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Technologies for DNA methylation profiling

@ Treatment of DNA with sodium bisulphite:

C—T
M
¢ = C. bisulfite : é :
4
PCR
@ High-throughput sequencing. _0_6_0_@_@_
-D—0—0—0—0~
(*) Advantage: Single base reSO|UtiOn www.diagenode.com/en/applications/

bisulfite-conversion.php

@ Disadvantage: Whole genome-wide bisulphite sequencing
(WGBS) is very expensive and inefficient.

@ Methylation arrays are an alternative, but provide less
coverage and are only available for human.
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Affinity-capture-based approaches

strike good balance between high cost of WGBS and the low
coverage of methylation arrays.
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Nﬂ gn The number of reads mapping to
MEDIP /" rgmentaton~ \ 20 100Dbp bins, say, is counted.
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Affmlty Enrichment Y Read density nOt direCtly
% d .E!. tiﬁ?v‘ﬁ’o interpretable.
i Y‘:;‘;i‘i"ﬂi‘;y tﬁ:: @ Dependence on CpG density.
Qo @ Methods for microarrays not
Q B T — S applicable.
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Statistical analysis: Available software packages

Software  Reference Implementation
Batman Down et al. (Nat Biotech, 2008) Java

MEDIPS Chavez et al. (Genome Res, 2010) R / Bioconductor
BALM Lan et al. (PLoS ONE, 2011) C++

A new method is desired that

@ can distinguish inefficient capture from low methylation,

@ gives variance estimates,

1

@ accounts for copy-number-variations, =

@ is computationally light, )

@ is integrated into public domain and open source software
(e.g. Bioconductor) to be directly applicable to routine tasks.
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Idea: Borrow strength from control information

Use an artificially full methylated (Sssl-treated) control sample
@ to learn where the immunoprecipitation assay works.

@ to interpret the read density.
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BayMeth: Model formulation Riebler et al., 2012, Tech Rep

We consider genomic regions /i = 1, ..., n and define

@ y; c: Number of reads for the fully methylated (Sssl) control.

@ y; s: Number of reads for the sample of interest.
Yi.c|\i ~ Poisson()\)); Yi.s|Ai, i ~ Poisson(f x \j x ;)
with

Aj: region-specific read density
ui: the regional methylation level (Main parameter of interest)

f: known relative offset.
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Model formulation (Il): Prior distributions

In a Bayesian framework, prior distributions are assigned to all
parameters.

@ For p;: a (mixture of) beta distributions:

sity
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M
pi~ Y WnBeta(am, bp),

m=1

with 0 < w,, < 1, and 2%21 Wp = 1.

Methylation level

(In the simplest case a uniform prior: M =1, ap, = by, = 1).

@ For )\;: a gamma distribution with shape «, rate £.
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Closed-form posterior marginal distribution

Notably, the marginal posterior distribution of the methylation level:
Posterior distribution
P(uilyi,s, Yic) = / P(Ais il Yi,ss Yi,c) A
0

cond.indep /°° P(Ai) p(ri) P(Yi.clAi) (Vi s|Ais i)
0 p(yis, Vic)

al;.
is available in closed form.

Summary estimates:

@ Posterior mean and variance are analytically available and
efficient to compute.

@ Credible intervals can be computed numerically.
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Find prior parameters using empirical Bayes (EB)

@ Specify prior format for 1; (i.e. number of beta components).
@ Divide regions into groups based on:

e CpG density.
@ Sequence context (promoter, gene body, rest).

@ Determine parameters using EB for each group (in parallel).

Observations:

@ context-specific
information lead to
biased results.

# Reads in Sssl

@ uniform prior (Beta(1,1))
on p; outperforms

weighted beta mixtures. 0 2 40 60 80
CpG density
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Software: Integration into Repitools-package

@ Implementation in R.

@ 5S4 class system.

@ Computationally demanding tasks are done in C.

@ Parallelisation over bins using the R-package snowfall.

@ Integration into the Bioconductor R-package Repitools isin
progress, so that it is soon available for routine tasks.
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Data flow (in progress)

> showClass("BayMethList")

Class "BayMethList" [package "Repitools'"]

Slots:

Name: windows control sampleInterest cpgDens
Class: GRanges matrix matrix numeric
Name: £ priorTab methEst

Class: matrix list list

> bm <- BayMethList(windows=windows, control=co, samplelnterest=sI, cpgDens=cpgdens)

\4

## Estimate the normalising offset f based on an MA-plot.
bm <- determineOffset(bm, controlPlot=list (show=FALSE,
nsamp=50000, mfrow=c(1,1), ask=FALSE))

+ Vv

\4

## Derive prior parameters using EB for "ngroups" CpG density classes.

\4

## Use a mixture with "ncomp" components for the methylation level.
> bm <- empBayes(bm, ngroups=100, ncomp=1, ncpu=NULL)

> ## Get mean and variance estimates and potentially credible intervals.
> bm <- methylEst(bm, ncomp=1, controlCI=list(compute=FALSE, method="quantile",
level=0.95, ncpu=NULL, ...))

Mean and variance derivation in a genome-wide analysis ~ 3 min.
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Applications: Lung fibroblast cell line (IMR-90)

@ True “true methylation estimates” of WGBS are available.
Lister et al., 2009, Nature
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Performance assessment

@ Scatter plots
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@ Best performance in terms of:
e correlation,
e bias,
@ coverage probabilities.
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Prostate cancer cell line (genomewide)

Let cn; be the regional copy number state and ccn the most
prominent state:

Yi.slpi, \i ~ Poisson(fx cn; /ccn x p; x Ap);
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Summary and Discussion

@ Presentation of a novel Bayesian approach for
affinity-capture-based DNA methylation analysis, which

e leads to analytical expressions for the mean and variance.
e provides credible intervals.

e allows us to explicitly model copy number variation.

e is user-friendly and computationally efficient.

@ Broad utility of the method due to need of Sssl control?

e Better outcome compensates for a bit more work/money.
e Making Sssl control data available that others can utilise.
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Thank you for your attention!
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