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— Part 2: High-throughput technologies
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Overview of this lecture

— You’ve seen microarrays and sequencing; here | discuss
the epigenomic-specific assays that are upstream of
these readouts

26.06.13

DNA methylation: enzymatic, chemical, enrichment/affinity
capture

Sequencing versus microarray; high versus low resolution
Chromatin immunoprecipitation, ChlP-exo

DNasel hypersensitivity, total/ribo-/polyA/micro RNA

3C, HiC, etc.
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Gel-based analysis

* Southern blot
* RLGS

* MS-AP-PCR

* AIMS

* Sanger BS
* MSP

* MS-SNuPE
* COBRA

DNA methylation
Table 1 | Main principles of DNA methylation analysis
Pretreatment Analytical step
Locus-specific analysis
Enzyme * Hpall-PCR
digestion
Affinity * MeDIP-PCR
enrichment
Sodium * MethyLight
bisulphite * EpiTYPER
* Pyrosequencing
Direct
sequencing
26.06.13 Epigenomics, Mark D. Robinson

Laird, Nature Reviews Genetics, March 2010

Array-based analysis

* DMH

* MCAM

* HELP

* MethylScope
* CHARM

* MMASS

* MeDIP
* mDIP
e mCIP
* MIRA

* BiMP
* GoldenGate

® |[nfinium

NGS-based analysis
* Methyl-seq

* MCA-seq

* HELP—seq

* MSCC

* MeDIP-seq
* MIRA-seq

* RRBS
* BC—seq
* BSPP
* WGSBS

Oxford Nanopore

Pacific Biosciences
etc.
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Enzyme digestion example

A B C D E
2 ¢ 9 ¢ *e 99 79,
Restriction digestion $
— ¥ — b B I Mspl
- — Hpall
LM-PCR ;
A B C D E
= = = = Mspl
= — Hpall
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Mspl — cuts at CCGG or
CCGG sites

Hpall — cuts only at
CCGG

CG - unmethylated
CG - methylated
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Affinity capture of
methylated DNA
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Bisulphite sequencing

as Thymine after PCR
Ll In combination with sequencing (Sanger
or NGS), can achieve methylation
mapping at single base resolution

Sodium bisulphite converts methylated
Cytosine into Uracil, which can be read
-o—é—oX@—

PCR
4 Can be nicely combined with genotyping
0—0—0—0-0 arrays (e.g. lllumina HumanMethylation
-0—-0—0—0—0- 0)

http://www.diagenode.com/en/applications/bisulfite-conversion.php
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universityof  BiSulphite conversion + “genotyping”
Zurich™ array (lllumina HumanMethylaton450)
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Unmethylated CpG site Methylated CpG site
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DNAme methods that use
bisulphite conversion with
NGS
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DNA methylation by direct sequencing
Oxford Nanopore, April 2009

Nature Nanotechnology 4, 265 - 270 (2009)
Published online: 22 February 2009 | doi:10.1038/nnano.2009.12

Subject Category: Nanobiotechnolo

Nature Methods, 15t June 2010

Continuous base identification for single-molecule
nanopore DNA sequencing

Zeroing in on D NA methylomes with James Clarkel, Hai-Chen WuZ, Lakmal Jayasinghel:2, Alpesh Patell, Stuart

Reid! & Hagan Bayley?

no B S A single-molecule method for sequencing DNA that does not require
fluorescent labelling could reduce costs and increase sequencing
speeds. An exonuclease enzyme might be used to cleave individual

Joseph R Ecker nucleotide molecules from the DNA, and when coupled to an
appropriate detection system, these nucleotides could be identified in
Measuring the kinetics of nucleotide incorporation during single- the correct order. Here, we show that a protein nanopore with a

covalently attached adapter molecule can continuously identify
unlabelled nucleoside 5'-monophosphate molecules with accuracies
averaging 99.8%. Methylated cytosine can also be distinguished from
the four standard DNA bases: guanine, adenine, thymine and cytosine.
The operating conditions are compatible with the exonuclease, and the
kinetic data show that the nucleotides have a high probability of
translocation through the nanopore and, therefore, of not being
registered twice. This highly accurate tool is suitable for integration
into a system for sequencing nucleic acids and for analysing epigenetic
modifications.

Direct detection of DNA methylation during Pacific Biosciences,

single-molecule, real-time sequencing Tjrtllérgof\?gthods,

molecule, real-time DNA sequencing allows identification of
methylated bases during the sequencing process.

Benjamin A Flusberg, Dale R Webster, Jessica H Lee, Kevin J Travers, Eric C Olivares, Tyson A Clark,
Jonas Korlach & Stephen W Turner
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DNA methylation by direct sequencing (Pac Bio)
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Figure 2. Principle of detecting modified DNA bases during SMRT sequencing. The presence of the modified base in
the DNA template (top), shown here for 6-methyladenine, results in a delayed incorporation of the corresponding T
nucleotidg,-, i.e. longer interpulse duration (IPD), compared to a control DNA template lacking the modification
(bottom).

Pacific Biosciences white paper.
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DNA methylation by direct sequencing (Oxford Nanopore)
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Figure 3 | Nucleotide event distributions with the permanent adapter. a, Single-channel recording from the WT-(M113R/N139Q),(M113R/N139Q/L135C);-
am¢amDP,BCD pore showing dGMP, dTMP, dAMP and dCMP discrimination, with coloured bands (three standard deviations from the centre of the
individual Gaussian fits) added to represent the residual current distribution for each nucleotide. b, Corresponding residual current histogram of nucleotide
binding events, including Gaussian fits. Data acquired in 400 mM KCI, 25 mM Tris HCI, pH 7.5, at 4180 mV in the presence of 10 uM dGMP, 10 WM dTMP,
10 wM dAMP and 10 uM dCMP.

Clarke et al. 2009 Nature Nano
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DNA methylation by direct sequencing (Oxford Nanopore)

A RTl C |_ ES NATURE NANOTECHNOLOGY 0bol: 10.1038/NNAN0O.2009.12

Event count
Event count

50
Residual pore current (pA)

Residual pore current (pA)

| —dGMP — dTMP — Me-dCMP — dAMP — dCMP |

Figure 5 | Detection of methyl-dCMP. a, Residual current histograms for the WT-(M113R/N139Q)(M113R/N139Q/L135C),-am,amDP,BCD pore in the
presence of a mixture of dGMP, dTMP, dAMP and dCMP. b, Histogram from the same nanopore following the addition of Me-dCMP. Data were acquired in

400 mM KCl, 25 mM Tris HCI, pH 7.5, at 4200 mV after reaction with 5 uM am,amPDP,8CD, and in the presence of 5 uM dGMP, 5 puM dTMP, 5 pM
dAMP, 5 M dCMP and 5 pM Me-dCMP.
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Other remarks into DNA methylation data

* Whole genome bisulphite sequencing is the most
accurate, but expensive and somewhat inefficient

e Performance of affinity capture can vary
drastically according to exact specifications of the
protocol

 Difficult to compare methods since platforms have
different coverage, different resolution

26.06.13 Epigenomics, Mark D. Robinson Page 13
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DNAme readouts can be low or high

resolution

Sequencing: depth of converted reads
versus total depth

Microarray: relative intensity of M and U
probes

1 10936661 10936071 105366081 16936091 16936101 16536111 10536121 10534

GGLGTLLATAGTLLETGAALTTGGLETT LATGAATGAGTGGLGAT L tAGT tAGLAGALAAAAGGTggaattggagty
. PITIRII o . e R

N M=

Sequencing: Pileup of reads

= \L\ L

T T T
136678000 136679000 136680000
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Strength of affinity enrichment is associated with CpG

density
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Whole genome BS sequencing can be inefficient

Single-base-resolution maps of DNA methylation for two human
cell lines

Single-base DNA methylomes of the flowering plant Arabidopsis thali-
anawere previously achieved using MethylC-Seq'® or BS-Seq'®. In this
method, genomic DNA is treated with sodium bisulphite (BS) to
convert cytosine, but not methylcytosine, to uracil, and subsequent
high-throughput sequencing. We performed MethylC-Seq for two
human cell lines, H1 human embryonic stem cells'” and IMR90 fetal
lung fibroblasts'®, generating 1.16 and 1.18 billion reads, respectively,
that aligned uniquely to the human reference sequence (NCBI build
36/HG18). The total sequence yield was 87.5 and 91.0 gigabases (Gb),
with an average read depth of 14.2X and 14.8X per strand for H1 and
IMR90, respectively (Supplementary Fig. 1a). In each cell type, over
86% of both strands of the 3.08 Gb human reference sequence are
covered by at least one sequence read (Supplementary Fig. 1b),
accounting for 94% of the cytosines in the genome.

Lister et al. 2009, Nature

Notes re;: WGSBS:

3.

Mapping is done on BS-
converted reads/genome (i.e.3
bases), requires mapping
separately to each strand —
need longer (paired) reads and
high coverage

Of the 1.18B reads,
approximately 670M (56%) do
NOT overlap a CpG site

There may be a fair amount of
regions that are completely
unmethylated
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Chromatin immunoprecipitation
for protein-DNA interactions

A very basic summary of the histone code for gene expression status is given below (histone nomenclature is descril
Type of Histone

modification H3K4 H3K9 H3K14 H3K27 H3K79 H4K20 H2BK5
activation’! | activation[”!18] activation[”] activation!”]

mono-methylation activation!®! activation!”]

repressionl®] repressionl®! | activation(8!

. [7) activation, ]
repression )
repression

repressionl®!

di-methylation
activation!®] repressionl’!

tri-methylation
activationl®] | activation(®]

acetylation
» H3K4me3 is found in actively transcribed promoters, particularly just after the transcription start site.

» H3K9me3 is found in constitutively repressed genes.
« H3K27me is found in facultatively repressed genes.[”]
» H3K36me3 is found in actively transcribed gene bodies.
¢ H3K9ac is found in actively transcribed promoters.
» H3K14ac is found in actively transcribed promoters.

26.06.13 Epigenomics, Mark D. Robinson
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ChlIP-exo

ChIP DNA is treated with a
5'to 3' exonuclease while
still present within the
immunoprecipitate.

26.06.13 Epigenomics, Mark D. Robinson
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Techniques: DNasel, RNA-seq

DNA binding
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Higher-order chromatin structure

d Linear genome sequence

/N

—o—1N—

I

Three-dimensional organization

in trans

in cis
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Combinations: ChIP-BS-seq

A few tricks on the technical side to
facilitate this.

Chromatin Immunoprecipitation with H3K27me3 ‘)f

!

ChiP DNA 75-100ng

!

Ligation paired-end methylated adaptor

!

Gel size fractionation

!

( Bisulphite-treatment and clean up ]

l

Library preparation

!

Bioanalyzer

l

lllumina sequencing

Statham®, Robinson* et al., Genome Research, 2012
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Combinations: NOME-seq

M.CviPIl enzyme is used to methylate
GpC sites not bound by nucleosomes

Both GpC methylation and CpG
methylation can be readout (on the
same clone) after bisulphite treatment

Pink: nucleosome-bound (not
methylated by M.CviPl)
Green: accessible

26.06.13 Epigenomics, Mark D. Robinson
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Remarks: Allele-specific epigenetics, cell populations

* A couple key points to recognize:

* Typically, MBD-seq/ChIP-seq/etc. are analyzing populations of cells (e.g.
patient tumours that may contain normal cell types as well) — so we are
really studying the population average! So called “bulk analysis”

* In some instances, we may be able to combine the information we get from
genome sequencing (e.g. SNPs) to partition transcription and epigenetic
factors by allele

26.06.13 Epigenomics, Mark D. Robinson Page 24
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Technical limitation in
the amount of DNA
need to create library
and sequence

* We often want to know about
several factors on a single
population of cells — requires a
lot of DNA/RNA

* New technologies (e.g.
sequencing small amounts /
amplification) are trying to
address this

* Patient (e.g. tumour sample)
cell population purity?

26.06.13

Epigenomics, Mark D. Robinson

Liver Hematopoietic Specific
stem cells stem cells neurons
ad N2t
! Poly(A)* Genomic ChromatinI
RNA

DNA l
cDNA Restriction enzyme cut— ChIP
(H3K4me3,

bisulfite treatment
H3K27me3)

Massively parallel sequencing

v v v

Gene expression DNA methylation Histone modification
profiles profiles profiles

\

Genome-wide integrated
molecular view

Figure 1 | Schematic flow chart of experimental design. Rare cell types are isolated from specific organs
and used for RNA and DNA preparation, and ChIP. Combining gene expression, DNA methylation and
histone modification profiles gives an integrated view of the epigenome.
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PrEC_H3K27me3_Bis

Allele-specific methylation

* Biologically, what affect does this
have?

* How prominent is this?

Methylation ratio

Statham™®, Robinson* et al., Genome Research, 2012
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Era of big data is upon us

* ENCODE - Encyclopedia Of DNA Elements (“to identify all functional elements in the
human genome sequence”) — [Funny aside next slide]

* BLUEPRINT — “apply highly sophisticated functional genomics analysis on a clearly
defined set of primarily human samples from healthy and diseased individuals and to
provide at least 100 reference epigenomes to the scientific community”

* |HEC - “aims to coordinate epigenome mapping for a broad spectrum of human cell
types and a wide range of developmental stages.”

* |ICGC—-“To obtain a comprehensive description of genomic, transcriptomic and
epigenomic changes in 50 different tumor types and/or subtypes which are of clinical
and societal importance across the globe”

* TCGA - “systematically explore the entire spectrum of genomic changes involved in
more than 20 types of human cancer.” Published OnlineFirst on November 27, 2012; DOI:10.1158/0008-5472.CAN-12-3658

* Nucleosome4D/4DCellFate
j%_({ American Association
for Cancer Research
ABlueprint for an International Cancer Epigenome Consortium.

A Report from the AACR Cancer Epigenome Task Force

Stephan Beck', Bradley E. Bernsteinz, Robert M. Campbell*, Joseph F. Costello®, Dashyant Dhanakg,
Joseph R. Ecker®, John M. Greally'!, Jean-Pierre Issa'®, Peter W. Laird’, Kornelia Polyak?,

26061 3 EpigenomiCS, Mark D RObinSOﬂ Benjamin Tycko'2, and Peter A. Jones®, for the AACR Cancer Epigenome Task Force
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On the Immortality of Television Sets: “Function” in the
Human Genome According to the Evolution-Free Gospel
of ENCODE

Dan Graur'*, Yichen Zheng', Nicholas Price’, Ricardo B.R. Azevedo', Rebecca A. Zufall", and Eran Elhaik?

'Department of Biology and Biochemistry, University of Houston

2Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health
*Corresponding author: E-mail: dgraur@uh.edu.

Accepted: February 16, 2013

Abstract

Arecent slew of ENCyclopedia Of DNA Elements (ENCODE) Consortium publications, specifically the article signed by all Consortium
members, put forward the idea that more than 80% of the human genome is functional. This claim flies in the face of current
estimates according to which the fraction of the genome that is evolutionarily conserved through purifying selection is less than 10%.
Thus, according to the ENCODE Consortium, a biological function can be maintained indefinitely without selection, which implies
that at least 80 — 10 = 70% of the genome is perfectly invulnerable to deleterious mutations, either because no mutation can ever
occur in these “functional” regions or because no mutation in these regions can ever be deleterious. This absurd conclusion was
reached through various means, chiefly by employing the seldom used “causal role” definition of biological function and then
applyingitinconsistently to different biochemical properties, by committing a logical fallacy known as * affirming the consequent,” by
failing to appreciate the crucial difference between “junk DNA” and “garbage DNA, " by using analytical methods that yield biased
errors and inflate estimates of functionality, by favoring statistical sensitivity over specificity, and by emphasizing statistical significance
rather than the magnitude of the effect. Here, we detail the many logical and methodological transgressions involved in assigning
functionality to almost every nucleotide in the human genome. The ENCODE results were predicted by one of its authors to neces-
sitate the rewriting of textbooks. \We agree, many textbooks dealing with marketing, mass-media hype, and public relations may well
have to be rewritten.

Key words: junk DNA, genome functionality, selection, ENCODE project.
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Is 80% of the Genome Functional? Or
Is It 100%? Or 40%? No Wait...

So far, we have seen that as far as functionality is concerned,
ENCODE used the wrong definition wrongly. We must now
address the question of consistency. Specifically, did ENCODE
use the wrong definition wrongly in a consistent manner? We
do not think so. For example, the ENCODE authors singled out
transcription as a function, as if the passage of RNA polymer-
ase through a DNA sequence is in some way more meaningful
than other functions. But, what about DNA polymerase and
DNA replication? Why make a big fuss about 74.7% of the
genome that is transcribed, and yet ignore the fact that 100%
of the genome takes part in a strikingly “reproducible bio-
chemical signature”—it replicates!

From an evolutionary viewpoint, a function can be assigned
to a DNA sequence if and only if it is possible to destroy it. All
functional entities in the universe can be rendered nonfunc-
tional by the ravages of time, entropy, mutation, and what
have you. Unless a genomic functionality is actively protected
by selection, it will accumulate deleterious mutations and will
cease to be functional. The absurd alternative, which unfor-
tunately was adopted by ENCODE, is to assume that no
deleterious mutations can ever occur in the regions they
have deemed to be functional. Such an assumption is akin
to claiming that a television set left on and unattended will
still be in working condition after a million years because no
natural events, such as rust, erosion, static electricity, and
earthquakes can affect it. The convoluted rationale for the
decision to discard evolutionary conservation and constraint
as the arbiters of functionality put forward by a lead ENCODE
author (Stamatoyannopoulos 2012) is groundless and
self-serving.
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Overview of this part

— Goal: highlight where informatics approaches are being used, insights into
(a subset of) bioinformatics research related to epigenomics

— Methods for individual platforms

— DNA methylation
*  (BS-microarray) lllumina 450k array

*  (Affinity capture) BATMAN + new methods

— Peak/region detection
. MACS

Copy number and MBD/ChIP-seq
— Methods for integrating multiple data types
e ChromHMM, Segway, ENCODE SOM “donuts”

e  Clustering - Repitools

26.06.13 Epigenomics, Mark D. Robinson Page 30



Bisulphite conversion + “genotyping” array

University of _
Zurich™ (lllumina HumanMethylaton450)
Institute of Molecular Life Sciences
Unmethylated CpG site Methylated CpG site
Type |
(2 probes)
— CpG .Q 5
Bisulfite converted DNA GC—@
beta=M/ (M+U+ M CA__..
e = ( ¢) ‘ TR
—/ CpG Iocus\ 5
Bisulfite converted DNA
‘ T &
Type ll e CoGlocus " g |
Bisulfite convertad DNA Bisulfite converted DNA
(1 probe)

from Bibikova et al. Genomics 2011
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450k arrays: probe-type bias

— Typel/raw
Overall, very good — Typelliraw

correspondence <
between 450k

platform and others

(e.g. BS-seq) N
Normalization >
issues for different 5
probe types (current -
research)

0.0 0.2 0.4 06 0.8 1.0
Beta
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450k array data
Very different behaviour of Type | and Type Il probes

unmetnylated
10000 15000 20000 25000 30000
| 1 l 1 |

5000

0
|

I I I I I I I I

0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000

Methylated

Mark D. Robinson, IMLS, UZH

Methylated

T
25000
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SWAN M // raw M // SWAN

=TT
(Maksimovic et al. 2012) g g
- SWAN: Subset-quantile oo ] 5 w] 1 ,
Within Array Normalization | g I I A
- quantile normalization 00 w] 1b b
based on the number of = = & 3 & 3 = 8 oz s 3
CpG Sites Number of CpG sitee in the probe Number of CpG sites in the probe
-outcome: makes Infinium | e SN
and Il beta values mood T T [ o | mwy o+ T T T
distributions more similar RN I - o | ol ey

Number of CpG sitee in the probs Number of CpG sites in the probe
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BMIQ N

(Teschendorff et al. 2013)
- Beta-mixture quantile normalization method
- start from raw beta values

- fitting the three-state beta mixture model to
the type | and type Il probes separately

p(B') = 7y, B(Blay,, by) + 7y B(Blay, by) + 75, B(Bldy,, bly)
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Methods for differential methylation

Methods for differential gﬁ
methylated sites use: i) log-ratios e
of methylated to unmethylated 5
signal (450k array); ii) difference N
in binomials (BS-seq) i
B o
Methods are in active 5
development for going from g = @@ ———

T T T T T T
42233000 42233500 42234000 42234500 42235000 42235500

differentially methylated sites to Chromosome 2

. . . Figure 1 Example of a differentially methylation region (DMR). (A) The points show methylation measurements from the
d |ffe re ntlal Iy methylated reglons colon cancer dataset plotted against genomic location from illustrative region on chromosome 2. Eight normal and eight
cancer samples are shown in this plot and represented by eight blue points and eight red points at each genomic location
e bu m h u ntl n for which measurements were available. The curves represent the smooth estimate of the population-level methylation
g . p g . profiles for cancer (red) and normal (blue) samples. The green bar represents a region known to be a cancer DMR.?° (B)
The black curve is an estimate of the population-level difference between normal and cancer. We expect the curve to vary
due to measurement error and biological variation but to rarely exceed a certain threshold, for example those represented by
the red horizontal lines. Candidate DMRs are defined as the regions for which this black curve is outside these boundaries.
Note that the DMR manifests as a bump in the black curve

Jaffe et al. (2012) Int. Journal of Epidemiology
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Pipeline IDAT files of green and red chanmel (M and U)

R,aw data FET29646062_ROXCO2_Gra. fdat” *£723646062_RO2002_Red. 1dat*
*5T20646052_ROACO1_Crn. 1dat™ *S$722646082_ROGOD1 _Red ., 1dat*
"ST23640002_RONCOZ_Orn . 1das™ "3T23646002_ROGOOZ_Red . 1dat™

* Mand U are intensities measured by
unmethylated and methylated probes
Pre-processing/Quantile normalization o — ml.hyw

v lfisum B

h s :‘
; o

o

Probe-level relative methylation estimates oz Wiy
(Figure from Maksmmovic et al. 2012)

| M M
- IR —los. | 2
h P=2rU+100 °g2(u)

Identification of differentially methylated regions (DMRs)

] . . ORI R LMD CYASTINEGOOMN01 12010 (6]
h =
" - IR i
il |
> . ) - -
| N
28 » L) .

Biological interpretation
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Steps:

1. Get normalized data

2. For each probe (CpG site),
calculate (differential) statistics
at each probe

3. Apply a smoothing technique to
these statistics

4. Set threshold and call regions
as those that persist beyond
threshold

Mark D. Robinson, IMLS, UZH

Probe-level statistics (Wald test)

Mechanics of DMR finding:
charm/bumphunter package

30

20

|

10

|

—\

I
30146500

I
30147000 30147500

Location

I
30148000
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BATMAN - Bayesian tool for methylation analysis

MeDIP-chip

a b MeDIP data

0.9 Means of central portion

L Fit to low-CpG segment -

0.8 3

0.7 5
S = 2F
5 06 [
g o
o 05 o 1r
B 047 g O MWM XWAX
8 03r 5 e

» —1f
0.2 | )
0.1} I 27

0 10 20 30 40 50 60 70 80 90 100
Total CpG coupling factor

O 1 1 1 1 1 h
—800 -600 —400 200 0 200 400 600 800
CpG position relative to 5” end of probe

Figure 1 Calibration of the Batman model against MeDIP-chip data. (a) Estimated CpG coupling
factors for a MeDIP-chip experiment as a function of the distance between a CpG dinucleotide and a
microarray probe. (b) Plot of array signal against total CpG coupling factor, showing a linear regression
fit to the low-CpG portion, as used in the Batman calibration step. This plot shows all data from one
array on chromosome 6.

Down et al. Nature Biotech 2008

26.06.13 Epigenomics, Mark D. Robinson

MeDIP-seq signal (read depth)

50
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20
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o

MeDIP-seq

Total CpG coupling factor
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BATMAN - Bayesian tool for methylation analysis

probe. If we let m, indicate the methylation state at position ¢, and
assume that the errors on the microarray are normally distributed with
precision, then we can write a probability distribution for a complete
set of array observations, A, given a set of methylation states, m, as:

flAlm) = T] G(Ap|Apase + 1> Copme,v™")
P c

where G (x|u, 62) is a Gaussian probability density function. We can
now use any standard Bayesian inference approach to find f(m|A), the
posterior distribution of the methylation state parameters given the
array (MeDIP-chip) data, and thus generate quantitative methylation
profile information.

26.06.13 Epigenomics, Mark D. Robinson

Same assumptions for MeDIP-
chip (continous) can be applied
to MeDIP-seq (count) and work
quite well.

Some potential disadvantages:

1. No reads = no DNA
methylation or assay doesn’t
capture the region

2. MCMC is very
computationally intensive
(10-15h per chromosome)

Page 40
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Repitools
Figure 2 - Example data tracks for IMR-90 chromosome 7
A Scale 5 kof—— |hg18
chr7: | 245,000 250,000 255,000
1_ IMR-90 WGBS
WGBS [ 100 . 5 Fitted NegBin distribution
M
N 1A 00 -
60 L Sssl g
Sssl I I : : 3
a) b,c) IMR-90
IMR-90 ' 3 ]|
0 h vl ,- [MHH'[’HJ “E "” ' ' ' '
1 : o BayMeth : 0 2 49 &
BayMeth : 4k CpG density

CpG Islands (Iéfands < 300 Bases are Light Greén)
cpG: 45 CpG: 29

Riebler et al. 2013, in revision



Model formulation: BayMeth

We consider genomic regions i = 1,..., n and define
@ y; s: Number of reads for the sample of interest.
@ yi.c: Number of reads for the Sssl-control.

Then,

Yi.slpi, Ai ~ Poisson(f x pi x Aj); Yi.c|Ai ~ Poisson(Aj)

f: offset
Ai- region-specific read density, and
i the regional methylation level (Main parameter of interest)

An analytic estimator!

p(ﬂi|yi1>yi2) = W

Iu?:t;/il (1 E(l . ,Ui) ) —(a+yi1+yi2)

CB+1+4E

Model extension

We propose to adjust for this bias by including a second offset:

. ch; .
YiLNcaP |pi, Ai ~ Poisson(f x T’ X i X Ap); YiclAi ~ Poisson();)

Riebler et al. 2013, in revision
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Improvements can be made

1.0
0.8
E 0.6
i
S 04
0.2
004 &Z——— -
I I I I I I I I I I I I
00 02 04 06 08 10 00 02 04 06 08 10
WGBS sequencing WGBS sequencing

— Our new

method:
BayMeth

T T T I T T T T T T T T
00 02 04 06 08 10 00 02 04 06 08 10
WGBS sequencing WGBS sequencing
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Estimation bias, by CNV state

BALM MEDIPS BATMAN BayMeth BayMeth
w/o CNV  w/ CNV
0.5 - - - o offsets offsets

BIEIIS (estimate — truth)
o o
) o
N
I
3
1
!
!
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e
-]
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; CN 2: 9013 bins
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g LT - CN 4: 125864 bins
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Zu "Ch Fast and sensitive mapping of bisulfite-treated sequencing data

Christian Otto"2, Peter F. Stadler!:2:3.4.5.6 gnd Steve Hoffmann':2:*
TInterdisciplinary Center for Bioinformatics and Bioinformatics Group, Department of Computer Science, University

I nstitute of M o Iec u Ia r L ife Sc i e n ces Leipzig, 04107 Leipzig, Germany, 2Transcriptome Bioinformatics Group, LIFE — Leipzig Research Center for

Civilization Diseases, University Leipzig, 04107 Leipzig, Germany, 3RNomics Group, Fraunhofer Institute for Cell
Therapy and Immunology, 04103 Leipzig, Germany, “Santa Fe Institute, Santa Fe, NM 87501 USA, °Department of
Theoretical Chemistry, University of Vienna, A-1090 Vienna, Austria and ®Max-Planck-Institute for Mathematics in
Sciences, 04103 Leipzig, Germany

Associate Editor: Michael Brudno

Bisulphite sequencing analyses: mapping

CGAT CT +Fw
wason (+) X GCTAACTGA +RC
CGAC C

C C C

Giek () N\ T CTGATTGA -Fw

<A G A -RC

Sequence analysis Advance Access publication May 10, 2012

Fig. 1. Possible read types (+FW, +RC, —FW and —RC) in bisulfite
sequencing protocols. Methylated and unmethylated cytosines in the
genomic sequence (left) are coloured in red and blue, respectively, and
positions in the read sequences (right) derived from genomic cytosines
are coloured correspondingly. Note that the intermediate conversion of
unmethylated cytosines into uracils after bisulfite treatment is omitted

Mark D. Robinson, IMLS, UZH Page 45
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Analysis of BS-seq data Unconverted sequence

BS-converted
reference.
t = converted C

Mark D. Robinson, IMLS, UZH Page 46



. . Statham, Robinson et al.
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Alternative visualization of BS-seq data
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Genotypes with BS-seq data
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Reference genome:

Add optional
methylation:

Actual read:

Rule:

T GA CCG
N
TGAT CG

Positive Strand Negative Strand

TCCGATGAGA  TCTCATCGGA

TCCGATGAGA  TCTCATCGGA

TTCGATGAGA  TTTTATCGGA

Seguencing primer \
s TTCG. .. .
s AAGCTACTCT §' Plus (A-rich)
Sequencing primer
§ TCCGATAAAA 3' Minus (A-rich)
Sequence recovered sirands on lllumina GA2, yeilding T-rich reads.




University of

Zurich™ Genotypes with BS-seq data
Institute of Molecular Life Sciences
Positive Strand Negative Strand
Reference: TCCGATGAGA TCTCATCGGA
What if the genome CCGATGAGA TCTCATCGG
was: CCGATGAGA TCTCATCGG
ACCGATGAGA TCTCATCGGT
Actual read: TTCGATGAGA TTTTATCGGA
CCGATGAGA TTTTATCGG
CCGATGAGA TTTTATCGG
T GACCG ACCGATGAGA TTTTATCGGT
Vyov b 1 1
TGAT CG

You can reconcile the ambiguity with the read
from the opposite strand.
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— -

OO

Reference:

What if the genome
was:

Actual read:
A C CG
vy
AT CG

Genotypes with BS-seq data

Institute of Molecular Life Sciences

Positive Strand

TCCGATGAGA

TGCGLTGAGA
TACGCTGAGA
TTCGTTGAGA

TTCGATGAGA

TGCGLTGAGA
TACG I TGAGA
TTCGTTGAGA

t

Negative Strand

TCTCATCGGA

TCTCACCGCA
TCTCAGCGTA
TCTCAACGAA

TTTTATCGGA

TTTTATCGTA
TTTTAGCGTA
TTTTAACGAA

t

Again, you can reconcile the ambiguity with the
read from the opposite strand.



g:rii\éigfjty of Genotype information from BS-seq data
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We don’t always get allele information from both strands ... i.e.
when the methylation base call interferes with the SNP base call

Genotype | Info Ref (+) Ref(-) read as: AIt (+) read AIt( ) read
from read as:

A C Both A CorT

A G A/G + A n/a G n/a

A T A/T Both A A T T

C A A/C Both CorT C A A

C G C/G Both CorT C G GorA
C T C/T - n/a C n/a T

G A A/G + G n/a A n/a

G C C/G Both G GorA CorT C

G T G/T Both G GorA T T

T A A/T Both T T A A

T C C/T - n/a T n/a C

T G G/T Both T T G GorA
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Pipelines: sequencing reads
to data analysis

Many sequencing experiments
have some common initial
preprocessing elements (e.g. read
mapping); microarray experiments
— normalization.

Downstream informatic analyses
are catered to the scientific
question.

Peter J. Park Nature Reviews Genetics 2009

26.06.13 Epigenomics, Mark D. Robinson

I Check sequencing depth <
2
Sequencing Image analysis 35-50 bp Genome Peak
platform } &base calling) sequences > alignment > calling m
P

‘ Quality } [ Control ‘

scores

analysis

Visualization Prriches Other
with genome | <€ ‘ » | advanced
regions >
browser / \ analysis
MoTT Dri:‘jfﬁlr:ntial
discovery P #
analysis
Relationship . Bonc oF
to gene Integration

structure with gene
expression

Figure 4 | Overview of ChlP-seq analysis. The raw data for chromatin immunopre-
cipitation followed by sequencing (ChlP-seq) analysis are images from the
next-generation sequencing platform (top left). A base caller converts the image data
to sequence tags, which are then aligned to the genome. On some platforms, they are
aligned with the aid of quality scores that indicate the reliability of each base call.
Peak calling, using data from the ChIP profile and a control profile (which is usually
created from input DNA), generates a list of enriched regions that are ordered by false
discovery rate as a statistical measure. Subsequently, the profiles of enriched regions
are viewed with a browser and various advanced analyses are performed.
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ChIP-seq for TFs versus ChIP-seq for histone modifications

Chr.13

ChlP-seq

Digital DNase |

Conservation

SNPs

@ APPLICATIONS OF NEXT-GENERATION SEQUENCING

bt |

100 k
29,650,000 29,700,000 | 29,750,000 | 29,800,000

KATNALT
KATNALIT

R e | .\;..l T uL by ™ .uJi il d bl
mwm. bl R N TP [T Ld i [T RRT W T 8

Figure 3 | Data visualization. The University of California-Santa Cruz (UCSC) Genome Browser is a tool for viewing
genomic data sets. A vast amount of data is available for viewing through this browser. This example from the browser
shows numerous data types in K562 cells from the ENCODE Consortium. A random gene was selected — katanin p60

Next-generation genomics:
an integrative approach

subunit A-like 1 (KATNAL1) — that shows several points that can be identified by using this tool. The promoter has a
typical chromatin structure (a peak of histone 3 lysine 4 trimethylation (H3K4me3) between the bimodal peaks of
H3K4me1), is bound by RNA polymerase Il (RNAPII) and is DNase hypersensitive. The gene is transcribed, as indicated
by RNA sequencing (RNA-seq) data, as well as H3K36me3 localization. The gene lies between two CCCTC-binding

R. David Hawkins*, Gary C. Hon* and Bing Ren

factor (CTCF)-bound sites that could be tested for insulator activity. An intronic H3K4me1 peak (highlighted) predicts
an enhancer element, corroborated by the DNase | hypersensitivity site peak. There is a broad repressive domain of
H3K27me3 downstream, which could have an open chromatin structure in another cell type.
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ChIP-seq programs

Wilbanks and Facciotti
(2010) PLoS ONE

26.06.13

Epigenomics, Mark D. Robinson

N
60
R o
; / & @ & o
& {\‘9 6‘\00 e“oﬁo gy & o® o
Pt <& & of & 2 oy \0
S/ SE S8 F /& e ¥
c'&\o & \@Q’ b"o e?\"* _Pc\ &P O& &
e o o g I
£ é\éf@"'o S [ E S QN\S&' o & -\\5’\
NS S8 0 [ LL /LS &
Program A A N A R &
y conditional
Gialienama X X X X binomial model
Minimal ChipSeq
Peak Finder ) X X X
chromsome scale
E-RANGE| 27 | 3.1 X X X Poisson dist.
MACS| 13 [1.3.5 X X X X local Poisson dist.
o chromsome scale
QuesT| 14 |23 X X X X Poisson dist.
HPeak| 29 | 1.1 X X X Hidden Markov Model
Sole-Search| 23 | 1 X X X X One sample t-test
conditional
PeakSeq| 21 [481 X X X binomial model
SISSRS| 32 (14 X X
spp package 31 1.7 i
(wtd & mtc) X X X X X
Generating density Peak Adjustments w. Significance relative to
profiles assignment control data control data

X* = Windows-only GUI or cross-platform command line interface
X** = optional if sufficient data is available to split control data

X' = method exludes putative duplicated regions, no treatment of deletions

Figure 2. ChIP-seq peak calling programs selected for evaluation. Open-source programs capable of using control data were selected for
testing based on the diversity of their algorithmic approaches and general usability. The common features present in different algorithms are
summarized, and grouped by their role in the peak calling procedure (colored blocks). Programs are categorized by the features they use (Xs) to call
peaks from ChlIP-seq data. The version of the program evaluated in this analysis is shown for each program, as the feature lists can change with
program updates.

doi:10.1371/journal.pone.0011471.g002
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Peak/region detection for ChiP-seq data

—— Watson tags
—— Crick tags
MACS: model-based analysis of ChIP-seq data -
Accounting for strandedness of the reads g
-300 -200 -100 0 100 200 300
Location with respect to FKHR motif (bp)
a (d)
54 mm CTCF motif
Watson (4.-) reads 7]
:gg]dusS(CRI;T\I/I()(_) Of— ) '""‘“||IIlumw|||||||||||||"""""“'" """"""""""""""" o @
-5.3766 _ g
8.3653 _| 3 -
Total reads § “
(RPM) h s .
0.0586 _| o —— S é o
b Position (bp) I_SO bp—| § o |
g
20 10 0 10 20

Distance to FoxA1 peak center (kb)

(f\
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MACS — model-based analysis of ChIP-seq

Simple algorithm:

1.
2.

Estimate average fragment size ‘d’

Adjust reads by d/2

From control sample, estimate local background (if

control sample used)

For each window, calculate Poisson P-value
(probability of more extreme than local rate)

Estimate empirical FDR

Mark D. Robinson, IMLS, UZH

200 300 400 500 600
1 1 1 1 1

Control tag number (normalized) / 10 kb
100
1

0
1

T T T T T T
0 200 400 600 800 1,000

FoxA1 ChIP-Seq tag number / 10 kb

Mocal = Max(Agg, [Ay,] 7‘5k’ Ao

For a ChIP-Seq experiment with controls, MACS empirically
estimates the false discovery rate (FDR) for each detected
peak using the same procedure employed in the previous
ChIP-chip peak finders MAT [13] and MA2C [14]. At each p-
value, MACS uses the same parameters to find ChIP peaks
over control and control peaks over ChIP (that is, a sample
swap). The empirical FDR is defined as Number of control

peaks / Number of ChIP peaks. MACS can also be applied to
Page 56
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BayesPeak:

BayesPeak

Y., Y, |1Z, =0~ Poisson(i,y"")

Y, , Y1 |1Z,=1,2,3~ Poisson((A, + 4,)y ")
Ao~ T(ag, Bo)
Ay~ Tay, Br)
0 if (S¢:S¢1) =(0,0)
7 = 1 it (85,8,41)=(01)
T2 0 (8080) =(1,0)
13 if  (S,,8u)=(L1)

Mark D. Robinson, IMLS, UZH

Y Yt
>
>
—pp
—p-pp—p
— -4 4 <4 <4 <«
- <4 <4«
~ATTGTACTC..
' I ol ok ]
St S t+1 St St+3
E ]
Zt
E ]
Z t+1
E ]
Z 2
Figure |

Illustration of the model. This figure shows how the
reads (arrows) on the forward and reverse strand, indicated

by red and blue respectively, are counted as Y," and Y3,

and depend on the nature of the underlying regions t and t +
I when their full length is taken into consideration. Moreo-
ver, this figure shows how each Z, state corresponds to the

underlying ones S,and S, .
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BayesPeak models +/- strands directly

H3K4me3 HNF4o,

15

10

Frequency
10 20 30 40 50
|

0
L

[ T T T T T T 1
91646000 91646500 91647000 91647500 91648000 91648500 91649000 91649500

91239200 91239500 91239800 93726400 93726700 93727000

Figure 3

A closer view of some HeK4me3 and HNF4« peaks. These histograms present the counts of the 5' ends of the reads
from the H3K4me3 and the HNF4« data, forming peaks on the forward (red) and reverse (blue) strand. The offset between
them shows how the enclosed area corresponds to an enriched region. The plots are on a different scale to show the density
of reads clearly and highlight the difference between the peaks formed by a histone mark and a transcription factor.
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Copy number on region finding For a peak caller (generally):

B PreC
O LNCaP

o
w —
—

100
|

Peak density

50
|

o -~ I -

o Q\,ﬁ% {b,\q\
Py 2 - Q .
S > g

Differential copy number state

Model-based Analysis of ChIP-Seq (MACS)

Yong Zhang™*, Tao Liu™", Clifford A Meyer’, Jérome Eeckhoute’,
David S Johnson*, Bradley E Bernstein§¥, Chad Nussbaum7,
Richard M Myers¥, Myles Brown', Wei Li# and X Shirley Liu”

more reads = more peaks.

LNCaP = cancer
PrEC = normal

MACS, run with control (input)
sample

between ChIP and control samples (Figure 1c,d). Many possi-
ble sources for these biases include local chromatin structure,
DNA amplification and sequencing bias, and genome copy
number variation. Therefore, instead of using a uniform Apg
estimated from the whole genome, MACS uses a dynamic
parameter, A}, defined for each candidate peak as:

klocal = maxOLBG, [}\-1]\] 7\.5]\ }"10]()

where Ay, Ay and A, are A estimated from the 1 kb, 5 kb or
10 kb window centered at the peak location in the control
sample, or the ChIP-Seq sample when a control sample is not



Copy number
(normalized
read depth)
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QDNA-seq signal
= biology (copy number, enrichment) + technical effects
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CNV affects differential comparisons: various
scenarios

Captured )
subpopulation:

Normal

Cancer




Universityof 1 €St case: Compare cancer and normal
Zurich™ epigenomes, considering changes in CNV
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Read depths of gDNA
sequencing, coloured by CNV
calls by Affymetrix SNP 6.0 data

Adjusted read counts (PrEC)
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(prostate epithelial cells)
Normal copy number

Adjusted read counts (LNCaP)
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This region has 2 copies in normal PrEC cells and 2 copies in prostate
cancer LNCaP cells (We normalize LNCaP=4 to PrEC=2, so this is

effectively a net loss of copy number)
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Robinson et al. 2012 Genome Research
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This region has 2 copies in normal PrEC cells and 2 copies in
prostate cancer LNCaP cells (We normalize LNCaP=4 to PrEC=2,
so this is effectively a net loss of copy number)
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Robinson et al. 2012 Genome Research
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Statistical details of ABCD-DNA: offsets

We model read densities, Y, in a generalized linear model:
log(E[Y;]) = O; + BX

O;; is an r x n matrix of offsets

X is an k x n design matrix

B. is a r x k matrix of region-specific coefficients

O; can be decomposed into Iog(CNij) 1 log(1 Dj)

Using independent data (e.g. SNP array, gDNA-seq) to estimate offsets
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((@ APPLICATIONS OF NEXT-GENERATION SEQUENCING

(Next-generation genomics:
an integrative approach

R. David Hawkins*, Gary C. Hon* and Bing Ren

Abstract | Integrating results from diverse experiments is an essential process in our
effort to understand the logic of complex systems, such as development, homeostasis
and responses to the environment. With the advent of high-throughput methods —
including genome-wide association (GWA) studies, chromatin immunoprecipitation
followed by sequencing (ChlIP-seq) and RNA sequencing (RNA—seq) — acquisition of
genome-scale data has never been easier. Epigenomics, transcriptomics, proteomics and
genomics each provide an insightful, and yet one-dimensional, view of genome function;

integrative analysis promises a unified, global view. However, the large amount of
information and diverse technology platforms pose multiple challenges for data access
and processing. This Review discusses emerging issues and strategies related to data

integration in the era of next-generation genomics.

Hawkins et al. (2010) Nature Reviews Genetics
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Expression outcome
is related to several
factors
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Figure 3 | Data visualization. The University of California-Santa Cruz (UCSC) Genome Browser is a tool for viewing
genomic data sets. A vast amount of data is available for viewing through this browser. This example from the browser
shows numerous data types in K562 cells from the ENCODE Consortium. A random gene was selected — katanin p60
subunit A-like 1 (KATNAL1) — that shows several points that can be identified by using this tool. The promoter has a
typical chromatin structure (a peak of histone 3 lysine 4 trimethylation (H3K4me3) between the bimodal peaks of
H3K4me1), is bound by RNA polymerase Il (RNAPII) and is DNase hypersensitive. The gene is transcribed, as indicated
by RNA sequencing (RNA-seq) data, as well as H3K36me3 localization. The gene lies between two CCCTC-binding
factor (CTCF)-bound sites that could be tested for insulator activity. An intronic H3K4me1 peak (highlighted) predicts
an enhancer element, corroborated by the DNase | hypersensitivity site peak. There is a broad repressive domain of
H3K27me3 downstream, which could have an open chromatin structure in another cell type.

Page 67
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Heights and widths of “peaks” across ChIP-seq datasets
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Exploratory analyses
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Exploratory analyses ,

Genome coverage Number of domains All genes Silent genes

286

117 Mb 8428 domains 15145 genes 4229 silent genes

“Colours” are reflective
of various features

Length of domains Number of genes per domain mRNA expression
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state annotation
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ChromHMM

ChromHMM is based on a multivariate hidden Markov model
that models the observed combination of chromatin marks using
a product of independent Bernoulli random variables?, which
enables robust learning of complex patterns of many chromatin
modifications. As input, it receives a list of aligned reads for each
chromatin mark, which are automatically converted into pres-
ence or absence calls for each mark across the genome, based on
a Poisson background distribution. One can use an optional addi-

a

b

State (user order)

Scale

50 kbt i

chr4: 103650000/ 1037R09200IG 103750000!
NF&E} WWM%WWW MANBA b
-ttt +——HH—+—H4-H
GM12878 — e S o —— | —
X GM12878 (User ordered)
1_Active_Promoter I +
2_Weak_Promoter t tH+ 1 t
3_Poised_Promoter
4_Strong_Enhancer
5_Strong_Enhancer
6_Weak_Enhancer
7_Weak_Enhancer
8_Insulator H+H
9_Txn_Transition —a- .1+ N
10_Txn_Elongation i
11_Weak_Txn
12_Repressed
13_Heterochrom/lo
14_Repetitive/CNV
15_Repetitive/CNV
Emission parameters Transition parameters GM12878 fold enrichments
1
1 1 2
2 _ o[ 3
3l | 5 3 4
4 g4 5 e
5 ° 5 g g
2 g6 = S g "
| 27 i) g 9
9 g 8 u 310
o B § o 3 1
11 o 10 T 12
12 w1 »n 13
13 3 12 14
14 13 SNTOQCONT®
15— 14 RBCEaeE
5823888y 15 o aNOSSE
EEEEEEE"C’O 1234567891011 12131415 Em'(;%ggog_J
ON8SIIILE™ SORERRD S
YOUSEST $ 2055520
»HY LT State to (user order) ox - Srpt
IIT 2
o
Mark Category

Ernst and Kellis, Nature Methods (March) 2012



University of
Zurich™

Institute of Molecular Life Sciences

Self-organizing map “compression”
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SOM to other features
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Exploratory analysis: clustering .. -
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