Statistics for Biologists

Outline

- estimation and hypothesis testing
- two sample comparisons
- linear models
- non-linear models
- application to genome scale data

Warning

- while the quantities often seem simple
- NEVER IMPLEME

IMPLEMENT THEM YOURSELF

- use good software that already exists (R, SAS, MatLab)
 - numerical/scientific computing has many pitfalls for the unwary

Warning

- what went wrong:
 - > x = sqrt(2)
 - > X
 - [1] 1.414214
 - > x * x == 2

[1] FALSE

• R FAQ 7.31, Why doesn't R think these numbers are equal?

Estimation

- given some set of data one might want to estimate some parameters of that data
 mean, variance, 95th percentile
- point estimates
 - mean=122.2
- interval estimates
 - the mean is between 101 and 133
- in general we make assumptions about the underlying probability model (randomness) and choose estimates with specific properties
 - unbiased, minimum variance
 - we can be frequentist or Bayesian
 - confidence intervals (have a frequentist interpretation)

Hypothesis Testing

 a hypothesis is a statement about the real world

-1 think the mean is $H_00\mu$ = 100

- the null hypothesis should typically represent the status quo, or a presumption of no effect
- we use the data, plus our chosen inference paradigm to compute quantities that help us determine whether the null hypothesis is reasonable, or not

Two-types of mistake

- there are two kinds of mistakes that can be made
 - reject the null hypothesis when it is true
 - accept the null hypothesis when it is false
 - the size of a test is the probability that we reject the null when true
- the power of a test is the probability of rejecting the null hypothesis when it is false
 - this generally requires us to specify how it is false
- in general we use the size of the test to control the first type of mistake at some fixed level
- for a given size there are many tests, we attempt to choose ones that are more

7

p-values

- are quantities that relate to the null hypothesis
 - you cannot have a p-value without a null hypothesis
 - the p-value measures how likely it is to see evidence as extreme or more extreme as that observed assuming the null hypothesis is true
 - small p-values are evidence against the null hypothesis; they are **not** the probability it is true!
 - Bayesian's use a different approach and

Size of the effect

- our point estimate gives us our best guess of the true value of the parameter we are interested in
- suppose we want to know if the FC >
 1
 - $-H_0$: FC = 1 in this case our one sided alternative is H_A : FC > 1
 - suppose our data provide an estimate of the FC to be 1.5, with a 95% CI (0.1, 2.2)
 - do we accept H_0 or reject it?

Size of the Effect

- what went wrong? (if anything)
- we might have been under-powered
- that is we did not have enough data to detect the difference
- the size of the CI is determined by the amount of variation in the data
- and that is largely controlled by the sample size

Equivalence

 there is a very direct relationship between confidence intervals and hypothesis tests

 $H_0: \theta = X$

- if the value, X, lies inside of a 95% CI then the null hypothesis would not be rejected at the 5% level
- if X, lies outside the 95%
 CI, then the null
 hypothesis would be
 rejected at the 5% level

Significance

- statistical significance should never be confused with scientific significance
- statistical significance tells us the surprise factor:
 - if all my assumptions are correct, and the null hypothesis is true, how surprised should I be by my data
 - at some level of surprise we choose to decide that our null hypothesis is unlikely to be true (usually we check to be sure our assumptions are reasonable)
- scientific significance is concerned with whether what we found is likely to have any relevance to our understanding of ¹²

Significance

- statistical significance is affected by sample size
- scientific significance is not
- getting more data often ensures statistical significance
 - new data technologies give us too much data
 - eg flow cytometry, sequencing
 - many things are scientifically uninteresting, but statistically significant

Two Concepts

- variance: when we estimate a quantity using data, we generally get both a point estimate and some estimate of the variability of that estimate
 - as sample sizes increase this variance tends to decrease
- bias: this is the difference between what we intended to measure and what we did measure
 - we estimate RPKMs incorrectly due to mapping issues
 - bias is never improved by sampling more, it

Two Important Theorems

- a central limit theorem basically says that the average (mean) of a set of numbers (assumed to come from some distribution) will behave approximately like a Normal random variable as the set grows
- the law of large numbers says that the mean of a set of numbers (assumed to come from some distribution) will get arbitrarily close to the mean (expected value) of the distribution

Two Sample Comparisons

- paired vs non-paired comparisons
 - eg. before/after, or two related measurements
 - a paired comparison usually increases power
- non-parametric tests vs parametric tests
 - parametric tests tend to be more powerful, for a given sample size, but they often achieve that at the expense of making assumptions

16

t-test

test is for equality of the means

 $H_0: \mu_1 = \mu_2$

- various versions can address different underlying assumptions

 paired vs independent
- assumptions:
 - no strong ones, the CLT provides rationale for reasonable samples
 - this is a parametric #est (is the parameter)

Non-parametric two-sample tests

- Mann-Whitney (two independent samples)
- Wilcoxon (paired samples)
- they hav # a different null hypothesis
- equality of the two underlying distributions
- while this includes equality of the means, it is more restrictive
- in particular we do not expect correspondence between these tests

When to use tests

- non-parametric tests are often used when one does not want to make specific assumptions about the data
 - but they are less powerful, so if you don't have much data they won't work very well
- when you have lots of data and the assumptions are reasonable both parametric and non-parametric methods have similar behavior
- so I would use:the non-parametric tests when I want to test
- and the parametric tests when I want to test $H_0: \mu_1 = \mu_2$

Limitations

- the two sample tests can be extended in a number of ways
 - inclusion of covariates; linear and nonlinear regression
 - multiple groups; ANOVA (and friends)

Linear Models

• a linear model

$$y = a + bx + e$$

- where y represents the independent variable
- a is the intercept (value for y when b=0)
- b is the slope of the relationship
- x are the known covariates
- e are the errors

Ancscombe's Quartet

- four data sets for which most summary statistics and indeed, a, b and sigma², are identical
- but regression is appropriate for only one

Anscombe's Quartet

Linear Models

- often the model is fit and parameters estimated using least squares
 - this gives estimates of a, b and from them the residuals can be obtained

$$\hat{e} = y - \hat{a} - \hat{b}x$$

- the residuals can be used to determine whether the model is reasonable
- hypothesis tests generally focus on questions about

The t-test as a linear model

- if we let x be 0 or 1, depending on whether the observation is Treated or Not Treated,
- then for every observation in the treated group our model $a_i = e$
- and for every observation in the untreated group the model is b + e
- so we can interpret a as the mean in the treated group, and a+b as the mean in the untreated group
- the test of b=0, is identical to the t-test, for unpaired samples

Linear model

- but the advantage of this formulation is that we can add other variables
 - eg sex, tissue, complex treatments
 - these are then adjusted for in our comparisons
- the residuals should always be examined, since they tell you about whether or not your model is appropriate
- testing b=0 makes the strong assumption that the model is correct
 - it is important that you learn to assess

Non-linear models

- while there is only one kind of linear model, there are lots of different nonlinear models
- we will discuss generalized linear models
- this class of models includes logistic regression Poisson regression and Negative Binomial regression models
- logistic regression is used to model 0/1 data
- Poisson and Neg Binomial are suitable for modeling count data
 - the latter is more general and is being used

Non-linear models

- good software exists for fitting these
 - Modern Applied Statistics in S (MASS),
 Venables and Ripley
 - Julian Faraway's books, Linear Models in R, and one on non-linear models

Application to Genome scale data

- several problems/issues became apparent
 - the test statistics seemed to often associate with other variables
 - for microarrays DE genes were those with high intensity
 - for RNA-seq, GC content seems to matter in some cases
 - these indicate the need for normalization

Genome Scale

- the test statistics could be large due to variability in the estimate of the variance
 - led to moderated t-tests, and other approaches
- how do we assess significance when doing many tests

p-value correction methods

Moderated t-tests

- the t-test can be large if
 - 1. the means are different
 - 2. n is large
 - 3. our estimate of SE is small
- 1. is mostly what we are interested in
 - so we sometimes include a fold-change requirement
- 2. is a problem with flow cytometry and for some RNA-seq problems
- 3. is common in microarray experiments and limma and others use some form of moderated estimate of ³¹

Moderated tests

- they are effective for small sample sizes, the advantages of moderation drop off as the sample size increases
- there is nothing special about t-tests and limma fits more general models
 - most other methods can be similarly adapted

p-value Adjustments

- p-values are really interpreted for a single test
- when you do many some more careful thinking is required to ensure that error rates are controlled
- the false discovery rate is the expected value of the proportion of all tests for which H₀ is rejected where it is actually true
- this turns out to be a relatively easy quantity to estimate and it is of

p-value Adjustments

- we can often live with quite high FDR values
 - in some discovery projects FDR=0.5 is considered pretty good
- as with all cut-offs/approaches the FDR does not tell the whole story
 - it is attempting to control false discoveries
 - it says nothing about missing true discoveries
 - indeed, if one takes those tests just
 below the cut-off, they are enriched for