for motif characterization.

uc002jaqg.3
uc002jap.3

uc002jar.3

Figure 12.1: Gene model showing exons on three transcripts.

83

http://bioconductor.org/packages/devel/bioc/html/BSgenome.html
http://bioconductor.org/packages/devel/data/annotation/html/Homo.sapiens.html
http://bioconductor.org/packages/devel/bioc/html/Rsamtools.html

Exercise 32

Load the ‘transcript.db’ package relevant to the dm3 build of D. melanogaster. Use select and friends to
select the Flybase gene ids of the top table tt and the Flybase transcript names (TXNAME) and Entrez
gene identifiers (GENEID).

Use cdsBy to extract all coding sequences, grouped by transcript. Subset the coding sequences to contain
just the transcripts relevant to the top table. How many transcripts are there? What is the structure of the
first transcript’s coding sequence?

Load the ‘BSgenome’ package for the dm3 build of D. melanogaster. Use the coding sequences ranges
of the previous part of this exercise to extract the underlying DNA sequence, using the extractTranscripts-
FromGenome function. Use Biostrings’ translate to convert DNA to amino acid sequences.

Solution: The following loads the relevant Transcript.db package, and creates a more convenient alias to
the TranscriptDb instance defined in the package.

> library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)
> txdb <- TxDb.Dmelanogaster.UCSC.dm3.ensGene

We also need the data — flybase IDs from our differential expression analysis.

> library(SequenceAnalysisData)
> data(lrTest)
> fbids <- rownames (topTags(lrTest))

We can discover available keys (using keys) and columns (cols) in txdb, and then use select to retrieve the
transcripts associated with each differentially expressed gene. The mapping between gene and transcript is
not one-to-one — some genes have more than one transcript.

> txnm <- select(txdb, fbids, "TXNAME", "GENEID")
> nrow(txnm)

[1] 19
> head(txnm, 3)

GENEID TXNAME
1 FBgn0039155 FBtr0084549
2 FBgn0039827 FBtr0085755
3 FBgn0039827 FBtr0085756

The TranscriptDb instances can be queried for data that is more structured than simple data frames, and
in particular return GRanges or GRangesList instances to represent genomic coordinates. These queries are
performed using cdsBy (coding sequence), transcriptsBy (transcripts), etc., where a function argument by
specifies how coding sequences or transcripts are grouped. Here we extract the coding sequences grouped
by transcript, returning the transcript names, and subset the resulting GRangesList to contain just the
transcripts of interest to us. The first transcript is composed of 6 distinct coding sequence regions.

> cds <- cdsBy(txdb, "tx", use.names=TRUE) [txnm$TXNAME]
> length(cds)

[1] 19
> cds[1]

GRangesList of length 1:
$FBtr0084549
GRanges with 6 ranges and 3 metadata columns:

84

http://bioconductor.org/packages/devel/bioc/html/Biostrings.html

seqnames ranges strand | cds_id cds_name exon_rank
<Rle> <IRanges> <Rle> | <integer> <character> <integer>
[1] chr3R [19970946, 19971592] + | 39378 <NA> 2
[2] chr3R [19971652, 19971770] + | 39379 <NA> 3
(3] chr3R [19971831, 19972024] + | 39380 <NA> 4
[4] chr3R [19972088, 19972461] + | 39381 <NA> 5
(5] chr3R [19972523, 19972589] + | 39382 <NA> 6
(6] chr3R [19972918, 19973094] + | 39383 <NA> 7
seqlengths:
chr2L chr2R chr3L chr3R ... chrXHet chrYHet chrUextra
23011544 21146708 24543557 27905053 ... 204112 347038 29004656

The following code loads the appropriate BSgenome package; the Dmelanogaster object refers to the whole
genome sequence represented in this package. The remaining steps extract the DNA sequence of each
transcript, and translates these to amino acid sequences. Issues of strand are handled correctly.

> library(BSgenome.Dmelanogaster.UCSC.dm3)
> txx <- extractTranscriptsFromGenome (Dmelanogaster, cds)
> length (txx)

[1] 19
> head(txx, 3)

A DNAStringSet instance of length 3
width seq names
[1] 1578 ATGGGCAGCATGCAAGTGGCGCT...TGCAGATCAAGTGCAGCGACTAG FBtr0084549
[2] 2760 ATGCTGCGTTATCTGGCGCTTTC. ..TTGCTGCCCCATTCGAACTTTAG FBtr0085755
[3] 2217 ATGGCACTCAAGTTTCCCACAGT...TTGCTGCCCCATTCGAACTTTAG FBtr0085756

> head(translate(txx), 3)

A AAStringSet instance of length 3
width seq
[1] 526 MGSMQVALLALLVLGQLFPSAVANGSSSYSSTST. . .VLDDSRNVFTFTTPKCENFRKRFPKLQIKCSD*
[2] 920 MLRYLALSEAGIAKLPRPQSRCYHSEKGVWGYKP. ..YCGRCEAPTPATGIGKVHKREVDEIVAAPFELx*
(3] 739 MALKFPTVKRYGGEGAESMLAFFWQLLRDSVQAN. . .YCGRCEAPTPATGIGKVHKREVDEIVAAPFELx*

12.3 UCSC tracks

12.3.1 Easily creating TranscriptDb objects from GTF files

Exercise 33
(Adapted from') The ‘track’ curated annotations at UCSC are a great resource; this exercise creates a
TranscriptDb instance from one such track.

a. Load the GenomicFeatures and rtracklayer packages.

b. Discover available genomes with ucscGenomes, and available tables with the supportedUCSCtables.

Ihttp://www.sph.emory.edu/ hwu/teaching/bioc/bios560R.html

85

http://bioconductor.org/packages/devel/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/devel/bioc/html/rtracklayer.html
http://www.sph.emory.edu/~hwu/teaching/bioc/bios560R.html

c. Use the makeTranscriptDbFromUCSC from a suitable track, e.g., genome genome="ce2", tablename="refGene".
There are some warnings; are these something to be concerned about?

d. Exercise the object that you’ve created, e.g., exploring the basis of the warnings.

e. Save and load the TranscriptDb object you’ve created, illustrating how one can make these annotations
convenient and reproducible.

f. What’s the difference between makeTranscriptDbFromUCSC and makeFeatureDbFromUCSC? Where else can
transcript and feature data bases be made from?

Solution: Load the GenomicFeatures package and discover available genomes and tables:

library(rtracklayer)
library(GenomicFeatures)
genomes

gnms <- ucscGenomes ()
nrow (gnms)

vV V. Vv VvV

[1] 145

> gnms[grep("elegans", gnms$species),]

db species date name
134 cel0 C. elegans Oct. 2010 WormBase v. WS220
135 ce6 C. elegans May 2008 WormBase v. WS190
136 ce4 C. elegans Jan. 2007 WormBase v. WS170
137 ce2 C. elegans Mar. 2004 WormBase v. WS120
> ## tables
> tbls <- supportedUCSCtables ()
> nrow(tbls)
[1] 25
> head(tbls)

track subtrack

knownGene UCSC Genes <NA>
knownGene(01d3 01d UCSC Genes <NA>
wgEncodeGencodeManualV3 Gencode Genes Genecode Manual
wgEncodeGencodeAutoV3 Gencode Genes Genecode Auto
wgEncodeGencodePolyaV3 Gencode Genes Genecode PolyA
ccdsGene CCDS <NA>

Make the TranscriptDb object (this will take a minute)

> ## Not run
> txdb <- makeTranscriptDbFromUCSC("cel0", "refGene")
> saveDb(txdb, file="/path/to/file.sqlite")

The warnings during object creation are about unusual lengths for CDS (coding sequences should be in
multiples of 3, since there are three nucleotide residues per amino acid residue).

1: In .extractUCSCCdsStartEnd(cdsStart[i], cdsEnd[i],
UCSC data anomaly in transcript NM_001129046: the cds cumulative
length is not a multiple of 3

86

but we seem to have a useful object with relevant metadata information for reproducible research:

> txdb

TranscriptDb object:
| Db type: TranscriptDb

| Supporting package: GenomicFeatures

| Data source: UCSC

| Genome: cel0

| Organism: Caenorhabditis elegans

| UCSC Table: refGene

| Resource URL: http://genome.ucsc.edu/

| Type of Gene ID: Entrez Gene ID

| Full dataset: yes

| miRBase build ID: NA

| transcript_nrow: 48714

| exon_nrow: 152542

| cds_nrow: 129947

| Db created by: GenomicFeatures package from Bioconductor

| Creation time: 2013-02-10 10:33:50 -0800 (Sun, 10 Feb 2013)

| GenomicFeatures version at creation time: 1.11.8

| RSQLite version at creation time: 0.11.2

| DBSCHEMAVERSION: 1.0

Let’s investigate the source of the warnings — what fraction of the CDS have lengths that are not a multiple
of 37 To do this we’ll need to assemble the figure out the sum of the widths of the coding sequence exons in
each transcript. Start by extracting all coding sequence exons, grouped by transcript; verify that this is a
GRangesList with a reasonable number of entries.

> cdsByTx <- cdsBy(txdb, "tx", use.names=TRUE)
> length(cdsByTx)

[1] 26146
> cdsByTx[1:2]

GRangesList of length 2:

$NM_058259
GRanges with 3 ranges and 3 metadata columns:
segnames ranges strand | cds_id cds_name exon_rank
<Rle> <IRanges> <Rle> | <integer> <character> <integer>
[1] chrI [11641, 11689] + 1 <NA> 1
[2] chrI [14951, 15160] + 2 <NA> 2
(3] chrI [16473, 16585] + | 3 <NA> 3
$NM_058264
GRanges with 5 ranges and 3 metadata columns:
seqnames ranges strand | cds_id cds_name exon_rank
[1] chrI [43733, 43961] + | 4 <NA> 1
[2] chrI [44030, 44234] + | 5 <NA> 2
[3] chrI [44281, 44324] + | 6 <NA> 3
[4] chrI [44372, 44468] + 7 <NA> 4
(5] chrI [44521, 44677] + | 8 <NA> 5

87

seqlengths:
chrl chrIl chrIII chrlV chrV chrX chrM
15072423 15279345 13783700 17493793 20924149 17718866 13794

Extract the width of each each exon; this is an IntegerList instance with one element of the list for each
transcript, and one integer value for each exon.

> wd <- width(cdsByTx)
> length (wd)

[1] 26146
> head(wd, 3)

CompressedIntegerList of length 3
[["NM_058259"1] 49 210 113

[["NM_058264"1] 229 205 44 97 157
[["NM_001026606"]1] 139 163 183 166

Use sum to add up the widths within each list element; note that we’re using the sum,CompressedIntegerList-method,
and that this has been specialized to do the summation within list elements.

> head(sum(wd))

NM_058259 NM_058264 NM_001026606 NM_058265 NM_001026607 NM_182094
372 732 651 1341 1620 1221

We now have a standard R vector; a one-liner asking about the number of transcripts with exons that do
not sum to 3 is

> table((sum(width(cdsBy(txdb, "tx"))) 7% 3) != 0)

FALSE TRUE
25676 470

Exercise 34
(Adapted from?) Suppose you have a list of transcription factor binding sites on hg19. How would you obtain
(a) the GC content of each site and (b) the percentage of gene promoters covered by the binding sites?

Solution: As an outline of a solution, the steps for calculating GC content might be

a. Represent the list of transcription factor binding sites (‘regions of interest’) as a GRanges instance,
ro1l.

b. Load BSgenome and the appropriate genome package, e.g., BSgenome.Hsapiens. UCSC.hg19.

Use getSeq to retrieve the sequences, seqs <- getSeq(Hsapiens, gr).

o

d. Use alphabetFrequency(seqs) to summarize nucleotide use, and simple R functions to determine GC
content of each region of interest.

e. Summarize these as density plots, etc. A meaningful extension of this exercise might compare the
observed GC content to the expected content, where expectation is the product of the independent G
and C frequencies.

2http://www.sph.emory.edu/ hwu/teaching/bioc/bios560R. html

88

http://bioconductor.org/packages/devel/data/annotation/html/BSgenome.Hsapiens.UCSC.hg19.html
http://www.sph.emory.edu/~hwu/teaching/bioc/bios560R.html

To calculate the percentage of promoters covered by binding sites, we might

a. Load the reference genome TxDb package, TxDb.Hsapiens.UCSC.hg19.knownGene.

b. Query the package for promoters using the promoters function, or otherwise manipulating exon or
transcript coordinates to get a GRanges or GRangesList representing genomic regions of interest, groi.

c. Use countOverlaps(groi, roi) to find how many transcription factor binding sites overlap each pro-
moter, and from there use standard R functions to tally the number of promoters that have zero
overlaps.

89

http://bioconductor.org/packages/devel/data/annotation/html/TxDb.Hsapiens.UCSC.hg19.knownGene.html

Chapter 13

Visualizing Sequence Data

R has some great visualization packages; essential references include [5] for a general introduction, Murrell [17]
for base graphics, Sarkar [23] for lattice, and Wickham [25] for ggplot2. Here we take a quick tour of
visualization facilities tailed for sequence data and using Bioconductor approaches.

13.1 Gviz

The Gviz package produces very elegant data organized in a more-or-less familiar ‘track’ format. The
following exercises walk through the Gviz User guide Section 2.

Exercise 35

Load the Gviz package and sample GRanges containing genomic coordinates of CpG islands. Create a
couple of variables with information on the chromosome and genome of the data (how can this information
be extracted from the cpgIslands object?).

> library(Gviz)
> data(cpgIslands)
> chr <- "chr7"
> genome <- "hgl9"

The basic idea is to create a track, perhaps with additional attributes, and to plot it. There are different
types of track, and we create these one at a time. We start with a simple annotation track

> atrack <- AnnotationTrack(cpgIlslands, name="CpG")
> plotTracks(atrack)

Then add a track that represents genomic coordinates. Tracks are combined during when plotted, as a simple
list. The vertical ordering of tracks is determined by their position in the list.

> gtrack <- GenomeAxisTrack()
> plotTracks(list(gtrack, atrack))

We can add an ideogram to provide overall orientation. ..

> itrack <- IdeogramTrack(genome=genome, chromosome=chr)
> plotTracks (list(itrack, gtrack, atrack))

and a more elaborate gene model, as an data.frame or GRanges object with specific columns of metadata.

90

http://bioconductor.org/packages/devel/bioc/html/Gviz.html
http://bioconductor.org/packages/devel/bioc/html/Gviz.html
http://bioconductor.org/packages/devel/bioc/html/Gviz.html
http://bioconductor.org/packages/2.12/bioc/html/Gviz.html
http://bioconductor.org/packages/devel/bioc/html/Gviz.html

data(geneModels)
grtrack <-
GeneRegionTrack(geneModels, genome=genome,
chromosome=chr, name="Gene Model")
tracks <- list(itrack, gtrack, atrack, grtrack)
plotTracks (tracks)

vV VvV + + VvV

Zooming out changes the location box on the ideogram
> plotTracks(tracks, from=2.5e7, to=2.8e7)
When zoomed in we can add sequence data

> library(BSgenome.Hsapiens.UCSC.hg19)
> strack <- SequenceTrack(Hsapiens, chromosome=chr)
> plotTracks(c(tracks, strack), from=26450430, to=26450490, cex=.8)

As the Gviz vignette humbly says, ‘so far we have replicated the features of a whole bunch of other
genome browser tools out there’. We'd like to be able integrate our data into these plots, with a rich range
of plotting options. The key is the DataTrack function, which we demonstrate with some simulated data; this
final result is shown in Figure 13.1.

some data

lim <- ¢(26700000, 26900000)

coords <- seq(lim[1], 1im[2], 101)

dat <- runif (length(coords) - 1, min=-10, max=10)

DataTrack

dtrack <-

DataTrack(data=dat, start=coords[-length(coords)],

end= coords[-1], chromosome=chr, genome=genome,
name="Uniform Random")

plotTracks (c(tracks, dtrack))

vV + + + VvV VVV\VYV

Section 4.3 of the Gviz vignette illustrates flexibility of the data track.

13.2 ggbio

The ggbio package complements facilities in Gviz. It uses the central metaphors of the ‘grammar of graphics’
made popular by the ggplot2 package, and integrates closely with the Bioconductor ranges infrastructure.
In addition to the grammar of graphics approach, the package offers a wider range of plots, for instance
circular plots. The use of the package is covered in it’s vignette.

13.3 shiny for easy interactive reports

As a final example of visualization, the shiny package and web site ' has recently been introduced. It

offers a new model for developing interactive, browser-based visualizations. These visualizations could be an
excellent way to provide sophisticated exploratory or summary analysis in a very accessible way. The idea
is to write a ‘user interface’ component that describes how a page is to be presented to users, and a ‘server’
that describes how the data are to be calculated or modified in responses to user choices. The programming
model is ‘reactive’, where changes in a user choice automatically trigger re-calculations in the server. This
reactive model is like in a spreadsheet with a formula, where adjusting a cell that the formula references

Thttp://www.rstudio.com/shiny/

91

http://bioconductor.org/packages/devel/bioc/html/Gviz.html
http://bioconductor.org/packages/devel/bioc/html/Gviz.html
http://bioconductor.org/packages/devel/bioc/html/ggbio.html
http://bioconductor.org/packages/devel/bioc/html/ggbio.html
http://bioconductor.org/packages/devel/bioc/html/Gviz.html
http://www.rstudio.com/shiny/

Figure 13.1: Gviz ideogram, genome coordinate, annotation, and data tracks.

26.6 mb 26.8 mb 27 mb

26.7 mb 26.9 mb

triggers re-calculation of the formula. Just like in a spreadsheet, someone creating a shiny application does
not have to work hard to make reactivity work.

WARNING: The following demos were only available during the course.

There are two short demos available for use during the course. The first

> source("http://bioconductor.org/scratch-repos/pkgInstall.R")
> demo1()

Uses a Summarized Experiment object to contain the data and results of the DESeq work flow from yesterday,
coupled with the annotation resources that we explored today. The user can choose genes to display based
on p-value and log-fold change in the ‘top table’ of genes. In reaction to these choices, the heat map on one
tab and annotations on a second, are updated.

One of the nice features of shiny is it separates responsibility for doing manipulations of the data (R’s
responsibility) from obligations to display it (javascript’s responsibility). This means that it can be quite
‘easy’ to incorporate complicate visualizations, as illustrated in

> demo2()

This represents a gene network under various conditions. The data is in R, and changing the slider causes R
to update the data, but the visualization uses the javascript development version of cytoscape. This offers
great opportunities for interaction with different projects.

92

http://bioconductor.org/packages/devel/bioc/html/Gviz.html
http://bioconductor.org/packages/devel/bioc/html/DESeq.html

References

[1]

2]

[10]

[11]

[12]

[13]

[14]
[15]
[16]

[17]

S. Anders and W. Huber. Differential expression analysis for sequence count data. Genome Biol,
11(10):R106, 2010.

D. Bentley, S. Balasubramanian, H. Swerdlow, G. Smith, J. Milton, C. Brown, K. Hall, D. Evers,
C. Barnes, H. Bignell, et al. Accurate whole human genome sequencing using reversible terminator
chemistry. Nature, 456(7218):53-59, 2008.

A. N. Brooks, L. Yang, M. O. Duff, K. D. Hansen, J. W. Park, S. Dudoit, S. E. Brenner, and B. R.
Graveley. Conservation of an RNA regulatory map between Drosophila and mammals. Genome Research,
pages 193-202, 2011.

J. H. Bullard, E. Purdom, K. D. Hansen, and S. Dudoit. Evaluation of statistical methods for normal-
ization and differential expression in mrna-seq experiments. BMC' bioinformatics, 11(1):94, 2010.

W. Chang. R Graphics Cookbook. O’Reilly Media, Incorporated, 2012.
P. Dalgaard. Introductory Statistics with R. Springer, 2nd edition, 2008.

R. Gentleman. R Programming for Bioinformatics. Computer Science & Data Analysis. Chapman &
Hall/CRC, Boca Raton, FL, 2008.

F. Hahne, W. Huber, R. Gentleman, and S. Falcon. Bioconductor case studies. Springer, 2008.

K. D. Hansen, S. E. Brenner, and S. Dudoit. Biases in illumina transcriptome sequencing caused by
random hexamer priming. Nucleic acids research, 38(12):e131-e131, 2010.

K. D. Hansen, R. A. Irizarry, and Z. Wu. Removing technical variability in RNA-seq data using
conditional quantile normalization. Biostatistics, 13(2):204-216, 2012.

B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg. Ultrafast and memory-efficient alignment of
short DNA sequences to the human genome. Genome Biol., 10:R25, 2009.

H. Li and R. Durbin. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioin-
formatics, 26:589-595, Mar 2010.

J. C. Marioni, C. E. Mason, S. M. Mane, M. Stephens, and Y. Gilad. Rna-seq: an assessment of technical
reproducibility and comparison with gene expression arrays. Genome research, 18(9):1509-1517, 2008.

N. Matloff. The Art of R Programming. No Starch Pess, 2011.
J. Meys and A. de Vries. R For Dummies. For Dummies, 2012.

A. Mortazavi, B. A. Williams, K. McCue, L. Schaeffer, and B. Wold. Mapping and quantifying mam-
malian transcriptomes by rna-seq. Nature methods, 5(7):621-628, 2008.

P. Murrell. R graphics. Chapman & Hall/CRC, 2005.

93

[18]

[19]

[20]

[21]

[22]

P. J. Park. ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet., 10:669—-680,
Oct 2009. [PubMed Central:PMC3191340] [DOI:10.1038/nrg2641] [PubMed:19736561].

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2013. ISBN 3-900051-07-0.

M. D. Robinson, D. J. McCarthy, and G. K. Smyth. edgeR: a Bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics, 26:139-140, Jan 2010.

C. Ross-Innes, R. Stark, A. Teschendorff, K. Holmes, H. Ali, M. Dunning, G. Brown, O. Gojis, 1. Ellis,
A. Green, et al. Differential oestrogen receptor binding is associated with clinical outcome in breast
cancer. Nature, 481(7381):389-393, 2012.

J. Rothberg and J. Leamon. The development and impact of 454 sequencing. Nature biotechnology,
26(10):1117-1124, 2008.

D. Sarkar. Lattice: multivariate data visualization with R. Springer, 2008.

M. Schmidberger, M. Morgan, D. Eddelbuettel, H. Yu, L. Tierney, and U. Mansmann. State of the art
in parallel computing with r. Journal of Statistical Software, 31(1):1-27, 8 2009.

H. Wickham. ggplot2: elegant graphics for data analysis. Springer Publishing Company, Incorporated,
20009.

H. Wu, C. Wang, and Z. Wu. A new shrinkage estimator for dispersion improves differential expression
detection in rna-seq data. Biostatistics, 2012.

94

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3191340
http://dx.doi.org/10.1038/nrg2641
http://www.ncbi.nlm.nih.gov/pubmed/19736561

Part V

Appendix

95

Appendix A

DESeq vignette

96

http://bioconductor.org/packages/devel/bioc/html/DESeq.html

Appendix B

VariantTools vignette

97

http://bioconductor.org/packages/devel/bioc/html/VariantTools.html

	Introduction
	I R / Bioconductor
	R
	Statistical analysis and comprehension
	Basics of R
	Essential data types
	S3 (and S4) classes
	Functions

	In and out of trouble
	Warnings, errors, and debugging
	Efficient R code

	Packages
	Help!

	Bioconductor
	High-throughput sequence analysis
	Statistical programming
	Bioconductor packages for high-throughput sequence analysis
	S4 Classes and methods
	Help!

	Sequencing
	Technologies
	Data
	A running example: the pasilla data set
	Work flows

	Strings and Reads
	DNA (and other) Strings with the Biostrings package
	Reads and the ShortRead package

	Ranges and Alignments
	Ranges and the GenomicRanges package
	Alignments and the Rsamtools Package

	II Differential Representation
	RNA-seq Work Flows
	Varieties of RNA-seq
	Work flows and upstream analysis
	Experimental design
	Wet-lab protocols, sequencing, and alignment

	Statistical analysis
	Summarizing
	Normalization
	Error model
	Multiple comparison
	Bioconductor software

	DESeq Work Flow Exercises
	Data input and preparation
	Inference
	Independent filtering
	Data quality assessment
	Preliminary transformation
	Quality assessment

	Frequently asked questions

	III Variant Calls
	Variant Work Flows
	Variants
	Varieties of variant-related work flows
	Work flows
	Bioconductor software

	VariantTools
	Example data: lung cancer cell lines
	Calling single-sample variants
	Additional work flows

	Working with Called Variants
	Variant call format (VCF) files with VariantAnnotation
	Data input

	SNP Annotation
	Large-scale filtering

	IV Annotation and Visualization
	Gene-centric Annotation
	Gene-centric annotations with AnnotationDbi
	biomaRt and other web-based resources
	Using biomaRt

	Genomic Annotation
	Whole genome sequences
	Gene models
	TxDb.* packages for model organisms

	UCSC tracks
	Easily creating TranscriptDb objects from GTF files

	Visualizing Sequence Data
	Gviz
	ggbio
	shiny for easy interactive reports

	References

	V Appendix
	DESeq vignette
	VariantTools vignette

