Calling Variants from Sequence
Data

Robert Gentleman
Genentech

Genentech



Outline

* The objective(s)

* Our experiment
 What we found out
* Next steps

e Caveats:

— this is a work in progress, as you will see
— Much of what | present is just based on Chr 1
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The objectives

* |dentify a set of variants that are particular to an
individual

— ldentify the genotype of an individual

— Identify the mutations/variations that are specific to a
tumor

* The first of these requires us to compare our data
to a reference sequence

* The second requires that we compare the tumor
genome to the germline (not quite) genome

Genentech



Landscape

* There are many tools some for calling genotypes

— SNVs in normal genomes (diploid for humans)
— GATK, SOAP2, ....

— Many that are not public, most labs have their own
set of procedures

* Tools for calling variants

— Atlas2 (seems to rely on GATK or similar)
* Tumor Normal Comparisons

— Mutect

— SomaticSniper

— Strelka
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A way forward

* We do better at engineering than at discovery

— By engineering | mean the process of iterative
refinement of a solution

— |terative refinement requires a good and substantial

gold standard data set containing substantial numbers
of TPs and TNs

— We want the TPs at varying frequencies (not just het
and hom)

* Part of the reason there are so many competitors
is the absence of good objective comparisons

— A good gold standard data set could address this
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 Mix DNA from two well
sequenced individuals
and sequence the
mixtures

— NA12878, the daughter of
a CEU trio

The experiment
— NA19240, the daughter of

a YRI trio g faph

— Triplicate samples 2 | A
(biologic) at 10-90, 50-50
and 90-10

— 20X coverage, 75nt paired
end reads per sample
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How did we do?

Hom alt in CEU
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How did we do?

e Not that bad — one obvious outlier

e But notice the lack of symmetry in the 90-10
and 10-90

— For 90 YRI-10 CEU the dots go way up to around 1,
suggesting that the YRI is actually non-ref at those
loci, even though the 1000G genome says they are
hom ref

— We find substantial evidence that the YRI genome
is less accurate than the CEU, and that will affect

FP rates, as many of those may indeed be TPs
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Expected Frequencies of Alleles

e our samples contain mixed genotypes

* The expected frequency of an allele depends on whether it
was het or hom in the original genome and on the mixture

 Example: 90-10 mixture (CEU/YRI)

— Hom altin both, EF=1.0

— Hom altin CEU, het in YRI, EF=0.95

— Hom altin CEU, WT in YRI, EF=0.9

— Hetaltin CEU, Hom alt in YRI, EF=0.55

— Het altin both, EF=0.5

— Hetaltin CEU, WT in YRI, EF=0.45

— Hom altin YRI, WT in CEU, EF=0.1

— Hetaltin YRI, WT in CEU, EF=0.05
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Experiment — Data

%CEU | %YRI | Reads
(analyzed) Coverage

461,449,560  22.3 * 6 sets of plates (3 of each),

90 10 475,567,437  23.0 DNA extracted and mixed
90 10 460,196,498  22.3 separately for each replicate
50 50 489,166,262  23.7 « Sample prep and sequencing
50 50 442,737,941 21.4 was c!one Separ?tely

« We did not do either sample
50 50 430,779,023 20.8 .

on its own

10 90 496,958,600 24.0
10 90 494,245,570 23.9
10 90 534,458,340 25.8
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Well estimated Genotypes
m

NA12878 Broad Hgl9 2402001/1423889
NA12878 CEU 1000G Hgl8 61x 1678115/1047713
CEU UNION CEU Both Hgl9 2424095/1427209
CEU Unique 1643487/630909
NA19240 YRI 1000G Hgl8 66X 2227251/1108784
YRI Unique 1416362/299673
UNION Both ALL Hgl9 3840201/1726882

* We mask regions of low complexity.
- difficult to map to and not interesting
 We combine the two CEU genotypes using a
* Union; Broad het calls are used in preference to the
1000G hom calls
* Notes:

 Het/hom ratio is larger in YRI
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Some Definitions

* True Positive (TP): a variant that is present in the
underlying mixture genome

* True Negative (TN): a locus where both CEU and YRl are WT

* False Positive (FP): a called variant where the CEU and YRI
are WT

e False Negative (FN): a failure to call a known variant

* False Discovery Rate (FDR): the proportion of discoveries
(calls) that are false

— This is probably more meaningful than the FP rate
— This is much easier to estimate
 These rates are affected by errors in the gold standard
— FP might be TP
— FN might be TN

Genentech



Statistical Challenges

* multiple testing

— many millions of tests (discrete probability
distribution)

* varying power
— coverage determines power, coverage varies
* varying size
— affected by coverage and frequency of the variant
* Bias
— Many sources, most not known
— Eg: we align to the reference genome (reference bias)
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Variant Calling

 where are there differences between the
genome sequence data and the reference?

* our reference genome is homozygous at every
locus

* H,: the genome (G) and ref (R) are the same
(G is homozygous identical to the reference)

* under H, all reads should be the reference
allele

— errors are due to sequencing errors

e every heterozygous locus is a variant (in this
case), some homozygous loci are too
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Variant Calling

e usual algorithm: if X>1, and coverage > K, call
a variant

— K is artificial, the requirement should be based on
evidence against H,, not on coverage

— Eg: coverage 5, but 4 non-ref alleles?

* Pr(2 or more non-ref reads (alleles)| H,) is a
Binomial calculation, pg=103, n=coverage

— For n=10, the prob is 10~
— For n=50, the prob increases to 103

e So we will have lots of FPs if we are not
careful
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Calling Variants

 We (and others) use a probability model
— Can think of it as either a LRT or a Bayes Factor

* Look at the ratio of the likelihood under a
model (initially Binomial) for
— M1: the variant is a sequencing error (p=0.001)

— M2: the variant is present at some frequency
(p=0.2)
P(MY) _ pid-p)™ _,
P(M2) p,(-p,)"™
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Calling Variants

plx(l_pl)n_x =1
p;(l_pz)n_x

* When we solve this using p,=0.01 and p,=0.2
* We call a variant (M2) when x/n>0.04

* |ssues:

* More than one variant at the locus
* Low coverage introduces discreteness
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Filtering the data

* The reads are aligned using gSNAP (T. Wu)

 And then a number of QA processes are used
to filter out reads with anomalies that are
more likely to be due to technical artifacts
than real biology.

* QOur testis a likelihood ratio (which can also be
interpreted in a Bayesian fashion)
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Workflow

Input Unique Alignments
Ignore Picard Mask Simple Require >13 Require > 23
T ” Duplicates Repeats Map Quality Base Quality
ally

At least one alt No ref/alt
in middle of strand bias via
read FET

QA

Binomial Likelihood Ratio
Test:
p(var)=0.2/
p(error) = 0.001

At least two alt At least 4% alt
reads read fraction

Call

dbSNP positions
not considered

Minimum Variant
Countin
Neighborhood

Post Filter

Output / Variants /
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QA Filters

Genentec

N

Discard variants
only seen at
end of read.

FAIL
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PASS

Discard variants
with ref/alt
strand bias.

FAIL

30




Calling Filters

Genentec

H

Discard variants
with only one
alt read.

FAIL

PASS
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Discard variants
with < 4% alt
read fraction.

FAIL

PASS
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Post Filter

Discard variants
clumped on the
chromosome.
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Observed Variant Frequencies
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FN by expected Frequency
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FNR by Mixture and Coverage
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What is going on in high coverage?
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FDR rates by coverage

10 YRI x 90 CEU 50 YRI x 50 CEU 90 YRI x 10 CEU
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How did we do

Based on Chrl we have 1-FNR =0.91
And FDR of about 19%

But, we believe about 1/3 of the FPs are
probably TPs
We are still trying to determine how many of
the FNs are TNs




FP/FDR

 The data are pointing to the fact that the
reference genomes (our gold standard) is not
that accurate.

 Thus many presumed FPs are in fact TPs, but
were missed for a variety of reasons in the
original genotypes.

 We also see strong evidence that the YRI
genome is less well determined than the CEU.
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Are our FPs really F?
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| | * We see strong association
between a variant being in
dbSNP and whether or not
it was an FP more than

Genentech

once.
dbSNP No dbSNP Yes
Rep 1 80003 10090
Rep 2/3 25052 56085

# replicates
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How good is the YRI sample?

e We see that the FDR
increases as the fraction
of YRI increases.

e What else?

£ 50 YRIx 50 CEU
g

10 YRI x 90 CEU
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Observed Variant Frequencies

source [E3 CEU Bl CEU+YRI B YRI
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What we cannot do

 APC: adenomatous polyposis coli,

— A tumor suppressor, often mutated in cancer
— Length 10740 nt

* WT calls: can we say the gene has no mutations/
variants?
— If we have power to detect a variant of 0.999

— If each locus is independent then for the gene we
have power of 0.999710740=2.154485e-05

— We need power around 0.99999 per variant (and
much more for longer genes) to get power around 0.9

— For a Binomial, p=0.1, we will need about 120 X
coverage (minimum over the gene/genome
depending on what you want to say)



What we cannot do

 We currently do not phase (call haplotypes)

e Since the genomes are typically diploid (or
greater for cancer) we cannot easily determine
whether variants are in the same allele or in
different alleles

— Unless they are very close together

* For most variants we do not have good measures
of their effect

— Condel and similar can be used, but these are not the
best tools

— Finding the effect of a variant is challenging



Discussion

* Alarge and comprehensive gold standard data
set is an essential tool in improving variant
calling

* With hundreds of thousands/millions of TP
and TN we can study many aspects of the
process

* We still need biochemical validation (being
done now)
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