Browsing Genomes with Ensembl

www.ensembl.org www.ensemblgenomes.org

Coursebook v72

http://tinyurl.com/Camb0613

Cambridge – 21st June 2013

TABLE OF CONTENTS

Introduction to Ensembl	4
Exploring the Ensembl genome browser	7
Demo: Ensembl species	7
Exercises: Ensembl species	
Demo: The Region in detail view	
Exercises: The Region in Detail view	
Genes and transcripts	
Demo: The gene tab	
Demo: The transcript tab	25
Exercises: Genes and transcripts	
BioMart	
Demo: BioMart	
Exercises: BioMart	
Variation	
Demo: Finding variants in Ensembl	
Exercises: Finding variants in Ensembl	
Demo: The Variant Effect Predictor (VEP)	
Exercise: The Variant Effect Predictor (VEP)	55
Comparative genomics	
Demo: Gene trees and homologues	56
Exercises: Gene trees and homologues	
Demo: Whole genome alignments	
Exercises: Whole genome alignments	63
Regulation	
Demo: Raw ChIPSeq data	65

Quicł	k Guide to Databases and Projects	71
	Exercises: Regulation	68
	Demo: Regulatory features and segmentation	67

Introduction to Ensembl

Getting started with Ensembl www.ensembl.org

Ensembl is a joint project between the EBI (European Bioinformatics Institute) and the Wellcome Trust Sanger Institute that annotates **chordate** genomes (i.e. vertebrates and closely related invertebrates with a notochord such as sea squirt). Gene sets from model organisms such as yeast and worm are also imported for comparative analysis by the Ensembl 'compara' team. Most annotation is updated every two months, leading to increasing Ensembl versions (such as version 70), however the gene sets are determined less frequently. A sister browser at <u>www.ensemblgenomes.org</u> is set up to access nonchordates, namely bacteria, plants, fungi, metazoa, and protists.

Ensembl provides genes and other **annotation** such as regulatory regions, conserved base pairs across species, and sequence variations. The Ensembl gene set is based on protein and mRNA evidence in **UniProtKB** and **NCBI RefSeq** databases, along with manual annotation from the **VEGA/Havana** group. All the data are freely available and can be accessed via the web browser at www.ensembl.org. Perl programmers can directly access Ensembl databases through an Application Programming Interfaces (**Perl APIs**). Gene sequences can be downloaded from the Ensembl browser itself, or through the use of the **BioMart** web interface, which can extract information from the Ensembl databases without the need for programming knowledge by the user.

Synopsis – What can I do with Ensembl?

- View genes with other annotation along the chromosome.
- View alternative transcripts (i.e. splice variants) for a given gene.
- Explore homologues and phylogenetic trees across more than 60 species for any gene.
- Compare whole genome alignments and conserved regions across species.
- View microarray sequences that match to Ensembl genes.
- View ESTs, clones, mRNA and proteins for any chromosomal region.
- Examine single nucleotide polymorphisms (SNPs) for a gene or chromosomal region.
- View SNPs across strains (rat, mouse), populations (human), or breeds (dog).
- View positions and sequence of mRNAs and proteins that align with Ensembl genes.
- Upload your own data.
- Use BLAST, or BLAT against any Ensembl genome.
- Export sequence or create a table of gene information with BioMart.
- Determine how your variants affect genes and transcripts using the Variant Effect Predictor.
- Share Ensembl views with your colleagues and collaborators.

Need more help?

- Check Ensembl documentation
- **?** Watch <u>video tutorials</u> on YouTube
- **?** View the <u>FAQs</u>
- **?** Try some <u>exercises</u>
- **?** Read some <u>publications</u>
- **?** Go to our <u>online course</u>

Stay in touch!

- <u>Email</u> the team with comments or questions at helpdesk@ensembl.org
- ✤ Follow the Ensembl <u>blog</u>
- Sign up to a mailing list

Further reading

Flicek, P. *et al* **Ensembl 2013** Nucleic Acids Res. Advanced Access (Database Issue) http://www.ncbi.nlm.nih.gov/pubmed/23203987

Ensembl Methods Series http://www.biomedcentral.com/series/ENSEMBL2010

Xosé M. Fernández-Suárez and Michael K. Schuster **Using the Ensembl Genome Server to Browse Genomic Sequence Data.** UNIT 1.15 in Current Protocols in Bioinformatics, Jun 2010.

Giulietta M Spudich and Xosé M Fernández-Suárez **Touring Ensembl: A practical guide to genome browsing** BMC Genomics 2010, 11:295 (11 May 2010)

Exploring the Ensembl genome browser

Demo: Ensembl species

The front page of Ensembl is found at ensembl.org. It contains lots of information and links to help you navigate Ensembl:

Link back to homepage Ens		r remains visible y Ensembl page Search
Informepage Ens Informepage Ens Informepage Ens Informepage Ens Informepage Ens Informepage Ens Informe Ens Informe Ens Informe Ens Informe Information freely available online. Popular genomes Information freely available online. Informe Information freely available online. Popular genomes Information freely available online. Informe Information freely available online. Popular genomes Information freely available online. Information freely available online. Information freely available online. Popular genomes Information freely available online. Information freely available online. Information freely available online. Information f	rools Downloads Help & Documentation Blog	
View full list of all Ensembl species Other species are available in <u>Ensembl Pre</u> ! and <u>EnsemblGenomes</u>	 Fetch only the data you want from our public database, using the Perl API Download our databases via FTP in FASTA, MySQL and other formats Mine Ensembl with BioMart and export sequences or tables in text, html, or Excel format Still got questions? Try our FAQs or glossary 	Come to our <u>YouTube</u> channel for tutorial videos.

Click on View full list of all Ensembl species.

Click on the common name of your species of interest to go to the species homepage. We'll click on Human.

Search BRCA2 or 6:133017695-133161	Go 157 or osteoarthritis	 What's New in Human release 71 Update to Ensembi-Havana GENCODE gene set (release 16 Added Kidney RNASeq models and intron supporting feature Human: updated cDNA alignments 	· ٦	News
Genome assembly: GRCh37 Information nd statistics ord DNA sequence (FA ert your data to GRCh37 Display your data in Ensembl Other assemblies • NCBI36 (Ensembl release 54)	STA) View karyotype	Gene annotation What can I find? Protein-coding and non-coding genes, splice variants, cDNA and protein sequences, non-coding RNAs. More about this genebuild Download genes, cDNAs, ncRNA, proteins (FASTA) Update your old Ensembl IDs Vega* Additional manual annotation can be found in vega	Pax6 INS BRCA2 DMD ssh Example gene Example transcript	Links to example
Comparative genomics What can I find? Homologues, gene alignments across multiple species. More about comparative analy Complete Download alignments (EMF)		Variation What can I find? Short sequence variants and longer structural variants; disease and other phenotypes More about variation in Ensembl Download all variants (GVF)	ATCGAGCT ATCCAGCT ATCGAGAT Example variant	features i Ensemb
Regulation What can I find? DNA methylation, isites, histone modifications, and regershancers and repressors, and mice More about the Ensembl regulanotation Image: Provide the Insemble regulation	ulatory features such as roarray annotations. atory build and microarray Example regulatory feature	Variant Effect Predictor	Example phenotype	

To find out more about the genome assembly and genebuild, click on More information and statistics.

			Login/Register
CENSEMBI BLAST/BLAT BioMart Tools	More 🗸 🛛 🚮 🗸 S	earch all species	Q,
Human (GRCh37) 🔻			
Human assembly and gene annotation			
Information mbly	Statistics		Tables of statistics
This site provides a data set based on the February 2009 Homo sapiens high coverage assembly GRCh37 from the Genome	Summary		7/
Reference Consortium. This assembly is used by UCSC to	Assembly:	GRCh37.p10, Feb 2009	
create their hg19 database. The data set consists of gene models built from the genewise alignments of the human proteome as well as from alignments of human cDNAs using the	Database version:	71.37	
cDNA2genome model of exonerate.	Base Pairs:	3,320,602,131	
This release of the assembly has the following properties:	Golden Path Length:	3,101,804,739	
 27478 contigs. 	Genebuild by:	Ensembl	
contig length total 3.2 Gb.chromosome length total 3.1 Gb.	Genebuild method:	Full genebuild	
It also includes nine <u>haplotypic regions</u> , mainly in the MHC region of chromosome 6.	Genebuild started:	Jul 2010	
Watch a video on YouTube about patches and	Genebuild released:	Apr 2011	
Patches	Genebuild last updated/patched:	Feb 2013	

Let's take a look at the Ensembl Genomes homepage at ensemblgenomes.org.

Click on the different taxa to see their homepages. Each one is colour-coded.

earch: All species : for	Restaurd and and		Search: All species = for		
eg. PFC3124w or oper putar genomes Panenenen Panenenen Panenenen Panenenen Panenenen Panenenen Panenenen Panenenenenenen Panenenenenenenenen Panenenenenenenenenenenenenenenenenenene	Heater doubter MARINE AND	al. a joint project bringing PH-bases, a community- set of genes in pathogenic casts to generative and means, and ass in the corrupping of embl Protists. In pathogenes, including octato Samme of the mis-18th heats to global brod security. PH-base resource as well as	Constant Al Jance Constant Al Jance	Pettuned content Anotations can be made to agree, transcriptor In Anotations can be made to agree, transcriptor In Anotations can be made to agree, transcriptor In anotation provide anotation of the second provide anotation anotation provide anotation of the second provide anotation anotation and the second provide anotation anotation	ive when a function is esent in a specific local on extensions allow cun ted information to a ten mayolis have these new erms, S. pombe has ann
II genomes Select a species 1 iew full list of all Ensembl Profists species	PhytoPath is funded by the BBSE What's new in Release 17 (January 2013)	10.	★ Log in to customize this list All genomes	New genomes <u>Komagateeke (Pichia) pestoris</u> <u>Sportsorium relianum</u> Prenochora fores 1, tores	Did you know New icons make it easier to add data
rsembl Genomes is developed by EMBL-EB1 and is powered by Ensembl sthware system for the analysis and visualisation of genomic data. For details of a funding faces citch trace.	Updated schema Added new spoles <u>Givenia (ambila</u>) Protein features updated for all the protest species.	Did you know? New loons make it easier to add data.	(Pynanophore mito-sesentia Giomenella craminicola Updated genomes	tracks, upload you data, and export w you see on the sor as an image. Find on pages like <u>Regi</u> <u>Detail</u>
MBL-EB 🏐 [] mpowered	Minor internal fixes for the comparative genomics database Updated BioMarts Future Releases	tracks, upload your own data, and export what you see on the screen as an image. Find them on pages like <u>Brojon in</u> Detail	Ensemb Genome is developed by <u>EMRLEBI</u> and is powered by <u>Ensemb</u> software system for the availability and visualisation of genomic data. For details our lunding please <u>click iters</u> . EMBL-EBI () <u>Empowerer</u>		O A C Celeann Off, Geleann S73, Ording Jense,
	Detailed notes for Release 18 of Ensembl Genomes can be found <u>here</u> .	Celease Off Celease Sats Oderogenee		Lastasphania maculany EST alignments DNA comparative alignments of Pyrenoph Updated data Ubdated postide comparative concernits	ола врр.

Protists

Bacteria

You can navigate most of the taxa in the same way as you would with Ensembl, but Ensembl Bacteria has a large number of genomes, so needs slightly different methods. Let's look at it in more detail.

e!	EnsemblBacteria -	Sequence Search BLAST	「 Tools Down	Ioads Help & Documentation	😰 🗸 Search Ensembl Bacteria	Login · Register
Se	earch for a gene	Search for a genome		Ensembl Bacteria		
Search fo a gene	or ridine*		Search f a specie	or archives of the members	uences have been annotated and of the <u>International Nucleotide Seq</u> access to complete, annotated ba tide Archive) through the Ensemble te details about the integration and	uence Database cterial genomes graphical user
	 Search for a gene - type the name the search box above Find a genome - click in the brows start typing your genome name to f 	of a gene or other identifier into se a genome' box above and ind matching genomes		Programmatic access is availab through publicly accessible mys DNA sequence and protein sequ and mysql dump files). Due to th modification to the APIs, and da used for other branches of the ta database; the provision of locku identifiers, taxonomy identifiers.	ql databases, along with fun- lence in FASTA format, annotat le large number of these databa tabase and FTP site structure, axonomy (e.g. the storage of ma p services to identify genomes	Information on Ensembl Bacteria
•	View full list of all Ensembl Bacteria Access Ensembl Bacteria program hat's new in release 17			BioMart access is not available, data mining tools to allow users key bacterial genomes has been	but we are working on providing ne to exploit these genomes. A select included in the pan-taxonomic Co stified into families using HAMAP a	tion of over 100 mpara, and
25 gei gei Fu	elease 17 of Ensembl Bacteria has be multispecies Ensembl v70 database nomes (5,859 eubacteria and 155 arc nes loaded from 538,102 INSDC entri iture Releases	s. The current dataset contains (haea) containing 20,529,748 prof es.	6,014 ttein coding	Ensembl Bacteria has been devresource for bacterial metabolism	eloped with the support of the <u>Micr</u> n.	<u>ome</u> project, a
De	tailed notes for Release 18 of Ensem	oi Genomes can de found <u>nere</u> .			I by <u>EMBL-EBI</u> and is powered by <u>is</u> and visualisation of genomic data	

There's no full species list for bacteria as it would be hard to navigate with the number of species. To find a species, start to type the species name into the species search box. A drop down list will appear with possible species.

For example, to find a substrain of *Clostridium difficile* type in Clostridium d.

Search for a gene	Search for a genome	Ensembl Bacter
Search all species Go	clostridium d	Over 6000 bacteria
e.g. ftsZ or uridine*	Clostridium difficile 002-P50-20	11, (TaxID 997827)
	Clostridium difficile 050-P50-20	11, (TaxID 997828)
	Clostridium difficile 630, (TaxID	272563)
Access to 6000 Ba	Clostridium difficile 70-100-201	0, (TaxID 1002369)
 Search for a gene - type the nam 	Clostridium difficile CD196, (Tax	xID 645462)
the search box above	Clostridium difficile NAP07, (Tax	(ID 525258)
• Find a genome - click in the 'brow	vse Clostridium d ifficile NAP08, (Tax	(ID 525259)
start typing your genome name to	Clostriaium a imcile R20291, (18	axID 645463)
View full list of all Ensembl Bacter	ria species	2

The drop down contains various strains of *Clostridium difficile*. Let's choose Clostridium difficile 630. This will take us to another species homepage, where we can explore various features.

Exercises: Ensembl species

Exercise 1 – Panda

(a) Go to the species homepage for Panda. What is the name of the genome assembly for Panda?

(b) Click on More information and statistics. How long is the Panda genome (in bp)? How many genes have been annotated?

Exercise 2 – Zebrafish

(a) What's new in release 71 for zebrafish?

(b) What previous release is available for zebrafish?

Exercise 3 – Mosquitos

(a) Go to Ensembl Metazoa. How many species of the genus *Anopheles* are there?

(b) Who published the genome sequence for Anopheles gambiae?

Exercise 4 – Bacteria

Go to Ensembl Bacteria and find the species *Belliella baltica*. How many coding and non-coding genes does it have?

Demo: The Region in detail view

Start at the Ensembl front page, <u>ensembl.org</u>. You can search for a region by typing it into a search box, but you have to specify the species.

Type (or copy and paste) human 4:123792818-123867893 into either search box.

Search: All species			Login/Register
Search: All species e.g. BRCA2 or rat X:100000200000 or coronary heart disease		🕅 🔻 human 4:123792818-123867893	Q,
	or		

Press Enter or click Go to jump directly to the **Region in detail** Page.

Click on the button **()** to view page-specific help.

The help pages provide links to Frequently Asked Questions, a Glossary, Video Tutorials, and a form to Contact HelpDesk.

There is a help video on this page at <u>http://youtu.be/tTKEvgPUq94</u>.

The Region in detail page is made up of three images, let's look at each one on detail.

The first image shows the chromosome:

You can jump to a different region by dragging out a box in this image. Drag out a box on the chromosome, a pop-up menu will appear.

If you wanted to move to the region, you could click on Jump to region (###bp). For now, we'll close the pop-up by clicking on the X on the corner.

The second image shows a 1Mb region around our selected region. This view allows you to scroll back and forth along the chromosome.

At the moment the gene track is set to a fixed height. Click on the Automatic track height button to expand the image to include all possible data in the track.

Scroll along the chromosome by clicking and dragging within the image. As you do this you'll see the image below grey out and two blue buttons appear. Clicking on Update this image would jump the lower image to the region central to the scrollable image. We want to go back to where we started, so we'll click on Reset scrollable image.

You can also drag out and jump to a region. Either hold down shift and drag in the image, or click on the Drag/Select button to change the action of your mouse click, and drag out a box.

			· • · · · ·
			- 1.00 Mb
123.50 Mb	123.60 Mb	123.70 Mb	123.80 N
AC05354	5.5 >	AC	021205.6
<1L21	Region: 4:12	3479180-1235901	145 💘
IL21-AS1	Jump to regi	on (110966 bp)	ŲD
	Centre here		.1
123.50 Mb	123.60 Mb	123.70 Mb	123.80 N

Click on the X to close the pop-up menu.

The third image is a detailed, configurable view of the region.

We can edit what we see on this page by clicking on the blue Configure this page menu at the left.

This will open a menu that allows you to change the image.

You can put some tracks on in different styles; more details are in this FAQ: <u>http://www.ensembl.org/Help/Faq?id=335</u>.

Let's add some tracks to this image. Add:

- Human proteins Labels
- dbSNP variants Normal
- 1000 Genomes AMR Collapsed

Now click on the tick in the top left hand to save and close the menu. Alternatively, click anywhere outside of the menu. We can now see the tracks in the image.

We can also change the way the tracks appear by hovering over the track name then the cog wheel to open a menu. We can move tracks around by clicking and dragging on the bar to the left of the track name.

Now that you've got the view how you want it, you might like to show something you've found to a colleague or collaborator. Click on the Share this page button to generate a link. Email the link to someone else, so that they can see the same view as you, including all the tracks you've added. These links contain the Ensembl release number, so if a new release or even assembly comes out, your link will just take you to the archive site for the release it was made on.

Share this page

To return this to the default view, go to Configure this page and select Reset configuration at the bottom of the menu.

Exercises: The Region in Detail view

Exercise 5 – Exploring a genomic region in human

(a) Go to the region from 32,448,000 to 33,198,000 bp on human chromosome 13. On which cytogenetic band is this region located? How many contigs make up this portion of the assembly (contigs are contiguous stretches of DNA sequence that have been assembled solely based on direct sequencing information)?

(b) Zoom in on the *BRCA2* gene.

(c) Are there any Tilepath clones that contain the complete *BRCA2* gene?

(d) Create a Share link for this display. Email it to yourself and open the link.

(e) Export the genomic sequence of the region you are looking at in FASTA format.

(f) Turn off all tracks you added to the Region in detail page.

Exercise 6 – Exploring patches and haplotypes in human

(a) Go to the region 6:112294691-112624977 in human. What is the green highlighted region? (Tip: you can search for help terms in the Ensembl search boxes.)

(b) Can you see the patches in the chromosome view? Drag out a box to jump to a region containing the patch labelled HG27_patch. What are the coordinates of the patch?

(c) Can you compare this patch with the reference? What has changed between this patch and the sequence it replaced?

(d) Go back to the previous view and scroll to the right in the 1Mb view until you reach a red highlighted region. What is this?

Genes and transcripts

Demo: The gene tab

If you click on any one of the transcripts in the Region in detail image, a pop-up menu will appear, allowing you to jump directly to that gene or transcript.

Another way to go to a gene of interest is to search directly for it.

We're going to look at the human *ESPN* gene. This gene encodes a multifunctional actin-bundling protein with a major role in mediating sensory transduction in various mechanosensory and chemosensory cells. Mutations in this gene are associated with deafness (http://tinyurl.com/espn-ncbi-gene).

From ensembl.org, type *ESPN* into the search bar and click the Go button. Click on Gene and Human to find the hits.

Result in Detail	
1 Gene matches your qu	ry ('ESPN') in Human
ESPN	
Description	espin [Source:HGNC Symbol;Acc:13281] [Type: protein coding Ensembl/Havana merge]
Gene ID	ENSG00000187017
Location	1:6484848-6521430:1 Links
Variations	Variation Table
Source	e71

Click on the gene name or Ensembl ID. The **Gene tab** should open:

Let's walk through some of the links in the left hand navigation column. How can we view the genomic sequence? Click Sequence at the left of the page.

The sequence is shown in FASTA format. Take a look at the FASTA header:

Exons are highlighted within the genomic sequence. Variations can be added with the Configure this page link found at the left. Click on it now.

Configure Page Manage Co	nfigurations Personal Data		\bigcirc
Display options	Display options		
	5' Flanking sequence (upstream):	600	* (Maximum of
🎄 Load configuration		1000000)	
🍖 Reset configuration	3' Flanking sequence (downstream):	600	* (Maximum of
		1000000)	
	Number of base pairs per row:	60 bps	•
	Additional exons to display:	Core exons a	•
	Orientation of additional exons:	Display exons in both orientation	
	Show variations:	Yes and show links	Show variants
	Filter variations by consequence type:	No filter	
		3 prime UTR variant 5 prime UTR variant	
		Coding sequence variant	
		Downstream gene variant	
	Line numbering:	Relative to this sequenee	Turn on line
	Display pop-up information on mouseover:	Yes	numbers
	Fields marked * are required	_	

Once you have selected changes (in this example, Show variations and Line numbering) click at the top right.

Let's look at where our gene is expressed. Click on Expression in the left-hand menu.

Express	sion			
Expression	data is available for t	the following tissues:		
Tissue	All data	RNASeq gene models	Intron-spanning reads	RNASeq alignments
Adipose	<u>View in location</u>	Models built using Human adipose total RNA, lot 05060581, caucasian female, throat cancer, Illumina Human Bodymap 2.0 Data	Y	Y
Adrenal	<u>View in location</u>	Models built using Human adrenal total RNA, lot 0812003, caucasian male, cerebral vascular accident, Illumina Human Bodymap 2.0 Data	Y	Y
Blood	View in location	Models built using Human white blood cell, caucasian male, healthy, Illumina Human Bodymap 2.0 Data	Y	Y
Brain	<u>View in location</u>	Models built using Human brain total RNA, lot 03070051, caucasian female, copd, Illumina Human Bodymap 2.0 Data	Y	Y

Hover over the column titles for a pop-up definition.

Can our gene be found in other databases? Go up the left-hand menu to External references:

External references 🚯						
This gene correspon	nds to the following database identifiers:					
	Filter					
External database	Database identifier					
HGNC Symbol	ESPN espin [<u>view all locations</u>]					
EntrezGene	ESPN espin [view all locations]					
MIM disease	DEAFNESS, AUTOSOMAL RECESSIVE 36. [#609006] DEAFNESS, AUTOSOMAL RECESSIVE 36, WITH OR WITHOUT VESTIBULAR INVOLVEMENT; [view all locations]					
UniProtKB Gene Name	ESPN [view all locations]					
Orphanet	Autosomal recessive nonsyndromic sensorineural deafness type DFNB Autosomal recessive nonsyndromic sensorineural deafness type DFNB [view all locations]					
WikiGene	ESPN espin [view all locations]					
MIM gene	ESPIN, MOUSE, HOMOLOG OF [*606351] ESPIN, MOUSE, HOMOLOG OF; ESPN [view all locations]					
UniGene	Hs.652319 [Target %kd: 99; Query %kd: 94] Transcribed locus [view all locations] Hs.744222 [Target %kd: 99; Query %kd: 99] Espin [view all locations]					
ArrayExpress	ENSG00000187017 [view all locations]					

This contains links to the gene in other projects, such as Uniprot.

To find out more about the individual transcripts of this gene, click on Transcript comparison in the left-hand menu. You must now choose the transcripts you'd like to see, click on the blue Select transcripts button.

🔅 Select trans	cripts	Click on the + to add
Configure Page Select transco Select by type:	ripts Manage Configurations Personal D Selected transcripts	
Click on the plus and minus buttons to select or deselect options. Selected options can be reordered by dragging them to a different position in the list	Select all transcripts of a particular biotype	 ESPN-001 (Protein coding) ESPN-002 (Protein coding) ESPN-003 (Retained intron) ESPN-004 (Processed transcript) ESPN-005 (Protein coding) ESPN-006 (Processed transcript) ESPN-007 (Protein coding) ESPN-008 (Processed transcript) ESPN-009 (Protein coding) ESPN-009 (Protein coding) ESPN-009 (Protein coding) ESPN-201 (Protein coding)

Let's select all the protein-coding transcripts, then close the menu.

Demo: The transcript tab

Let's now explore one splice isoform. Click on Show transcript table at the top.

Show transcript table

Click on the ID for the largest one, ESPN-001 (ENST00000377828).

Show/hi	de columns					Filter	
Name 🍦	Transcript ID 🖕	Length (bp) 🌲	Protein ID 💧	Length (aa) 🌲	Biotype 🍦	CDS incomplete	CCDS 🔶
ESPN-005	ENST00000478323	270	ENSP00000466437	28	Protein coding	3'	-
ESPN-007	ENST0000434576	750	ENSP00000413621	188	Protein coding	5'	-
ESPN-002	ENST00000418286	641	ENSP00000401793	214	Protein coding	5' and 3'	-
ESPN-001	ENST0000377828	3531	ENSP0000367059	854	Protein coding	-	CCDS70
ESPN-009	ENST0000461727	1869	ENSP00000465308	288	Protein coding	-	-
ESPN-201	ENST00000416731	1665	ENSP00000399239	288	Protein coding	-	-
ESPN-004	ENST0000475228	813	No protein product	-	Processed transcript	-	-
ESPN-008	ENST0000468561	664	No protein product	-	Processed transcript	-	-
ESPN-006	ENST0000475479	360	No protein product	-	Processed transcript	-	-
ESPN-003	ENST00000477679	885	No protein product	-	Retained intron	-	-

You are now in the Transcript tab for ESPN-001. The left hand navigation column provides several options for the transcript ESPN-001. Click on the Exons link, circled in the image below.

You may want to change the display (for example, to show more flanking sequence, or to show full introns). In order to do so click on Configure this page and change the display options accordingly.

Display options	
Flanking sequence at either end of transcript:	50
Number of base pairs per row:	60 bps \$
Intron base pairs to show at splice sites:	25
Show full intronic sequence:	
Show exons only:	
Line numbering:	None \$
Show variations:	In exons only +
Filter variations by consequence type:	No filter 3 prime UTR variant 5 prime UTR variant Coding sequence variant Downstream gene variant

If you would like to export the sequence, including the colours, click Download view as RTF. A Rich Text Format document will be generated that can be opened in word processor such as MS Word.

🛃 Download view as RTF

Now click on the cDNA link to see the spliced transcript sequence.

UnTranslated Regions (UTRs) are highlighted in dark yellow, codons are highlighted in light yellow, and exon sequence is shown in black or blue letters to show exon divides. Sequence variants are represented by highlighted nucleotides and clickable IUPAC codes are above the sequence.

Next, follow the General identifiers link at the left.

This page shows information from other databases such as RefSeq, EntrezGene, OMIM, UniProtKB, and others, that matches to the Ensembl transcript and protein

General identifiers 0

This transcript corresponds to the following database identifiers:

Show 🚺 🗧 entries	Filter	
External database	Database identifier	
HGNC Symbol	ESPN espin [view all locations]	
UniParc	UPI000013D2B6 [view all locations]	
CCDS	CCDS70.1 [view all locations]	
UniProtKB/Swiss-Prot	ESPN_HUMAN [align] Espin [<u>view all locations]</u>	
RefSeq peptide	NP 113663.2 [Target %kd: 100; Query %kd: 100] [align] espin [view all locations]	
RefSeq mRNA	NM 031475.2 [align] [view all locations]	
UCSC Stable ID	uc001amy.3 [view all locations]	
Human Protein Atlas	HPA028674 [view all locations] HPA028674 [view all locations]	
European Nucleotide Archive	AF134401 [align] [view all locations] AL031848 [align] [view all locations] AL136880 [align] [view all locations] AL158217 [align] [view all locations] AY203958 [align] [view all locations] CH471130 [align] [view all locations]	
HGNC transcript name	ESPN-001 espin [<u>view all locations]</u>	
INSDC protein ID	AAD24480.1 [align] [view all locations] AAP34481.1 [align] [view all locations] CAB66814.1 [align] [view all locations] CAI19773.1 [align] [view all locations] CAI22163.1 [align] [view all locations] EAW71537.1 [align] [view all locations]	

Click on Ontology table to see GO terms from the Gene Ontology consortium. <u>www.geneontology.org</u>

Ontology graph (18) Ontology graph (18) Ontology table (18) Genetic Variation Variation table Variation table Population comparison Comparison image Protein Information Protein summary Domains & features (40)	Ontology GO: Biolog GO: Cellul GO: Molec Descendants	<u>gical process</u> ar component	88			
Variations (139) ⊡ External data	Show/hide	columns				Filter
□ Personal annotation □ ID History	Accession	Term 🔶	Evidence	Annotation Source	GOSIim Accessions	GOSIim Terms
Transcript history Protein history	<u>GO:0007605</u>	sensory perception of sound	IEA		GO:0008150 GO:0050877	biological_process neurological system process
Configure this page	GO:0007626	locomotory behavior	IEA		<u>GO:0008150</u>	biological_process
Add your data	<u>GO:0030046</u>	parallel actin filament bundle assembly	IEA		GO:0007010 GO:0022607 GO:0008150	cytoskeleton organization cellular component assembly biological_process
Bookmark this page	<u>GO:0051017</u>	actin filament bundle assembly	IEA	[from Mus_musculus ENSMUSP00000030785]	GO:0007010 GO:0022607 GO:0008150	cytoskeleton organization cellular component assembly biological_process
Share this page	<u>GO:0051491</u>	positive regulation of filopodium assembly	IEA		<u>GO:0008150</u>	biological_process
Download view as CSV	<u>GO:0051494</u>	negative regulation of cytoskeleton organization	IEA		<u>GO:0008150</u>	biological_process

Click on the **1** to see a guide to the three-letter Evidence codes.

Now click on Protein summary to view domains from Pfam, PROSITE, Superfamily, InterPro, and more.

Clicking on Domains & features shows a table of this information.

Domains & Domains	feature	es O			
Show All 🛊 e	ntries		Shov	v/hide columns	Filter
Domain type	Start	e End	Description	Accession	InterPro 🔶
Prints	427	443	-	PR01217	
Prosite_profiles	428	730	-	PS50099	
Prints	449	461	-	PR01217	
Prints	593	618	-	PR01217	
Prosite_profiles	768	825	-	PS50313	
Smart	35	64	Ankyrin_rpt	SM00248	IPR002110 [Display all genes with this domain]
Prosite_profiles	69	93	Ankyrin_rpt	PS50088	IPR002110 [Display all genes with this domain]
Smart	69	99	Ankyrin_rpt	SM00248	IPR002110 [Display all genes with this domain]

Exercises: Genes and transcripts

Exercise 7 – Exploring the human *MYH9* gene

(a) Find the human *MYH9* (myosin, heavy chain 9, non-muscle) gene, and go to the Gene tab.

- On which chromosome and which strand of the genome is this gene located?
- How many transcripts (splice variants) are there?
- How many of these transcripts are protein coding?
- What is the longest transcript, and how long is the protein it encodes?
- Which transcript has a CCDS record associated with it?

Why is the CCDS important – what does it tell us?

(b) Click on Phenotype at the left side of the page. Are there any diseases associated with this gene, according to MIM (Mendelian Inheritance in Man)?

(c) In the transcript table, click on the transcript ID for MYH9-001, and go to the Transcript tab.

• How many exons does it have?

- Are any of the exons completely or partially untranslated?
- Is there an associated sequence in UniProtKB/Swiss-Prot? Have a look at the General identifiers for this transcript.
- What are some functions of MYH9-001 according to the Gene Ontology consortium? Have a look at the Ontology table for this transcript.

(d) Are there microarray (oligo) probes that can be used to monitor ENST00000216181 expression?

Exercise 8 – Finding a gene associated with a phenotype

Phenylketonuria is a genetic disorder caused by an inability to metabolise phenylalanine. This results in an accumulation of phenylalanine causing seizures and mental retardation.

(a) Search for phenylketonuria from the Ensembl homepage. What gene is associated with this disorder?

(b) What tissues is this gene expressed in? Is this surprising, given the gene's role in disease? What is meant by "Intron-spanning reads" and "RNASeq alignments"?

(c) How many protein coding transcripts does this gene have? View all of these in the transcript comparison view.

(d) What is the MIM disease identifier for this gene? Does Orphanet list any other disorders associated with this gene?

Exercise 9 – Exploring a plant gene (*Vitis vinifera*, grape)

Start in <u>http://plants.ensembl.org/index.html</u> and select the *Vitis vinifera* genome.

(a) What GO: biological process terms are associated with the *MADS4* gene?

(b) Go to the transcript tab for the only transcript, Vv01s0010g03900.t01. How many exons does it have? Which one is the longest? How much of that is coding?

(c) What domains can be found in the protein product of this transcript? How many different groups agree with each of these domains?

BioMart

Demo: BioMart

Follow these instructions to guide you through BioMart to answer the following query:

You have three questions about a set of human genes: *ESPN*, *MYH9*, *USH1C*, *CHD7*, *CISD2*, *THRB*, *DFNB31* (these are HGNC gene symbols. More details on the HUGO Gene Nomenclature Committee can be found on http://www.genenames.org)

1) What are the EntrezGene IDs for these genes?

2) Are there associated functions from the GO (gene ontology) project that might help describe their function?

3) What are their cDNA sequences?

Step 1: Click on *BioMart* in the top header of a <u>www.ensembl.org</u> page to go to: <u>www.ensembl.org/biomart/martview</u>

NOTE: These answers were determined using BioMart Ensembl 71.

<i>C</i> Ensembl				्रि			
Home		Login / Register BLAST/BLAT BioMart Docs & FAQs					
> New Count Results		g URL 🔊 XML 🛃 Perl	Help				
Dataset	- CHOOSE DAT	TABASE -					
[None selected]				STEP 2:			
				Choose Ensembl G	ienes 72		
				as the primary da	tabase.		
New Count	Results	The sembling of the semble of	Peri) Help			
Homo sapiens genes (GRCh37.p10)		Homo sapiens genes (GRCh37,e10)		STEP 3:			
Filters			Choose H	<i>lomo sapiens</i> genes as t	he		
[None selected]			choose n				
Attributes				dataset.			
Ensembl Gene ID Ensembl Transcript I	D						

New Count Resu	STEP 4: Click Filters at the left. Expand the GENE panel.	Perl (*) Help ery using criteria below			
(GRCh37.p10)	GENE:				
[None selected]	TRANSCRIPT EVENT:				
Attributes Ensembl Gene ID	GENE ONTOLOGY:				
Ensembl Transcript ID					
	MULTI SPECIES COMPARISONS:				
Dataset	■ PROTEIN DOMAINS:				
[None Selected]					

New Count Results	🖕 URL 🛛 🔂 XML	🛃 Perl 💿 Help		
Dataset	Please restrict your q	STEP 5:		
Homo sapiens genes (GRCh37.p10)	REGION:	■ REGION:		
Filters	B GENE:		gene symbols. Change the	
HGNC symbol(s) [e.g. ZFY]: [ID-list specified]	Limit to genes	with ArrayExpress Only	heading to read HGNC symbol(s) [e.g. ZFY].	
Attributes		⊖Excluded	Symbol(S) [C.g. 211].	
Ensembl Gene ID Ensembl Transcript ID	✓ ID list limit [Max 500 advised]	HGNC symbol(s) [e ESPN, MYH9, USH10 THRB, DFNB31		
Dataset				
[None Selected]		Choose File No fi	ile chosen	
New Count F	Results	STEP	6:	
Datase(8 / 63253 Co.	Click Count to	see BioMart i	s reading 8 genes out of	

Homo sapiens genes63,253(GRCh37.p11)includFiltersHGNC symbol(s) [e.g. ZFY]:[ID-list specified](http://w

Click Count to see BioMart is reading 8 genes out of 63,253 possible *H. sapiens* genes (this number includes ncRNA genes) (note that *CHD7* has an Ensembl copy and an LRG copy (<u>http://www.ensembl.org/Help/Glossary?id=406</u>), hence 8 counts for 7 HGNC genes).

VEGA gene ID(s) (OTTG)

HGNC ID(s)

HGNC symbol

Ensembl transcript (where OTTT shares CDS with ENST) HAVANA transcript (where ENST **STEP 10:**

HAVANA transcript (where ENST Also select HGNC symbol to see the input gene symbols we started with.

STEP 12: Click Results.

New Count Results		••						
Dataset 8 / 62252 Genes	Export all results	Export all results to File + TSV +				v 🔹 🗌 Unio	que results only 🔗 Go	
Homo sapiens genes (GRCh37.p10)	Email notification to							
Filters	View	10	; rows as	HTML \$	📄 Unique	results only		
HGNC symbol(s) [e.g. ZFY]: [ID-list specified]	Ensembl Gene ID	Ensembl Transcript ID	EntrezGene	HGNC	GO Term Accession	GO Term Name	GO Term Definition	
Attributes Ensembl Gene ID Ensembl Transcript ID EntrezGene ID HGNC symbol	ENSG00000151090	ENST00000356447	7068	THRB	<u>GO:0000122</u>	negative regulation of transcription from RNA polymerase II promoter	"Any process that stops, prevents, or reduces the frequency, rate or extent of transcription from an RNA polymerase II promoter." [GOC:go_curators, GOC:txnOH]	
GO Term Accession GO Term Name GO Term Definition	ENSG00000151090	ENST00000356447	<u>7068</u>	<u>THRB</u>	<u>GO:0006351</u>	transcription, DNA- dependent	"The cellular synthesis of RNA on a template of DNA." [GOC:jl, GOC:txnOH]	
Dataset	ENSG00000151090	ENST00000356447	7068	<u>THRB</u>	<u>GO:0045944</u>	positive regulation of transcription from RNA	"Any process that activates or increases the frequency, rate or extent of transcription from an RNA polymerase II promoter."	
[None Selected]						polymerase II promoter	[GÓC:go_curators, GOC:txnOH]	
Why are there multiple rows for one gene ID? For example, look at the first few rows.

Ensembl Gene ID	Ensembl Transcript ID	EntrezGene ID	GO Term Accession	GO Term Name	GO Term Definition	HGNC symbol
ENSG00000187017	ENST00000377828	<u>83715</u>	<u>GO:0007605</u>	sensory perception of sound	"The series of events required for an organism to receive an auditory stimulus, convert it to a molecular signal, and recognize and characterize the signal. Sonic stimuli are detected in the form of vibrations and are processed to form a sound." [GOC:ai]	ESPN
ENSG00000187017	ENST00000377828	<u>83715</u>	<u>GO:0007626</u>	locomotory behavior	"The specific movement from place to place of an organism in response to external or internal stimuli. Locomotion of a whole organism in a manner dependent upon some combination of that organism's internal state and external conditions." [GOC.dph]	<u>ESPN</u>
ENSG00000187017	ENST00000377828	<u>83715</u>	<u>GO:0030046</u>	parallel actin filament bundle assembly	"Assembly of actin filament bundles in which the filaments are tightly packed (approximately 10-20 nm apart) and oriented with the same polarity." [GOC:mah, ISBN:0815316194]	<u>ESPN</u>

Associated Gene Name

Description

Associated Gene Name
 Associated Gene DB
 Chromosome Name

🧿 New 🗐 Count 🛐 Results			STEP 16: Click Results to see the cDNA sequences in FASTA format.
Dataset 8 / 62252 Genes	Export all results to	File	
Homo sapiens genes (GRCh37.p10)	Email notification to		
Filters HGNC symbol(s) [e.g. ZFY]: [ID-list specified] Attributes	View >ENSG00000006611 ATGGACCGAAAAGTGG GCAGAGAAGGACTATC	ENST00000 CCCGAGAATTCCGG TCTATGATGTGCTGC	
Ensembl Gene ID Ensembl Transcript ID cDNA sequences	GTGCTCGTGGGAGACC GCCATTCGGCCGCTGA CGCTCCAGGAAGCTGA AGTGTGCGTGGTGGCC	TCCCACTGAAGCACO AGGAGGTGCGTCTGO	SA STEP 17:
Associated Gene Name	GGTCAGGCAGACAGCG TCCATCTCCTCCTGTA		
Dataset	TCCATCAAAGTGAGAC ACTTGGCAGTATGTGG	ATCAGTTTGTGTCG	Tows so that you see the full table.
[None Selected]	TCCCCTGGAAATCGGG GGCCTTGGCTGCAGCA GTGAACCTGGCTCCC GTCAATGGCGTCGACT AGCCGCAGCCTGGCAC AAGCGGCGCGGC	TTTCCAGCGGCCCCA TGTCTGCTGAGGTG(TCTCTAACCTGGAT(TCTCCATTGTAGCT(AGGCGCGGCAGCGT(AGTCCAACAAGATC(Note: Pop-up blocking must be switched off in your browser.

Note: you can use the Go button to export a file.

What did you learn about the human genes in this exercise? Could you learn these things from the Ensembl browser? Would it take longer?

For more details on BioMart, have a look at these publications:

Smedley, D. *et al* **BioMart – biological queries made easy** BMC Genomics 2009 Jan 14;10:22

Kinsella, R.J. *et al* **Ensembl BioMarts: a hub for data retrieval across taxonomic space.** Database (Oxford) 2011:bar030

Exercises: BioMart

Exercise 10 - Finding genes by protein domain

Find mouse proteins with transmembrane domains located on chromosome 9.

Exercise 11 – Convert IDs

BioMart is a very handy tool when you want to convert IDs from different databases. The following is a list of 29 IDs of **human proteins** from the NCBI **RefSeq** database (http://www.ncbi.nlm.nih.gov/projects/RefSeq/):

NP_001218, NP_203125, NP_203124, NP_203126, NP_001007233, NP_150636, NP_150635, NP_001214, NP_150637, NP_150634, NP_150649, NP_001216, NP_116787, NP_001217, NP_127463, NP_001220, NP_004338, NP_004337, NP_116786, NP_036246, NP_116756, NP_116759, NP_001221, NP_203519, NP_001073594, NP_001219, NP_001073593, NP_203520, NP_203522

Generate a list that shows to which Ensembl Gene IDs and to which HGNC symbols these RefSeq IDs correspond. Do these 29 proteins correspond to 29 genes?

Hint: For this exercise, it's easier to copy and paste the IDs from the online exercise booklet. One copy is here: URL

Exercise 12 – Export homologues

For a list of *Ciona savignyi* Ensembl genes, export the human orthologues.

ENSCSAVG0000000002, ENSCSAVG0000000003, ENSCSAVG000000006, ENSCSAVG0000000007, ENSCSAVG000000009, ENSCSAVG0000000011

Exercise 13 – Export structural variants

You can use BioMart to query variants, not just genes.

(a) Export the study accession, source name, chromosome, sequence region start and end (in bp) of human structural variations (SV) on chromosome 1, starting at 130,408 and ending at 210,597.

(b) In a new BioMart query, find the alleles, phenotype descriptions, and associated genes for rs1801500 and rs1801368. Can you view this same information in the Ensembl browser?

Exercise 14 – Find genes associated with array probes

Forrest *et al* performed a microarray analysis of peripheral blood mononuclear cell gene expression in benzene-exposed workers (Environ Health Perspect. 2005 June; 113(6): 801–807). The microarray used was the human Affymetrix U133A/B (also called U133 plus 2) GeneChip. The top 25 up-regulated probe-sets were:

207630_s_at, 221840_at, 219228_at, 204924_at, 227613_at, 223454_at, 228962_at, 214696_at, 210732_s_at, 212370_at, 225390_s_at, 227645_at, 226652_at, 221641_s_at, 202055_at, 226743_at, 228393_s_at, 225120_at, 218515_at, 202224_at, 200614_at, 212014_x_at, 223461_at, 209835_x_at, 213315_x_at

(a) Retrieve for the genes corresponding to these probe-sets the Ensembl Gene and Transcript IDs as well as their HGNC symbols and descriptions.

(b) In order to analyse these genes for possible promoter/enhancer elements, retrieve the 2000 bp upstream of the transcripts of these genes.

(c) In order to be able to study these human genes in mouse, identify their mouse orthologues. Also retrieve the genomic coordinates of these orthologues.

Exercise 15 - BioMart in Ensembl Fungi

You can use BioMart for the non-vertebrate species hosted at <u>www.ensemblgenomes.org</u>. Export a list of Gene IDs (from the PomBase project only) for *S. pombe* that are protein coding and located on Chromosome III.

(Start at http://fungi.ensembl.org)

Variation

Demo: Finding variants in Ensembl

In any of the sequence views shown in the Gene and Transcript tabs, you can view variants on the sequence. You can do this by clicking on Configure this page from any of these views.

Let's take a look at the Gene sequence view for *MCM6* in human. Search for *MCM6* and go to the Sequence view.

If you can't see variants marked on this view, click on Configure this page and select Show variations: Yes and show links.

Find out more about a variant by clicking on it.

Variation:	rs1057031
Position:	2:136633962
Alleles:	G/A
Types:	5_prime_UTR_variant
	regulatory_region_variant
Gene/Trar	script Locations
Population	Allele Frequencies

You can add variants to all other sequence views in the same way.

You can go to the Variation tab by clicking on the variant ID. For now, we'll explore more ways of finding variants.

To view all the sequence variations in table form, click the Variation table link at the left of the gene tab.

PEnsombl			Login/Register
	T/BLAT BioMart Tools Download		Blog Mirrors G Search all species
Gene-based displays Gene summary Solice variants (3)	Gene: MCM6 ENSG0000007600		
 Spice variants (3) Transcript comparison Supporting evidence Sequence 	Description		ance complex component 6 [Source:HGNC Symbol;Acc:6949] 196-136.633.996 reverse strand.
 External references 	INSDC coordinates		1000664.1:136597196:136633996:1
Regulation Expression Comparative Genomics	Transcripts	This gene has 3 transcrip	is (splice variants) Show transcript table
Gene tree (image) Gene tree (image) Gene tree (image) Gene tree (lext) Gene gain/loss tree Orthologues (63)	Variation table 19	nces in ENSG00000760	03
- Paralogues Protein families (1)	Show All 🗧 entries		Filter
- Phenotype Genetic Variation	Number of variant consequences	Туре	Description
Variation table Variation image Structural variation	0 -	Transcript ablation	A feature ablation whereby the deleted region includes a transcript feature (SO:0001893)
Structural variation External data Personal annotation	0 -	Splice donor variant	A splice variant that changes the 2 base region at the 5' end of an intron (S0:0001575)
□ ID History Gene history	1 Show	Splice acceptor variant	A splice variant that changes the 2 base region at the 3' end of an intron (S0:0001574)
Configure this page	0 -	Stop gained	A sequence variant whereby at least one base of a codon is changed, resulting in a premature stop codon, leading to a shortened transcript (SO:0001587)
Add your data	1 Show	Frameshift variant	A sequence variant which causes a disruption of the translational reading frame, because the number of nucleotides inserted or deleted is not a multiple of three (SO:0001589)
🔁 Bookmark this page	0 -	Stop lost	A sequence variant where at least one base of the terminator codon (stop) is changed, resulting in an elongated transcript (S0:0001578)
Share this page	0 - 📕	Initiator codon variant	A codon variant that changes at least one base of the first codon of a transcript (S0:0001582)

The table is divided into consequence types. You can also view the consequence types as an ontology tree. Click on Switch to tree view at the right hand side to change the view.

Click on Show to expand a detailed table for any of the consequence types available.

Let's expand Missense variants.

	Show All 🛟 e	entries			S	how/hide co	lumns				Filter	SIFT and	
	ID \$	Chr: bp	Alleles	Glo- bal MAF	Class	Source	Evidence	Туре	AA	AA co- ord	SIFT Poly Transo Phen-	PolyPher	
	rs200231978	2:136598413	C/T	-	SNP	dbSNP	-	Missense variant	E/K	820	0.02 0.508	scores	
	rs1804609	2:136598428	G/T	-	SNP	dbSNP	-	Missense variant	P/T	815	0 0.998 ENSTO 156	0000204	
	5660827	2:136598443	A/G	0.001 (G)	SNP	dbSNP	6 C ()K	Missense variant	Y/H	810	0.22 0.71 <u>ENSTO</u> 156	Tran	scrip
 Variant	4988283	2:136598455	C/T	-	SNP	dbSNP	60	Missense variant	E/K	806	0.14 0.104 ENSTO <u>156</u>	0000264	cted
	<u>148613967</u>	2:136598457	T/C	-	SNP	dbSNP	66	Missense variant	Y/C	805	0.06 0.011 ENSTO <u>156</u>	0000264	
IDs	<u>DSM570243</u>	2:136598469	C/T	-	somatic_SNV	COSMIC	-	Missense variant	G/E	801	1 0 <u>ENSTO</u> 156	0000264	
	rs138809319	2:136598471	C/G	0.001 (G)	SNP	dbSNP	() K	Missense variant	E/D	800	0.45 0 <u>ENSTO</u> <u>156</u>	0000264	
	TMP_ESP_2_136 598493	2:136598493	G/A		SNP	ESP	-	Missense variant	A/V	793	0.24 0.004 ENSTO 156	0000264	

The table contains lots of information about the variants. You can click on the IDs here to go to the Variation tab too.

Let's look at Structural Variation in the Gene Tab. You'll find it in the left-hand menu.

You can click on the structural variants (SVs) in the image, or on their IDs in the table to go to the SV tab.

Let's have a look at variants in the Location tab. Click on the Location tab in the top bar.

Configure this page and open Variation from the left-hand menu.

Active tracks	Variation	Find a track
Favourite tracks	variation	
Track order	Enable/disable all dbSNP	
Search results	Sequence variants (dbSNP and all other sources)	*
Sequence and assembly Sequence Markers	(3/29) dbSNP variants	÷
 GRC alignments Ditag features Simple features 	(1/3) <u>HapMap</u> (0/2) All HapMap (0/6)	*
Clones	(0/13) Enable/disable all 1000 Genomes	
Genes and transcripts	(2/62) 1000 Genomes - AFR	*
 Genes Prediction transcripts 	(2/6) (0/2) 1000 Genomes - AFR - common	*
- RNASeg models	(0/54) 1000 Genomes - All	*
mRNA and protein alignments	(1/15) 1000 Genomes - All - common	*
- mRNA alignments	(1/3) 1000 Genomes - AMB	÷ ÷
 EST alignments 	(0/1) 1000 Genomes - AMB - common	÷
 Protein alignments Protein features 	(0/5)	÷
· · · · · · · · · · · · · · · · · · ·		÷
ncRNA		~ ~ ~
Variation		*
 dbSNP 1000 Genomes & HapMap 	(0/2) 1000 Genomes - EUR - common (0/13) 1000 Genomes - Hick common Trics	*
 Phenotype and curated variants 	(0/13) Tobo Genomes - High coverage - Thos	*
 Individual genomes 	(0/14) 1000 Genomes - Low coverage	*
 Arrays and other Failed variants 	(0/12) (0/1) Enable/disable all Phenotype and curated variants	
- Structural variants	(0/18) Uniprot phenotype variants	*
Phenotype annotations	(0/4) OMIM phenotype variants	*

There are various options for turning on variants. You can turn on variants by source, by frequency, presence of a phenotype or by individual genome they were isolated from. Turn on the following sequence variants in Normal.

- 1000 genomes All
- 1000 genomes All common
- All phenotype-associated variants
- ENSEMBL:Venter

Also turn on Larger and Smaller Structural variants (all sources) in Expanded.

· 📩 < 🕀 🖃	
	36.80 kb Forward strand 136.60 Mb 136.61 Mb 136.62 Mb 136.62 Mb 136.62 Mb 136.63 Mb
Chromosome bands	q21.3
36 way GERP ele	Constrained elements for 36 eutherian mammals EPO_LOW_COVERAGE
Contigs	AC011893.7 >
Genes (Merged E	< MCM6-001
	protein coding
	< MCM6-003 processed transcript
	< MCM6-002 retained intron
CCDS set	┣━━━━━╋╼┲╋╼┲╋╼┲┲┲╋╼╋┲┲┲┲┲┲┲╋┲┲┲╋┲┲┲╋┲┲┲╋┲
	CCDS set
luman cDNAs (R .KG - All	
NG TAIL	
	SNPs and ir
KG - All - common	
ll phenotype-as	
NSEMBL:Venter	
arger structural	
	SVs
maller structural	
Reg. Feats	
6GC	water the second of the second
	136.60 Mb 136.60 Mb 136.61 Mb 136.62 Mb 136.62 Mb 136.62 Mb 136.63 Mb
/ariation Legend	Missense variant Splice region variant Synonymous variant Variation
anacion Legend	
	Intron variant
Structural Variatio	
Gene Legend	processed transcript merged Ensembl/Havana
Reg. Features Leg	Gene associated Mon-gene associated
	PolIII associated Promoter associated
	There are currently 449 trackstumed off.
	Ensembl Homo sapiens version 71.37 (GRCh37) Chromosome 2: 136,597,196 - 136,633,996

Click on a variant to find out more information. It may be easier to see the individual variants if you zoom in.

Let's zoom in on the region 2:136607850-136609811 by typing it into the Location box.

Change the track style on one of the SNP variant tracks to Expanded with name. Click on the variant rs4988235 to open a pop-up, then click on the ID to open the Variation tab.

The icons show you what information is available for this variant. Click on Genes and regulation, or follow the link at the left.

Genes and re	gulation										
Gene and Transci	ript consequences										
Show/hide colum	ns								Filter		
Gene	Transcript (strand) ▲	Allele (transcript ▲ allele)	Туре	Position in transcript	Position in CDS	Position in protein	Amino acid	Codons	SIFT	PolyPhen	Detail 🕴
ENSG0000076003 HGNC: MCM6	ENST00000264156 (-) biotype: protein_coding	A (T)	Intron variant	-	-	-	-	-	-		Show
ENSG0000076003 HGNC: MCM6	ENST0000483902 (-) biotype: retained_intron	A (T)	<u>NC</u> transcript variant, Intron variant	-	-	-	-	-		-	Show
ENSG0000076003 HGNC: MCM6	ENST00000492091 (-) blotype: processed_transcript	Α (Τ)	<u>NC</u> <u>transcript</u> <u>variant</u> , <u>Intron</u> <u>variant</u>	-	-	-	-	-		-	Show

This variant is found in three transcripts of the *MCM6* gene. It has not been associated with any regulatory features or motifs.

Let's look at population genetics. Either click on Explore this variant in the left hand menu then click on the Population genetics icon, or click on Population genetics in the left-hand menu.

Population gene				Pie charts of allele frequencies						
ALL	AFR	A: 4% G: 96% ulations ⊞	AMR Sub-popul	A: 26% G: 74%	ASN → G: 100% Sub-populations ■	EUR Sub-popula	A: 52% G: 48% tions 🗄	sub	Expar popula	
Show All + entries	*	Alleles	Alleles G	Show/hide Genotypes AIA		Genotypes	Filter	Genotyp		of more ed data
1000GENOMES:phase	<u>1 ALL</u>	0.234	0.766	0.135	0.198	0.668	510 (A) / 1674 (G)	147 (AIA) / S 216 (AIG) / 729 (GIG)	how	
1000GENOMES:phase	<u>1 AFR</u>	0.037	0.963	0.012	0.049	0.939	18 (A) / 474 (G)	3 (AIA) / S 12 (AIG) / 231 (GIG)	how	
1000GENOMES:phase	1 AMR	0.262	0.738	0.094	0.337	0.569	95 (A) / 267 (G)	17 (AIA) / S 61 (AIG) / 103 (GIG)	how	

These data are mostly from the **1000 genomes** and **HapMap** projects in human.

There are big differences in allele frequencies between populations. Let's have a look at the phenotypes associated with this variant to see if they are known to be specific to certain human populations. Either click on Explore this variant in the left hand menu then click on the Phenotype data icon, or click on Phenotype Data in the left-hand menu.

Phenotype Data 🛭 🕯						
Show/hide columns					Filter	
Disease/Trait	Source(s)	Study 🔶	Reported gene(s)	Associated variant(s)	Most associated allele	P value
LACTASE PERSISTENCE [View on Karyotype]	OMIM	MIM:601806	MCM6	<u>rs4988235</u>	0001	

This variant is associated with lactase persistence, which is known to be common in European populations, and rare in Asian populations, exactly as we saw in the allele frequencies in these populations.

Are there other variants in the genome that also cause lactase persistence? Click on View on Karyotype to find out.

				Hi	ts o	on t	he]																
								9			12					17		19						ĨŇ	
Click o	on the	e imag	e abov	ve to	jump	to a ch	nromos	ome, o	or clic	k and d	rag to	selec	t a reg	ion											
ey																									
Featur	e type	Ð	Colou	r																					
Variatio	on		1.0		3.0		4.0			5.0		6.0			7.0		8.0	-		\leq	ς ι	.ege	end	sho	wir
					Less	signifi	cant -lo	g(p-valı	ues) <	t			Mor	e signi	ficant -	log(p-v	alues)					hit :	sigr	nifica	anc
eatur	es as	soci	ated w	/ith p	henc	otype	LACTA	SE PE	RSIS	TENCE															
She	w/bid	e colu																		Fil					
Genom	-	-	_		Ensen	nbl	Feat	ure	F	Reported	4		Assoc	iated			Δnn	otatio	n			Tal	ble	of	
strand)			÷ 1	D		type		ę	jene(s)		÷.	pheno	type(s)		÷	sou	rce(s)		\leq		vai	rian	ts	
2:1366					s4988		Varia			<u>1CM6</u>						ENCE				- L					
2:1366	11754	-1366	21754(<u>1)</u> r	s1825	49	Varia	tion	V	<u>//CM6</u>			LACTA	SE PE	RSIST	ENCE	OMI	M			-				

Two variants are known to be associated with this phenotype. Both are found with the *MCM6* gene.

Click back to the Variation Tab. Click on Phylogenetic context to see the variant in other species.

Phylogenetic Context 0	Choose your alignment		
Alignment: 6 primates EPO	Go		
Кеу			
Variations Intronic			
Focus variant Homo sapiens > chromosome:GRCh37:2:136608636 Pan troglodytes > chromosome:CHIMP2.1.4:2B:1398 Gorilla gorilla gorilla > chromosome:gorGor3.1:2b:2295294 chromosome:PPYG2:2b:248056699	11109:139811129:1 17:22952967:1	Aligne	ed regions
Pongo abelii > chromosome:PPYG2:2b:24805669: Macaca mulatta > chromosome:MMUL 1:13:116 ²⁰²⁷²			
Homo sapiens GAGGCCA <mark>GGGG</mark> II Pan troglodytes GAGGCCAGGG G CTACATT			
Gorilla gorilla gorilla GAGGCCAGGGCCTACATT Pongo abelii GAGGCCAGGGCCTACATT Macaca mulatta GAGGCCAGGGCCTACATT Callithrix jacchus GAGGCCAGGGCCTACATT	ATC Alignr		

The variant is not marked in the other species. This means that the variant arose in humans.

Another way to look at variation is using the **Resequencing** view. Click on the Location tab, then choose Resequencing from the lefthand menu.

Resequencir	ng Alignments					
Location: 2:136	607850-136609811	Go Gene:		Go		
Key						
Variations	ntronic		Reference	•		
Other features	All exons		Reference			
 Basepairs 	s in secondary individuals matchi	ng the reference individual are rep	sequence	2		
 ~ No reseque 	encing coverage at this position		5/			
Homo_sapiens > 9 Homo_sapiens VENTER WATSON	chromosome:GRCh37:2:1366078 1 TCTCCCCTCTCGTTTTTT 1 1		STTCGGGGGTACACATGCAGGTTT'	STTACATAGGTAAACT	GTGTGTCATGGGGATTTAGTATATAGATTATTTCATCAC	120 120 120
Homo_sapiens VENTER WATSON	121 CCACTCTATTTTTTACA 121 121	IGCTTAATTAAATACA	ndividual	GGCAGGGGCTCTCAT	TCATTTTTTGTCCCCTACAGGTGTTCCCTAAATATTGGG	240 240 240
Homo_sapiens VENTER WATSON	241 TGAATCAAAGAATATTA 241 241	aataacctagtgtgaa d	lifferences	GAATTTGAAAATTTA	GTGGAAAAAAGCCAAAAAATTAACCTGTGGGATAAAAGT	360 360 360
Homo_sapiens VENTER WATSON	361 AGTGATTGAAGTCGGAA 361 361	CAGTGGTTACTT JJGGAAGAGGG	GCTAAGACTGAAAAGAGGCAGGGG	PTTGGAACTTTCTGAA	ATTATGGAAATGTTTTGGATCTTGAGCTGGGTATTCACA	480 480 480

This view is used to look at sequence between individuals. Craig Venter and James Watson are shown by default. You can change the individuals shown by clicking on Configure this page.

It can also be used to look at different mouse strains or dog breeds. Can you find our variant rs4988235 in this view? Is the alternate allele present in James Watson or Craig Venter?

Exercises: Finding variants in Ensembl

Exercise 16 - Human population genetics and phenotype data

The SNP rs1738074 in the 5' UTR of the human *TAGAP* gene has been identified as a genetic risk factor for a few diseases.

(a) In which transcripts is this SNP found?

(b) What is the least frequent genotype for this SNP in the Yoruba (YRI) population from the HapMap set?

(c) What is the ancestral allele? Is it conserved in the 36 eutherian mammals?

(d) With which diseases is this SNP associated? Are there any known risk (or associated) alleles?

Exercise 17 – Exploring a SNP in human

The missense variation rs1801133 in the human *MTHFR* gene has been linked to elevated levels of homocysteine, an amino acid whose plasma concentration seems to be associated with the risk of cardiovascular diseases, neural tube defects, and loss of cognitive function. This SNP is also referred to as 'A222V', 'Ala222Val' as well as other HGVS names.

(a) Find the page with information for rs1801133.

(Note: a bug in the current release means that these alleles are erroneously reported as G/A/CT/CT. Please ignore these extra CT alleles.)

(b) Is rs1801133 a Missense variation in all transcripts of the *MTHFR* gene?

(c) Why are the alleles for this variation in Ensembl given as G/A and not as C/T, as in dbSNP and literature?

(http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=180113 3)

(d) What is the major allele in rs1801133?

(e) In which paper is the association between rs1801133 and homocysteine levels described?

(f) According to the data imported from dbSNP, the ancestral allele for rs1801133 is G. Ancestral alleles in dbSNP are based on a comparison between human and chimp. Does the sequence at this same position in four other primates, i.e. gorilla, orangutan, macaque and marmoset, confirm that the ancestral allele is G?

(g) Were both alleles of rs1801133 already present in Neanderthal? To answer this question, have a look at the individual reads at its genomic position in the Neanderthal Genome Browser (http://neandertal.ensemblgenomes.org/).

Exercise 18 - Structural variation in human

In the paper 'The influence of *CCL3L1* gene-containing segmental duplications on HIV-1/AIDS susceptibility' (Gonzalez *et al* Science. 2005 Mar 4; 307(5704):1434-40) it is shown that a higher copy number of the *CCL3L1* (Chemokine (C-C motif) ligand 3-like 1) gene is associated with lower susceptibility to HIV infection.

(a) Find the human *CCL3L1* gene.

(b) Have any CNVs been annotated for this gene? Note: In Ensembl, CNVs are classified as structural variants.

Exercise 19 – Exploring a SNP in mouse

Madsen *et al* in the paper 'Altered metabolic signature in pre-diabetic NOD mice' (PloS One. 2012; 7(4): e35445) have described several regulatory and coding SNPs, some of them in genes residing within the previously defined *insulin dependent diabetes (IDD)* regions. The authors describe that one of the identified SNPs in the murine *Xdh* gene (rs29522348) would lead to an amino acid substitution and could be damaging as predicted as by SIFT (http://sift.jcvi.org/).

(a) Which chromosome and coordinates in the SNP located?

(b) What is the HGVS recommendation nomenclature for this SNP?

(c) Why does Ensembl put the C allele first (C/T)?

(d) Are there differences between the genotypes reported in NOD/LTJ and BALB/cByJ?

Demo: The Variant Effect Predictor (VEP)

We have analysed a samples from a patient with a genetic disorder. The patient presents with facial and limb deformities, mental retardation and gastrointestinal reflux. Our genotyping has identified a mutation that may be responsible for the phenotype: An A->G mutation on chromosome 5 at 37,017,205 on the + strand.

We will use the **Ensembl VEP** to determine:

- Has my variant already been annotated in Ensembl?
- What genes are affected by my variant?
- Does my variant result in a protein change?

From any page in Ensembl click on Tools in the top bar.

This provides a table showing the tools that are available in Ensembl. There's a short description of what each of the tools do. All are available as both an online tool, and code that you can download. We're going to using the Variant Effect Predictor online tool.

	Name	Description	Online tool	Download code	version of the tool
VEP tool	Variant Effect Predictor	 (Formerly SNP Effect Predictor). Analyse your own variants and predict the functional consequences of known and unknown variants via our Variant Effect Predictor (VEP) tool. You can do this online (max 750 variants), or download the script. <u>Accepted formats</u> include a simple tab-delimited file, VCF and other formats. Uploaded tracks can be viewed on Location pages. See also <u>full documentation</u>. 	0	nline tool]
	Assembly converter	Map your data to the current assembly. Accepted file formats: <u>GFF</u> , <u>GTF</u> , <u>BED</u> , <u>PSL</u> N.B. Export is currently in GFF only	*	đ	
	ID History converter	Convert a set of Ensembl IDs from a previous release into their current equivalents (max 30 ids).	*	ц	
	Ensembl Virtual Machine	VirtualBox virtual Machine with Ubuntu desktop and pre-configured with the latest Ensembl API plus Variant Effect Predictor (VEP). NB: download is >1 GB See also <u>full documentation</u> .	-	den al	

Click on the spanner beside the Variant Effect Predictor (VEP).

Code

This will open up a dialogue box. This allows us to input data on our variant.

Custom Data			V
Add your data Attach DAS	Variant Effect Predictor:		
Attach DAS Manage Data Features on Karyotype Data Converters Assembly Converter ID History Converter Variant Effect Predictor Region Report	split files into smaller chunks, use the standalone g	ions annotated in Ensembl. The tool	
	· ·		name
	Species:	Human (Homo sapiens): GRCh37 ‡	Ilaille
	Name for this data (optional):		
	Paste data:	1 881907 881906 -/C + 5 140532 140532 T/C +	Put your data in here.
	Upload file:	Choose File No file chosen	
	or provide file URL:		
	Input file format:	Ensembl default \$	You can also
	Options		upload a file.
	Transcript database to use:	Ensembl transcripts RefSeq and other transcripts	

The data is in the format: Chromosome Start End alleles (reference/mutation) strand

Delete the writing already in the Paste data box and type in: 5 37017205 37017205 A/G +

Scroll down to see some of the options we can also choose.

Options		Choose which
Transcript database to use:	Ensembl transcripts	database to map
	 RefSeq and other transcripts 	your variant to.
Get regulatory region consequences (human and mouse only):	L ۲	
Type of consequences to display:	Sequence Ontology terms 🛟	Find out if
Check for existing co-located variants:	Yes	variants already
Get 1000 Genomes global allele frequency for existing variants:	I	exist in our database.
Return results for variants in coding regions only:		ualabase.
Show HGNC identifier for genes where available:		
Show Ensembl protein identifiers where available:		
Show HGVS identifiers for variants where available:	No \$	
Missense SNP predictions (human only)	Г	
SIFT predictions:	No	Choose to see
PolyPhen predictions:	No ÷	scores for protein changes.
Frequency filtering of existing variants (human	only)	
Filter variants by frequency:		
	NB: Enabling frequency filtering may be slow fo datasets. The default options will filter out community variants found but the 1000 Common project	
Filter: Exclude + variants with MAF greater than	variants found by the 1000 Genomes project.	Choose to only
in 1000 genomes (1KG) combined population +		see common or
		rare variants

Select Prediction and Score for SIFT predictions and PolyPhen predictions. These are algorithms that predict how deleterious a mutation will be on a protein.

When you've selected everything you need, scroll right to the bottom and click Next.

Click HTML to view your results with clickable links.

Exercise: The Variant Effect Predictor (VEP)

Exercise 20 - VEP

Resequencing of the genomic region of the human *CFTR* (cystic fibrosis transmembrane conductance regulator (ATP-binding cassette sub-family C, member 7) gene (ENSG0000001626) has revealed the following variants (alleles defined in the forward strand):

- G/A at 7:117,171,039
- T/C at 7:117,171,092
- T/C at 7:117,171,122

(a) Use the VEP tool in Ensembl and choose the options to see SIFT and PolyPhen predictions. Do these variants result in a change in the proteins encoded by any of the Ensembl genes? Which gene? Have the variants already been found?

(b) Go to Region in detail for *CFTR*. Do you see the VEP track?

Comparative genomics

Demo: Gene trees and homologues

Let's look at the homologues of human *BRCA2*. Search for the gene and go to the **Gene tab**.

Click on Gene tree (image), which will display the current gene in the context of a phylogenetic tree used to determine orthologues and paralogues.

Funnels indicate collapsed nodes. We can expand them by clicking on the node and selecting Expand this sub-tree from the pop-up menu.

Taxon: Mars	upials ~148 MYA (Marsupialia)
Gene Count	3
Branch Length	0.131357
Bootstrap	100
Туре	Speciation
Support	phyml_nt,nj_ds,phyml_aa,nj_dn,nj_mm
Image	expand this sub-tree
Image	expand all sub-trees
Image	collapse other nodes
Comparison	Jump to Region Comparison view
View Sub- tree	Alignment: FASTA
View Sub- tree	Tree: New Hampshire
View Sub- tree	Expand for Jalview

We can look at homologues in the Orthologues and Paralogues pages, which can be accessed from the left-hand menu. The numbers of orthologues or paralogues available are indicated in brackets alongside the name. If there are none, then the name will be greyed out. Paralogues is greyed out for *BRCA2* indicating that there are no paralogues available.

Click on Orthologues to see the 56 orthologues available.

Orthologues	0					Orthologue typ	es
View sequence align	ments of all ortholo	ogues.					
Summary of ortho	ologues of this g	gene					
Click on 'Show' to dis	splay the orthologu	es for one or r	more groups, or click on 'Configure	this page' to choose a cu	stom list of spe		
Species set		Show deta	ails 1:1		1:many	many:many	No orthologue
Primates Humans and other p	primates		9		0	0	0
Rodents Rodents, rabbits an	d related species	۷	8		0	0	0
Laurasiatheria Carnivores, ungulate insectivores	es and		12		1	0	0
Placental Mammal All placental mamm			34		1	0	0
Saure da Bi Reptiles			5		0	0	0
ose a 🔤			9		0	0	0
	ng invertebrates		52		4	Info	rmation or
erest olog	gues					-	thologues
ent				Show/hide columns			enologues
Species	Туре 🔺	dN/dS ∲	Ensembl identifier & gene name	Compare	Location		Target Query %id %id
Guinea Pig (Cavia porcellus)	1-to-1		ENSCPOG0000005153 BRCA2 breast cancer 2, early onset [Source:HGNC Symbol;Acc:1101]	Region Comparison Alignment (protein) Alignment (cDNA) Gene Tree (image)	scaffold 6:33	778275-33853154:1	65 63
Kangaroo rat (<i>Dipodomys ordii</i>)	1-to-1		ENSDORG0000007049 Brca2 breast cancer 2 Gene [Source:MGI Symbol;Acc:MGI:109337]	Region Comparison Alignment (protein) Alignment (cDNA) Gene Tree (image)	GeneScaffold	<u>1038:358641-411759:1</u>	41 41
Mouse (<i>Mus musculus</i>)	1-to-1		ENSMUSG0000041147 Brca2 No description	Region Comparison Alignment (protein) Alignment (cDNA) Gene Tree (image)	<u>5:150522630-</u>	<u>150569746:1</u>	56 54

Choose to see only **Rodent** orthologues by selecting the box. The table below will now only show details of rodent orthologues. Let's look at mouse.

Mouse (Mus musculus)	1-to-1	0.41716	ENSMUSG0000041147	egion Comparison 5:150522630-150569746:1 lignment (protein)	56	54
(Brca2 No description	lignment (cDNA) ene Tree (image)		

Links from the orthologue allow you to go to alignments of the orthologous proteins and cDNAs. Click on Alignment (protein) for the mouse orthologue.

0	e alignment ()			-	nation on ogue pair
Species	Gene ID	Peptide ID	Peptide length	% identity	Genomic location
Homo sapiens	ENSG00000139618	ENSP00000439902	3418 aa	50 %	13:32889611- 32973805
Mus musculus	ENSMUSG0000041147	ENSMUSP0000038576	3329 aa	52 %	<u>5:150522630-</u> 150569746
CLUSTAL W(1.8	1) multiple sequenc	e alignment			Alignment in Clustal W forma
ENSP000004399 ENSMUSP000000	38576/1-3329 MPVEYK	ERPTFFEIFKTRCNKADLO	PISLNWFEE:	LSSEAPPYNS	EPP ESEYKPHGYEPQ
	38576/1-3329 LFKTPQ	RKP-SYNQLASTPIIFKE(RNPP-YHQFASTPIMFKEF *:* *:*:****	SQTLPLDQS	PFREL	

Exercises: Gene trees and homologues

Exercise 21 - Orthologues, paralogues and genetrees for the human *BRAF* gene.

(a) How many orthologues are predicted for this gene in primates? Note the Target %id and Query %id.

How much sequence identity does the *Tarsius syrichta* protein have to the human one? Click on the Alignment link next to the Ensembl identifier column to view a protein alignment in Clustal format.

(b) Go to the orthologue in marmoset. Is there a genomic alignment between marmoset and human? Is there a gene for both species in this region?

Exercise 22 - Zebrafish orthologues

Go to <u>www.ensembl.org</u> to find the *dbh* gene on the zebrafish genome.

(a) Go to the Location page for this gene. View the Alignments (image) and Alignments (text) for the 5 teleost fish. Which fish genomes are represented in the alignment? Do all the fish show a gene in these alignments?

(b) Export the alignments (as Clustal).

(c) Click on the Region in detail link at the left and turn on the tracks for multiple alignments and conservation score for the 5 teleost fish EPO by configuring the page.

What is the difference between the 5 teleost fish EPO multiple alignment track and the Constrained elements already turned on by default? Which regions of the gene, do most of the constrained element blocks match up to?

Can you find more information on how the constrained elements track was generated?

Demo: Whole genome alignments

Let's look at some of the comparative genomics views in the Location tab. Go to the region 2:176914144-177094980 in human, which contains the *HoxD* cluster which is involved in limb development and is highly conserved between species.

In the **Region in detail** view, we can already see the Constrained elements for 36 eutherian mammals EPO_LOW_COVERAGE track by default. This track indicates regions of high conservation between species, considered to be "constrained" by evolution.

```
36 way GERP ele....
```

This track has a matching conservation score track. Click on Configure this page, then Comparative genomics and turn on the track for Conservation score for 36 eutherian mammals EPO_LOW_COVERAGE. Save and close the menu.

You can now see the conservation scores that were used to determine the peaks indicated in the constrained elements track.

We can also look at individual species comparative genomics tracks in this view by clicking on Configure this page. Select BLASTz/LASTz alignments from the left-hand menu to choose alignments between closely related species. Turn on the alignments for Mouse and Chimpanzee in Normal. Go to Translated blat alignments and turn on alignments with Zebrafish and Xenopus in Normal. Save and close the menu.

The alignment is greatest between closely related species.

We can also look at the alignment between species or groups of species as text. Click on Alignments (text) in the left hand menu.

Alignme	nts (text) Ø	Choose an alignment from the drop-down
Alignmen	 G primates EPO 	Go
Location	13 eutherian mammals EPO 20 amniota vertebrates Pecan 36 eutherian mammals EPO LOW COVERAGE Pairwise alignments	ultiple alignments
Gene	Alpaca (Vicugna pacos) – blastz Anole lizard (Anolis carolinensis) – translated blat Armadillo (Dasypus novemcinctus) – blastz	
Features	Chicken (Gallus gallus) – lastz	irwise alignments
Homo sapi	Chicken (Gallus gallus) – translated blat Chimpanzee (Pan troglodytes) – lastz Chinese softshell turtle (Pelodiscus sinensis) – lastz	
Homo sapi Homo sapi Homo sapi	Ciona intestinalis – translated blat Ciona savignyi – translated blat Cod (Gadus morhua) – translated blat	AATTACCCAGTCTCAGATAGTGTCTTTATATCAGTGT TGATTAAAAAGGTAAATTTATGTAACGAATATTTA GGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGA
Homo sapi Homo sapi Homo sapi Homo sapi	Coelacanth (Latimeria chalumnae) – translated blat Cow (Bos taurus) – lastz Dog (Canis lupus familiaris) – lastz	AAAAGTACAAAAAATTAGCCGGGCGTGGTGGCGGGCG GCCACTGCACTCAGCCTGGGCGACAGAGCGAGACTO CTCTGGTTGACAGTCCTAGCTGATCTTGACCTTCCAG GCTGCTAGGTTTCAGGATAATCTGTCATACAGCAATA
Homo sapi Homo sapi	Dolphin (Tursiops truncatus) – blastz Elephant (Loxodonta africana) – blastz	GGAGTGCTTGGACAGGCTTTGGGAAAATTTGAGAAAT TGGTAAACATACTTGACATACAAAGGCCAATTCAGTO

Select Mouse from the alignments list then click Go.

You will see a list of the regions aligned, followed by the sequence alignment. Exons are shown in red.

This can also be viewed graphically. Click on Alignments (image) in the left-hand menu.

In both alignment views the contig is the compared species is rearranged to align to the species of interest. To compare with both contigs in their natural order, go to Region comparison.

To add species to this view, click on the blue Select species or regions button. Choose Mouse from the list then close the menu.

We can view large scale syntenic regions from our chromosome of interest. Click on Synteny in the left hand menu.

Exercises: Whole genome alignments

Exercise 23 – Synteny

Go to www.ensembl.org

Find the Rhodopsin (*RHO*) gene for Human. Go to the Location tab.

(a) Click Synteny at the left. Are there any syntenic regions in dog? If so, which chromosomes are shown in this view?

(b) Stay in the Synteny view. Is there a homologue in dog for human *RHO*? Are there more genes in this syntenic block with homologues?

Exercise 24 – Whole genome alignments

(a) Find the Ensembl *BRCA2* (Breast cancer type 2 susceptibility protein) gene for human and go to the Region in detail page.

(b) Turn on the BLASTZ alignment tracks for chicken, chimp, mouse and platypus and the Translated BLAT alignment tracks for anole lizard and zebrafish. Does the degree of conservation between human and the various other species reflect their evolutionary relationship? Which parts of the *BRCA2* gene seem to be the most conserved? Did you expect this?

(c) Have a look at the Conservation score and Constrained elements tracks for the set of 36 mammals and the set of 19 vertebrates. Do these tracks confirm what you already saw in the tracks with pairwise alignment data?

(d) Retrieve the genomic alignment for a constrained element. Highlight the bases that match in >50% of the species in the alignment.

(e) Retrieve the genomic alignment for the *BRCA2* gene for primates. Highlight the bases that match in >50% of the species in the alignment.

Regulation

Demo: Raw ChIPSeq data

We're going to add some regulation data to the **Region in detail** view. We'll start at the human region 11:2012486-2030153, which contains the imprinted *H19* gene.

Add regulation tracks using Configure this page. First, we're going to add ChIP-seq data for histone modifications and polymerase binding. Click on Histones & polymerases under Regulation in the left-hand menu.

You can turn on a single track by clicking on the box in the matrix. Note that certain tracks are selected for all cell lines by default (PoIII, PoIII, H3K27me3, H3K36me3, H3K4me3, H3K9me3). These will appear in the Region in detail view only if you specify a track style for the cell lines.

Turn on all the tracks for GM12878. Hover over the cell line name then select All.

Select features for GM12878 Default							
None							

Now choose the track style for the tracks you've switched on. Click on the track style box for GM12878 and select Both.

There is a similar matrix for Open chromatin &TFBS. Use this to turn on all tracks for GM12878 in Both.

Demo: Regulatory features and segmentation

These data are used to construct the **Reg-feats** and **Segmentation features**. The merged Reg-feats are switched on in the Region in detail view by default.

Click on Configure this page. Then select Regulatory features. Turn on the Reg. Feats: GM12878 and Reg. Segs: GM12878 tracks.

Can you see correlations between the different kinds of regulatory data representation?

You can also add methylation data using Configure this page. Find it under DNA methylation and turn on GM12878 RRBS ENCODE and GM12878 WGBS ENCODE.

GM12878 RRBS E	I	1			1	I.			I II	1	
GM12878 W GBS											
		2,014,0 erse stra	nd —	2,016,000		8,000	2,020,000 17.67 kt	2,024,000	2,026,000	2,028,000	2
Methylation Legend				60 70 8		% m	iethylated re				

Our regulatory data incorporates the ENCODE data. To see the raw ENCODE data and the ENCODE segmentation, you need to add the ENCODE hub.

From ensembl.org, click on the ENCODE icon.

This page contains information about the ENCODE data and how it is incorporated into Ensembl.

Add the ENCODE hub by clicking on the Link to add the ENCODE track hub.

This will take you directly to the matrices for adding ENCODE data to the Region in detail view. The ENCODE matrices work in the same way as the Open chromatin &TFBS and Histones & polymerases matrices, except that some have multiple options (indicated by numbers within the boxes).

Exercises: Regulation

Exercise 25 – Gene regulation: Human STX7

(a) Find the Location tab (Region in detail page) for the *STX7* gene. Are there regulatory features in this gene region? If so, where in the gene do they appear?

(b) Click Configure this page and on the Regulatory features menu in the left hand side. Turn on Segmentation features for HUVEC, HeLa-S3, and HepG2 cell types. Do any of these cells show predicted enhancer regions in the *STX7* region?

(c) Use Configure this page to add supporting data indicating open chromatin for HeLa-S3 cells. Are there sites enriched for marks of

open chromatin (DNase1 and FAIRE) in HeLa cells at the 5' end of *STX7*?

(d) Configure this page once again to add histone modification supporting data for the same cell type as above (e.g.HeLa-S3). Which ones are present at the 5' end of *STX7*?

(e) Is there any data to support methylated CpG sites in this region (5' end) of *STX7* in B-cells?

(f) Create a Share link for this display. Email it to yourself then open the link.

Exercise 26 - Regulatory features in human

The *HLA-DRB1* and *HLA-DQA1* genes are part of the human major histocompatibility complex class II (MHC-II) region and are located about 44 kb from each other on chromosome 6. In the paper 'The human major histocompatibility complex class II *HLA-DRB1* and *HLA-DQA1* genes are separated by a CTCF-binding enhancer-blocking element' (Majumder *et al* J Biol Chem. 2006 Jul 7;281(27):18435-43) a region of high acetylation located in the intergenic sequences between *HLA-DRB1* and *HLA-DQA1* is described. This region, termed XL9, coincided with sequences that bound the insulator protein CCCTC-binding factor (CTCF). Majumder *et al* hypothesise that the XL9 region may have evolved to separate the transcriptional units of the *HLA-DR* and *HLA-DQ* genes.

(a) Go to the region from 32,540,000 to 32,620,000 bp on human chromosome 6

(b) Is there a regulatory feature annotated in the intergenic region between the *HLA-DRB1* and *HLA-DQA1* genes that has CTCF binding supporting data as (part of) its core evidence?

(c) Has the CTCF binding detected at this position been observed in all cell/tissue types analysed?

(d) Have a look at the Regulatory supporting evidence - Histones & Polymerases configuration matrix. For which cell/tissue type are the most histone acetylation data sets available? In this cell/tissue type,

is the region that shows CTCF binding also a region of high acetylation, as found by Majumder *et al*?

Quick Guide to Databases and Projects

Here is a list of databases and projects you will come across in these exercises. Google any of these to learn more. Projects include many species, unless otherwise noted.

Other help: The Ensembl Glossary: <u>http://www.ensembl.org/Help/Glossary</u> Ensembl FAQs:

http://www.ensembl.org/Help/Faq

SEQUENCES

EMBL-Bank, NCBI GenBank, DDBJ – Contain nucleic acid sequences deposited by submitters such as wet-lab biologists and gene sequencing projects. These three databases are synchronised with each other every day, so the same sequences should be found in each.

CCDS – coding sequences that are agreed upon by Ensembl, VEGA-Havana, UCSC, and NCBI. *(human and mouse)*.

NCBI Entrez Gene - NCBI's gene collection

NCBI RefSeq – NCBI's collection of 'reference sequences', includes genomic DNA, transcripts and proteins. NM stands for 'Known mRNA' (eg NM_005476) and NP (eg NP_005467) are 'Known proteins'.

UniProtKB – the "Protein knowledgebase", a comprehensive set of protein sequences. Divided into two parts: Swiss-Prot and TrEMBL

UniProt Swiss-Prot – the manually annotated, reviewed protein sequences in the UniProtKB. High quality.

UniProt TrEMBL – the automatically annotated, unreviewed set of proteins (EMBL-Bank translated). Varying quality.

VEGA – Vertebrate Genome Annotation, a selection of manuallycurated genes, transcripts, and proteins. *(human, mouse, zebrafish, gorilla, wallaby, pig, and dog).*

VEGA-HAVANA – The main contributor to the VEGA project, located at the Wellcome Trust Sanger Institute, Hinxton, UK.

GENE NAMES

HGNC – HUGO Gene Nomenclature Committee, a project assigning a unique and meaningful name and symbol to every human gene. *(Human).*

ZFIN – The Zebrafish Model Organism Database. Gene names are only one part of this project. (*Z*-fish).

PROTEIN SIGNATURES

InterPro – A collection of domains, motifs, and other protein signatures. Protein signature records are extensive, and combine information from individual projects such as UniProt, along with other databases such as SMART, PFAM and PROSITE (explained below).

PFAM – A collection of protein families

PROSITE – A collection of protein domains, families, and functional sites.

SMART – A collection of evolutionarily conserved protein domains.

OTHER PROJECTS

NCBI dbSNP – A collection of sequence polymorphisms; mainly single nucleotide polymorphisms, along with insertion-deletions.

NCBI OMIM – Online Mendelian Inheritance in Man – a resource showing phenotypes and diseases related to genes *(human)*.