Calling Variants from Sequence Data

Robert Gentleman Genentech

Outline

- The objective(s)
- Our experiment
- What we found out
- Next steps
- Caveats:
 - this is a work in progress, as you will see
 - Much of what I present is just based on Chr 1

The objectives

- Identify a set of variants that are particular to an individual
 - Identify the genotype of an individual
 - Identify the mutations/variations that are specific to a tumor
- The first of these requires us to compare our data to a reference sequence
- The second requires that we compare the tumor genome to the germline (not quite) genome

Landscape

- There are many tools some for calling genotypes
 - SNVs in normal genomes (diploid for humans)
 - GATK, SOAP2,
 - Many that are not public, most labs have their own set of procedures
- Tools for calling variants
 - Atlas2 (seems to rely on GATK or similar)
- Tumor Normal Comparisons
 - Mutect
 - SomaticSniper
 - Strelka

A way forward

- We do better at engineering than at discovery
 - By engineering I mean the process of iterative refinement of a solution
 - Iterative refinement requires a good and substantial gold standard data set containing substantial numbers of TPs and TNs
 - We want the TPs at varying frequencies (not just het and hom)
- Part of the reason there are so many competitors is the absence of good objective comparisons

A good *gold standard* data set could address this

The experiment

- Mix DNA from two well sequenced individuals and sequence the mixtures
 - NA12878, the daughter of a CEU trio
 - NA19240, the daughter of a YRI trio
 - Triplicate samples
 (biologic) at 10-90, 50-50
 and 90-10
 - 20X coverage, 75nt paired end reads per sample

How did we do?

7

How did we do?

- Not that bad one obvious outlier
- But notice the lack of symmetry in the 90-10 and 10-90
 - For 90 YRI-10 CEU the dots go way up to around 1, suggesting that the YRI is actually non-ref at those loci, even though the 1000G genome says they are hom ref
 - We find substantial evidence that the YRI genome is less accurate than the CEU, and that will affect FP rates, as many of those may indeed be TPs

Expected Frequencies of Alleles

- our samples contain mixed genotypes
- The expected frequency of an allele depends on whether it was het or hom in the original genome and on the mixture
- Example: 90-10 mixture (CEU/YRI)
 - Hom alt in both, EF=1.0
 - Hom alt in CEU, het in YRI, EF=0.95
 - Hom alt in CEU, WT in YRI, EF=0.9
 - Het alt in CEU, Hom alt in YRI, EF=0.55
 - Het alt in both, EF=0.5
 - Het alt in CEU, WT in YRI, EF=0.45
 - Hom alt in YRI, WT in CEU, EF=0.1
 - Het alt in YRI, WT in CEU, EF=0.05

Experiment – Data

%CEU	%YRI	Reads (analyzed)	Avg. Coverage			
90	10	461,449,560	22.3			
90	10	475,567,437	23.0			
90	10	460,196,498	22.3			
50	50	489,166,262	23.7			
50	50	442,737,941	21.4			
50	50	430,779,023	20.8			
10	90	496,958,600	24.0			
10	90	494,245,570	23.9			
10	90	534,458,340	25.8			
Genentech						

- 6 sets of plates (3 of each), DNA extracted and mixed separately for each replicate
- Sample prep and sequencing was done separately
- We did not do either sample on its own

A Member of the Roche Group

Well estimated Genotypes

Cell Line	Trio	Source	Reference	Coverage	Het/Hom
NA12878	CEU	Broad	Hg19	64x	2402001/1423889
NA12878	CEU	1000G	Hg18	61x	1678115/1047713
CEU UNION	CEU	Both	Hg19		2424095/1427209
	CEU	Unique			1643487/630909
NA19240	YRI	1000G	Hg18	66x	2227251/1108784
	YRI	Unique			1416362/299673
UNION	Both	ALL	Hg19		3840201/1726882

- We mask regions of low complexity.
 - difficult to map to and not interesting
- We combine the two CEU genotypes using a
 - Union; Broad het calls are used in preference to the 1000G hom calls
- Notes:
 - Het/hom ratio is larger in YRI

Some Definitions

- True Positive (TP): a variant that is present in the underlying mixture genome
- True Negative (TN): a locus where both CEU and YRI are WT
- False Positive (FP): a called variant where the CEU and YRI are WT
- False Negative (FN): a failure to call a *known* variant
- False Discovery Rate (FDR): the proportion of discoveries (calls) that are false
 - This is probably more meaningful than the FP rate
 - This is much easier to estimate
- These rates are affected by errors in the gold standard
 - FP might be TP
 - FN might be TN

Statistical Challenges

- multiple testing
 - many millions of tests (discrete probability distribution)
- varying power
 - coverage determines power, coverage varies
- varying size
 - affected by coverage and frequency of the variant
- Bias
 - Many sources, most not known
 - Eg: we align to the reference genome (reference bias)

Variant Calling

- where are there differences between the genome sequence data and the reference?
- our reference genome is homozygous at every locus
- H₀: the genome (G) and ref (R) are the same (G is homozygous identical to the reference)
- under H₀ all reads should be the reference allele
 - errors are due to sequencing errors
- every heterozygous locus is a variant (in this case), some homozygous loci are too

Variant Calling

- usual algorithm: if X>1, and coverage > K, call a variant
 - K is artificial, the requirement should be based on evidence against H₀, not on coverage
 - Eg: coverage 5, but 4 non-ref alleles?
- Pr(2 or more non-ref reads (alleles) | H₀) is a Binomial calculation, p_F=10⁻³, n=coverage
 - For n=10, the prob is 10^{-5}
 - For n=50, the prob increases to 10^{-3}
- So we will have lots of FPs if we are not careful

Calling Variants

- We (and others) use a probability model
 Can think of it as either a LRT or a Bayes Factor
- Look at the ratio of the likelihood under a model (initially Binomial) for
 - M1: the variant is a sequencing error (p=0.001)
 - M2: the variant is present at some frequency (p=0.2)

$$\frac{P(M1)}{P(M2)} = \frac{p_1^x (1-p_1)^{n-x}}{p_2^x (1-p_2)^{n-x}} = 1$$

Calling Variants

$$\frac{p_1^x (1-p_1)^{n-x}}{p_2^x (1-p_2)^{n-x}} = 1$$

- When we solve this using p₁=0.01 and p₂=0.2
- We call a variant (M2) when x/n>0.04
- Issues:
 - More than one variant at the locus
 - Low coverage introduces discreteness

Filtering the data

- The reads are aligned using gSNAP (T. Wu)
- And then a number of QA processes are used to filter out reads with anomalies that are more likely to be due to technical artifacts than real biology.
- Our test is a likelihood ratio (which can also be interpreted in a Bayesian fashion)

Michael Lawrence

Workflow

Michael Lawrence

QA Filters

A Member of the Roche Group

Michael Lawrence

Calling Filters

A Member of the Roche Group

Post Filter

Observed Variant Frequencies

FN by expected Frequency

FNR by Mixture and Coverage

coverage bin

What is going on in high coverage?

р 34.2 р 32.2 15,500 bp	p31.1 p22.2	p21.1 p1		q21.2 q	p 34.2	p32.2	p31.1 p2		p12		q21.2 q
-	F	•									G
								G			
A											G
A								G			
-	ſ									-	G G
A		т							A		G
	r										G
								G			
							с				G G
ттттт	A A A A	і ААТТ	i G G	ААТ	ААТ	ΑΑΤΟ	бсса	САТ	G T C T	ГАС	Ĝ

FDR rates by coverage

coverage bin

How did we do

- Based on Chr1 we have 1-FNR = 0.91
- And FDR of about 19%
- But, we believe about 1/3 of the FPs are probably TPs
- We are still trying to determine how many of the FNs are TNs

FP/FDR

- The data are pointing to the fact that the reference genomes (our gold standard) is not that accurate.
- Thus many presumed FPs are in fact TPs, but were missed for a variety of reasons in the original genotypes.
- We also see strong evidence that the YRI genome is less well determined than the CEU.

Are our FPs really F?

 We see strong association between a variant being in dbSNP and whether or not it was an FP more than once.

	dbSNP No	dbSNP Yes
Rep 1	80003	10090
Rep 2/3	25052	56085

How good is the YRI sample?

- We see that the FDR increases as the fraction of YRI increases.
- What else?

Observed Variant Frequencies

What we cannot do

- APC: adenomatous polyposis coli,
 - A tumor suppressor, often mutated in cancer
 - Length 10740 nt
- WT calls: can we say the gene has no mutations/ variants?
 - If we have power to detect a variant of 0.999
 - If each locus is independent then for the gene we have power of 0.999^10740=2.154485e-05
 - We need power around 0.99999 per variant (and much more for longer genes) to get power around 0.9
 - For a Binomial, p=0.1, we will need about 120 X coverage (minimum over the gene/genome depending on what you want to say)

What we cannot do

- We currently do not phase (call haplotypes)
- Since the genomes are typically diploid (or greater for cancer) we cannot easily determine whether variants are in the same allele or in different alleles
 - Unless they are very close together
- For most variants we do not have good measures of their effect
 - Condel and similar can be used, but these are not the best tools
 - Finding the effect of a variant is challenging

Discussion

- A large and comprehensive gold standard data set is an essential tool in improving variant calling
- With hundreds of thousands/millions of TP and TN we can study many aspects of the process
- We still need biochemical validation (being done now)

Acknowledgements

- Michael Lawrence
- Melanie Huntley
- Yi Cao
- Jeremiah Degenhardt
- Sekar Sheshigiri
- Eric Stawiski
- Jens Reeder
- Gregoire Pau