
Data Sheet: Epigenetics

Highlights 

•	 Flexible Multiplex: 
Custom assays to target 48–384 regions in a single reaction

•	 Specific:
Single-site resolution

•	 High Sample Throughput: 
Solution-phase kinetics and streamlined assay protocol 
support processing hundreds of samples per day

•	 Proven Accuracy: 
Well-established GoldenGate Assay for Methylation is 
rigorously tested on the VeraCode platform

•	 Convenient Workflow: 
Beads provided in pre-kitted 96-well plates

Introduction
DNA methylation is an epigenetic modification that has significant and 
widespread affects on gene expression. Many studies have shown the 
importance of regulated patterns of methylation for normal develop-
ment and function1. Likewise, dysregulation of methylation has been 
shown to have consequences leading to diseases such as cancer, 
MS, diabetes, and schizophrenia2,3. 

DNA methylation biomarker analysis has been hampered by the lack 
of an economical, mid-multiplex, high-thoughput method for profiling 
methylation status. Illumina’s GoldenGate Assay for Methylation pro-
vides sensitive detection of methylation status at single-site resolution, 
and supports high multiplexing levels. With this assay deployed on 
VeraCode technology, researchers have an optimal combination of as-
say accuracy and high sample throughput. A focused set of up to 384 
CpG loci can be profiled simultaneously, and hundreds of samples can 
be read per day with the BeadXpress® Reader (Figure 1). 

VeraCode Beads and the BeadXpress Reader 
The VeraCode platform leverages cutting-edge holographic bead 
technology to enable flexible multiplex assay deployment, analyzed at 
high throughput rates by the BeadXpress Reader. VeraCode micro-
beads are glass cylinders and each bead type is uniquely identified 
by an inscribed holographic code. Beads can be functionalized with 
bioassays for a variety of analyte types. VeraCode beads with immo-
bilized universal capture oligonucleotides are an ideal high-throughput 
readout platform for the GoldenGate Assay for Methylation. Bisulfite 
conversion and GoldenGate Assay chemistry proceed the same way 
that they have for years on the BeadArrayTM platform, but VeraCode 

High-Throughput DNA Methylation Profiling  
with VeraCode® Technology
Custom multiplexed DNA methylation profiling is enabled by deploying the proven  
GoldenGate® Assay for Methylation on high-throughput VeraCode technology.

  Figure 1: DNA Methylation Profiling on the  
  BeadXpress Reader
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DNA methylation is an epigenetic modification where a methyl group 
is covalently attached to cytosine C5 (top). The BeadXpress Reader 
(bottom) scans thousands of VeraCode beads per minute for their 
inscribed identifying codes and assay results. 
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Technologies for DNA methylation profiling

1 Treatment of DNA with sodium bisulphite:

C → T

CM → C.

www.diagenode.com/en/applications/
bisulfite-conversion.php

2 High-throughput sequencing.

Advantage: Single base resolution.

Disadvantage: Whole genome-wide bisulphite sequencing

(WGBS) is very expensive and inefficient.

Methylation arrays are an alternative, but provide less

coverage and are only available for human.
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Affinity-capture-based approaches

strike good balance between high cost of WGBS and the low

coverage of methylation arrays.

Genes 2010, 1                    
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Figure 3. Affinity-based methodologies. MeDIP: Methylated DNA immunoprecipitation; 
MIRA: Methylated CGI recovery assay; MBD: Methyl-binding domain. 

 
 
Magnetic or agarose (sepharose) beads are added and the methylated DNA is separated from the 

unmethylated DNA. Recently, Butcher and Beck published a modified version of this protocol 
amenable to high-throughput methylome analysis termed AutoMeDIP-seq [50]. In MIRA, a  
His-tagged MBD2b/MBD3L1 complex is incubated with DNA fragmented either by shearing or by 
digestion with MseI. The methylated protein-DNA complexes are captured using magnetic beads and 
the DNA is eluted while the protein complexes are degraded. A modification of this technique was 
recently used to characterize the methylome of three cancer cell lines and termed methyl binding 
domain (MBD) isolated genome sequencing [51]. Bioinformatic analysis of data generated after 
affinity enrichment is complicated by the need to take into consideration the density of CpG 
dinucleotides in a given region and by the inherent enrichment of repeat regions which can be difficult 
or even impossible to align to the genome. Overall, affinity methods provide a genome-wide 
assessment of the methylation present but do not give information on specific CpG dinucleotides and 
are biased toward CG rich regions of the genome.  

4. Progress Toward Characterizing the Methylome of Lymphoma and Leukemia  

4.1. Genome-wide microarrays 

Genome-wide methylation studies in lymphomas have progressed rapidly in light of the 
development of genome-wide technologies. Some of the earlier microarray platforms allowed for the 
investigation of DNA methylation present within select CpG islands [52,53]. The coverage of these 
arrays was limited but facilitated the discovery of putative tumor suppressor genes that are methylated 
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MBDCap

The number of reads mapping to

100bp bins, say, is counted.

⇒ DISCRETE DATA

Read density not directly

interpretable.

Dependence on CpG density.

Methods for microarrays not

applicable.
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Statistical analysis: Available software packages

Software Reference Implementation

Batman Down et al. (Nat Biotech, 2008) Java

MEDIPS Chavez et al. (Genome Res, 2010) R / Bioconductor

BALM Lan et al. (PLoS ONE, 2011) C++

A new method is desired that

1 can distinguish inefficient capture from low methylation,

2 gives variance estimates,

3 accounts for copy-number-variations,

4 is computationally light,

5 is integrated into public domain and open source software

(e.g. Bioconductor) to be directly applicable to routine tasks.
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Idea: Borrow strength from control information

Use an artificially full methylated (SssI-treated) control sample

1 to learn where the immunoprecipitation assay works.

2 to interpret the read density.
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BayMeth: Model formulation Riebler et al., 2012, Tech Rep

We consider genomic regions i = 1, . . . ,n and define

yi,C: Number of reads for the fully methylated (SssI) control.

yi,S: Number of reads for the sample of interest.

yi,C|λi ∼ Poisson(λi); yi,S|λi , µi ∼ Poisson(f × λi × µi)

with

λi : region-specific read density

µi : the regional methylation level (Main parameter of interest)

f: known relative offset.
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Model formulation (II): Prior distributions

In a Bayesian framework, prior distributions are assigned to all

parameters.
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For µi : a (mixture of) beta distributions:

µi ∼
M∑

m=1

wm Beta(am,bm),

with 0 ≤ wm ≤ 1, and
∑M

m=1 wm = 1.

(In the simplest case a uniform prior: M = 1, am = bm = 1).

For λi : a gamma distribution with shape α, rate β.
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Closed-form posterior marginal distribution

Notably, the marginal posterior distribution of the methylation level:

p(µi |yi,S, yi,C) =

∫ ∞

0

Posterior distribution︷ ︸︸ ︷
p(λi , µi |yi,S, yi,C)dλi

cond.indep
=

∫ ∞

0

p(λi)p(µi)p(yi,C|λi)p(yi,S|λi , µi)

p(yi,S, yi,C)
dλi .

is available in closed form.

Summary estimates:

Posterior mean and variance are analytically available and

efficient to compute.

Credible intervals can be computed numerically.
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Find prior parameters using empirical Bayes (EB)

1 Specify prior format for µi (i.e. number of beta components).
2 Divide regions into groups based on:

CpG density.

Sequence context (promoter, gene body, rest).

3 Determine parameters using EB for each group (in parallel).

Observations:

context-specific

information lead to

biased results.

uniform prior (Beta(1,1))

on µi outperforms

weighted beta mixtures. 0 20 40 60 80
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Software: Integration into Repitools-package

Implementation in R.

S4 class system.

Computationally demanding tasks are done in C.

Parallelisation over bins using the R-package snowfall.

Integration into the Bioconductor R-package Repitools is in

progress, so that it is soon available for routine tasks.
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Data flow (in progress)

> showClass("BayMethList")

Class "BayMethList" [package "Repitools"]

Slots:

Name: windows control sampleInterest cpgDens

Class: GRanges matrix matrix numeric

Name: f priorTab methEst

Class: matrix list list

> bm <- BayMethList(windows=windows, control=co, sampleInterest=sI, cpgDens=cpgdens)

> ## Estimate the normalising offset f based on an MA-plot.

> bm <- determineOffset(bm, controlPlot=list(show=FALSE,

+ nsamp=50000, mfrow=c(1,1), ask=FALSE))

> ## Derive prior parameters using EB for "ngroups" CpG density classes.

> ## Use a mixture with "ncomp" components for the methylation level.

> bm <- empBayes(bm, ngroups=100, ncomp=1, ncpu=NULL)

> ## Get mean and variance estimates and potentially credible intervals.

> bm <- methylEst(bm, ncomp=1, controlCI=list(compute=FALSE, method="quantile",

+ level=0.95, ncpu=NULL, ...))

Mean and variance derivation in a genome-wide analysis ≈ 3 min.
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Applications: Lung fibroblast cell line (IMR-90)

True “true methylation estimates” of WGBS are available.
Lister et al., 2009, Nature
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Performance assessment

Scatter plots
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Best performance in terms of:

correlation,

bias,

coverage probabilities.
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Prostate cancer cell line (genomewide)

Let cni be the regional copy number state and ccn the most

prominent state:

yi,S|µi , λi ∼ Poisson(f× cni / ccn× µi × λi);
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Summary and Discussion

Presentation of a novel Bayesian approach for

affinity-capture-based DNA methylation analysis, which

leads to analytical expressions for the mean and variance.

provides credible intervals.

allows us to explicitly model copy number variation.

is user-friendly and computationally efficient.

Broad utility of the method due to need of SssI control?

Better outcome compensates for a bit more work/money.

Making SssI control data available that others can utilise.
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