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RNA-Seq



Two applications of RNA-Seq

• Discovery
• find new transcripts
• find transcript boundaries
• find splice junctions

• Comparison
Given samples from different experimental conditions, find effects 
of the treatment on
• gene expression strengths
• isoform abundance ratios, splice patterns, transcript 

boundaries



Alignment

Should one align against the genome or the 
transcriptome?

against transcriptome
• easier, because no gapped alignment necesssary

but:
• risk to miss possible alignments!



Count data in HTS

• RNA-Seq
• Tag-Seq

Gene       GliNS1  G144    G166    G179    CB541   CB660
13CDNA73   4       0       6       1       0       5
A2BP1      19      18      20      7       1       8
A2M        2724    2209    13      49      193     548
A4GALT     0       0       48      0       0       0
AAAS       57      29      224     49      202     92
AACS       1904    1294    5073    5365    3737    3511
AADACL1    3       13      239     683     158     40
[...]

• ChIP-Seq
• Bar-Seq
• ...



Counting rules

• Count reads, not base-pairs
• Count each read at most once.
• Discard a read if

• it cannot be uniquely mapped
• its alignment overlaps with several genes
• the alignment quality score is bad
• (for paired-end reads) the mates do not map to the same gene



Normalisation for library size

• If sample A has been sampled deeper than sample 
B, we expect counts to be higher.

• Simply using the total number of reads per sample 
is not a good idea; genes that are strongly and 
differentially expressed may distort the ratio of total 
reads.

• By dividing, for each gene, the count from sample A 
by the count for sample B, we get one estimate per 
gene for the size ratio or sample A to sample B.

• We use the median of all these ratios.



Normalisation for library size



Normalisation for library size



Effect size and significance



Sample-to-sample variation

comparison of 
two replicates

comparison of 
treatment vs control



The Poisson distribution

This bad contains very many 
small balls, 10% of which are red.

Several experimenters are tasked 
with determining the percentage 
of red balls.

Each of them is permitted to 
draw 20 balls out of the bag, 
without looking.



• The Poisson distribution turns up whenever things 
are counted

• Example: A short, light rain shower with r drops/m2. 
What is the probability to find k drops on a paving 
stone of size 1 m2?



3 / 20  = 15%

1 / 20  =   5%

2 / 20  = 10%

0 / 20  =  0%



7 / 100  =   7%

10 / 100  = 10%

8 / 100  =   8%

11 / 100 = 11%



Poisson distribution

• If p is the proportion of red balls in the bag, and we draw n balls, 
we expect µ=pn balls to be red.

• The actual number k of red balls follows a Poisson distribution, 
and hence k varies around its expectation value  µ with standard 
deviation  .µ

• Our estimate of the proportion p=k/n hence has the expected 
value µ/n=p and the standard error 
Δp = µ/ n = p /  . µ The relative error is Δp/p = 1 /  .µ

balls drawn         expected number         relative error of
                             of red balls                     estimate

      20                    2                        1/


^



Poisson distribution: Counting uncertainty

expected number      standard deviation        relative error in estimate
     of red balls        of number of red balls       for fraction of red balls

              10                    10 =     3.2                     1/10 = 31.6%

            100                  100 =   10.0                   1/100 = 10.0%

         1,000               1,000 =   31.6                1/1,000 =   3.2%

       10,000             10,000 = 100.0              1/10,000 =   1.0%

 



For Poisson-distributed data, the variance is equal 
to the mean. 

Hence, no need to estimate the variance 
according to several authors: Marioni et al. (2008), Wang et al. (2010), 
Bloom et al. (2009), Kasowski et al. (2010), Bullard et al. (2010)

   Really?
Is HTS count data Poisson-distributed?

To sort this out, we have to distinguish two sources 
of noise.



Shot noise

• Consider this situation:
• Several flow cell lanes are filled with aliquots of the same 

prepared library. 
• The concentration of a certain transcript species is exactly the 

same in each lane. 
• We get the same total number of reads from each lane.

• For each lane, count how often you see a read from 
the transcript. Will the count all be the same?



Shot noise

• Consider this situation:
• Several flow cell lanes are filled with aliquots of the same 

prepared library. 
• The concentration of a certain transcript species is exactly the 

same in each lane. 
• We get the same total number of reads from each lane.

• For each lane, count how often you see a read from 
the transcript. Will the count all be the same?

• Of course not. Even for equal concentration, the 
counts will vary. This theoretically unavoidable 
noise is called shot noise.



Shot noise

• Shot noise: The variance in counts that persists 
even if everything is exactly equal. (Same as the 
evenly falling rain on the paving stones.)

• Stochastics tells us that shot noise follows a Poisson 
distribution.

• The standard deviation of shot noise can be 
calculated: it is equal to the square root of the 
average count.



Sample noise

Now consider
• Several lanes contain samples from biological 

replicates.
• The concentration of a given transcript varies 

around a mean value with a certain standard 
deviation.

• This standard deviation cannot be calculated, it has 
to be estimated from the data.



Differential expression: Two questions

Assume you use RNA-Seq to determin the concentration of 
transcripts from some gene in different samples. What is your 
question?

1. “Is the concentration in one sample different from 
the expression in another sample?”

or

2. “Can the difference in concentration between 
treated samples and control samples be attributed to 
the treatment?”



“Can the difference in concentration between treated samples 
and control samples be attributed to the treatment?”

Look at the differences between replicates? They show how 
much variation occurs without difference in treatment.

Could it be that the treatment has no effect and the difference 
between treatment and control is just a fluctuation of the same 
kind as between replicates?

To answer this, we need to assess the strength of this sample 
noise.



Summary: Noise

We distinguish:
• Shot noise

• unavoidable, appears even with perfect replication

• dominant noise for weakly expressed genes

• Technical noise 
• from sample preparation and sequencing
• negligible (if all goes well)

• Biological noise
• unaccounted-for differenced between samples
• Dominant noise for strongly expressed genes

can be
com

p uted
needs  to be  estim

ated
from

 t he da ta



Replicates

Two replicates permit to
• globally estimate variation

Sufficiently many replicates permit to
• estimate variation for each gene
• randomize out unknown covariates
• spot outliers
• improve precision of expression and fold-change 

estimates



Replication at what level?

Replicates should differ in all aspects in which control 
and treatment samples differ, except for the actual 
treatment.



Estimating noise from the data

• If we have many replicates, we can estimate the 
variance for each gene.

• With only few replicates, we need an additional 
assumption. We use: “Genes with similar 
expression strength have similar variance.”



Variance calculated from comparing two replicates

    Poisson v = μ 
    Poisson + constant CV v = μ + α μ2

    Poisson + local regression v = μ + f(μ2) 

Variance depends strongly on the mean



Technical and biological replicates

Nagalakshmi et al. (2008) have found that
• counts for the same gene from different technical 

replicates have a variance equal to the mean 
(Poisson).

• counts for the same gene from different biological 
replicates have a variance exceeding the mean 
(overdispersion).

Marioni et al. (2008) have looked confirmed the first 
fact (and confused everybody by ignoring the second 
fact).



Technical and biological replicates

RNA-Seq of yeast [Nagalakshmi et al, 2008]

biological replicates
technical replicates
Poisson noise



The negative-binomial distribution

A commonly used generalization of the Poisson distribution 
with two parameters



The NB distribution from a hierarchical model

Biological sample 
with mean  and µ
variance v

Poisson distribution 
with mean q and 
variance q.

Negative binomial 
with mean µ and
variance q+v.



Testing: Null hypothesis

Model:
The count for a given gene in sample j come from 
negative binomial distributions with the mean sj μρ 
and variance  sj μρ + sj

2
 v(μρ).

Null hypothesis:
The experimental condition r has no influence on 
the expression of the gene under consideration:

μρ1
 = μρ2

sj relative size of library j
μρ mean value for condition ρ
v(μρ) fitted variance for mean μρ



Model fitting

• Estimate the variance from replicates
• Fit a line to get the variance-mean dependence v(μ)

(local regression for a gamma-family generalized linear model, extra math 
needed to handle differing library sizes)



Testing for differential expression

• For each of two conditions, add the count from all 
replicates, and consider these sums KiA and KiB as 
NB-distributed with moments as estimated and 
fitted.

• Then, we calculate the probability of observing the 
actual sums or more extreme ones, conditioned on 
the sum being kiA+kiA, to get a p value.

(similar to the test used in Robinson and Smyth's edgeR)



Differential expression

RNA-Seq data: overexpression of two different 
genes in flies  [data: Furlong group]



Type-I error control

comparison of 
two replicates

comparison of 
treatment vs control



Two noise ranges

dominating noise How to improve power?
shot noise (Poisson) deeper sampling
biological noise more biological replicates



Further use cases

Similar count data appears in
• comparative ChiP-Seq
• barcode sequencing
• ...
and can be analysed with DESeq as well.



Conclusions I

• Proper estimation of variance between biological 
replicates is vital. Using Poisson variance is 
incorrect.

• Estimating variance-mean dependence with local 
regression works well for this purpose.

• The negative-binomial model allows for a powerful 
test for differential expression

• S. Anders, W. Huber: “Differential expression analysis for 
sequence count data”, Genome Biol 11 (2010) R106

• Software (DESeq) available from Bioconductor 
and EMBL web site.



Alternative splicing

• So far, we counted reads in genes.
• To study alternative splicing, reads have to be 

assigned to transcripts.
• This introduces ambiguity, which adds uncertainty.
• Current tools (e.g., cufflinks) allow to quantify this 

uncertainty.
• However: To assess the significance of differences 

to isoform ratios between conditions, the 
assignment uncertainty has to be combined with 
the noise estimates.

• This is not yet possible with existing tools.



Regulation of isoform abundance ratios

• In higher eukaryotes, most genes have several 
isoforms.

• RNA-Seq is better suited than microarrays to see 
which isoforms are present in a sample.

• This opens the possibility to study regulation of 
isoform abundance ratios, e.g.: Is a given exon 
spliced out more often in one tissue type than in 
another one? 

➢ We will soon release DEXSeq, a tool to test for 
differential isoform expression in RNA-Seq data.



Data set used for to demonstrate DEXSeq:

Drosophila melanogaster S2 cell cultures:
• control (no treatment):

4 biological replicates (2x single end, 2x paired end)

• treatment: knock-down of pasilla (a splicing factor)
3 biological replicates (1x single end, 2x paired end)



Alternative isoform regulation

Data: Brooks et al., Genome Res., 2010



Exon counting bins



Count table for a gene

number of reads mapped to each exon (or part of exon) in gene msn:

    treated_1 treated_2  control_1  control_2

E01       398       556        561        456

E02       112       180        153        137

E03       238       306        298        226

E04       162       171        183        146

E05       192       272        234        199

E06       314       464        419        331

E07       373       525        481        404

E08       323       427        475        373

E09       194       213        273        176

E10        90        90        530        398    <­­­ !

E11       172       207        283        227

E12       290       397        606        368    <­­­ ?

E13        33        48         33         33

E14         0        33          2         37

E15       248       314        468        287

E16       554       841       1024        680

[...]





Model

The expected count rate for exon l of gene I in sample 
j can be modelled as product of
• the baseline (control) expression strength of gene i
• the fraction of the reads from gene i that overlap 

with exon l under control condition
• the effect of the treatment of sample j on the 

expression strength of gene I
• the effect of the treatment of sample j on the 

fraction of the reads from gene i that overlap with 
exon l

• the sequencing depth (normalization factor) of 
sample j



Model

counts in gene i, 
sample j, exon l

dispersionsize factor

expression strength 
in control

fraction of reads 
falling onto exon l 
in control

change to fraction of 
reads for exon l due 
to treatment

change in expression 
due to treatment



Model, refined

counts in gene i, 
sample j, exon l

dispersionsize factor

expression strength 
in sample j

fraction of reads 
falling onto exon l 
in control

change to fraction of 
reads for exon l due 
to treatment

further refinement: fit an extra factor for library type (paired-end vs single)



Dispersion estimation

• Standard maximum-likelihood estimates for 
dispersion parameters have very strong bias in case 
of small sample size.

• A method-of-moments estimator (as used in DESeq) 
cannot be used due to crossed factors.

• We take over the solution from the new edgeR 
version: Cox-Reid conditional-maximum-likelihood 
estimation

[edgeR: Robinson, McCarthy, Smyth (2010)]



Dispersion estimation

Small sample size, so some data sharing is necessary 
to get power.

• one value fits all?
• one value for each gene?
• one value for each exon?



Dispersion vs mean



RpS14a (FBgn0004403)



DEXSeq

• combination of Python scripts and an R package
• Python script to get counting bins from a GTF file
• Python script to get count table from SAM files
• R functions to set up model frames and perform 

GLM fits and ANODEV
• R functions to visualize results and compile an 

HTML report

• nearly ready for release



Conclusion II

• Counting within exons and NB-GLMs allows to 
study isoform regulation.

• Proper statistical testing allows to see whether 
changes in isoform abundances are just random 
variation or may be attributed to changes in tissue 
type or experimental condition.

• Testing on the level of individual exons gives power 
and might be helpful to study the mechanisms of 
alternative isoform regulation.

• DEXSeq is nearly ready for release.
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Advertisement

HTSeq

A Python package to process
and analyse HTS data



HTSeq: Features

• A framework to process and analyse high-
throughput sequencing data with Python

• Simple but powerful interface
• Functionality to read, statistically analyse, transform 

sequences, reads, alignment
• Convenient handling of position-specific data such 

as coverage vectors, or gene and exon positions

• Well documented, with examples for common use 
cases.

• In-house support



HTSeq: Typical use cases

• Analyse base composition and quality scores for 
quality assessment of a read

• Trim of adapters in snRNA-Seq
• Calculate coverage vectors for ChIP-Seq
• Assign reads to genes to get count data from RNA-

Seq (incl. handling of spliced reads, overlapping 
genes, ambiguous maps, etc.)

• Split reads according to multiplex tags
• etc.



Quality assessment with HTSeq



HTSeq: Availability

• HTSeq is available from
http://www-huber.embl.de/users/anders/HTSeq

• Testers wanted


