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1 Pitfalls

These brief exercises are meant to illustrate some common obstacles to efficient
R programming. The idea is that you’ll follow along with the text, evaluating
the instructions in your own R session.

The basic scenario is a genome-wide association study. There are 1000 in-
dividuals. Case versus control status, gender, and age were recorded for each,
along with genotype at ≈100000 SNPs. The data is entirely synthetic.

1.1 Getting going

To begin:

1. Start an R session, and use sessionInfo() to confirm that you have version
2.12.1.

2. Install the AdvancedR2011Data package from the thumb drive distributed
at the start of the class.

3. Install the course package with

source("http://bioconductor.org/course-packages/courseInstall.R")

courseInstall("AdvancedR2011")

4. Ensure that the installation has been successful by loading the AdvancedR2011
package

> library(AdvancedR2011)

5. Read several pre-defined functions in to the R session

> fl <- system.file("script", "efficient.R",

+ package="AdvancedR2011")

> source(fl)
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1.2 Basic performance measurement and data I/O

The first activities are meant to illustrate the use of system.time to evaluate
performance, object.size to investigate how much memory an object uses, and
identical and all.equal to compare objects. We also look at how to more
effectively read data in to R.

First, let’s take a look at fname0, a file path to the GWAS data, and the
function f0. Both fname and f0 are defined in the efficient.R file. Here are
the definitions, and the result assigned to the variable gwas0; we read in just 3
rows of data, to keep the exercise managable. Let’s use system.time to evaluate
how long this takes

> fname0

[1] "/Library/Frameworks/R.framework/Versions/2.12/Resources/library/AdvancedR2011Data/extdata/snpData.csv"

> f0

function (fileName, nrows = 5, ...)

{

read.csv(fileName, nrows = nrows, row.names = NULL, header = FALSE,

...)

}

> system.time(gwas0 <- f0(fname0, nrows=3))

user system elapsed

26.584 0.074 26.772

> dim(gwas0)

[1] 3 113735

Note the way in which the <- assignment to variable gwas0 occurs in system.time.
See the help page ?system.time to understand the output; we’re usually inter-
ested in the user.time.

The function f0 does its job, but perhaps we can improve on it. For instance,
suppose we were interested in a preliminary investigation, and in particular
reading just the first 100 SNPs. The following shows two different functions
that allow us to read in just the information we’re interested in

> f1

function (fileName, nrows = 5, ncols = .ncols, keep = 1:100,

...)

{

colClasses <- rep("NULL", ncols)

colClasses[keep] <- "integer"

f0(fileName, nrows = nrows, colClasses = colClasses, ...)

}
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> f2

function (fileName, nrows = 5, ncols = .ncols, keep = 1:100,

...)

{

what <- rep(list(NULL), ncols)

what[keep] <- list(integer())

input <- scan(fileName, what = what, sep = ",", nmax = nrows,

..., quiet = TRUE)

df <- as.data.frame(Filter(is.integer, input))

names(df) <- paste("V", keep, sep = "")

df

}

Compare these functions with each other and f0, and with the relevant help
pages ?read.csv, scan to identify the key steps for efficient data input. Now lets
see how they perform in terms of evaluation time:

> system.time(gwas1 <- f1(fname0, nrows=3))

user system elapsed

23.932 0.052 24.110

> system.time(gwas2 <- f2(fname0, nrows=3))

user system elapsed

0.261 0.003 0.264

Since we’ve read in the just the data we’re interested in, we should have saved
quite a bit of space

> object.size(gwas0)

9099128 bytes

> object.size(gwas1)

8320 bytes

The functions f1 and f2 are meant to return the same result, just implemented
in slightly different ways. We can verify this with identical

> identical(gwas1, gwas2)

[1] TRUE
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1.3 Character manipulation

Here we’ll look at one aspect of R that can sometimes have a surprising perfor-
mance penalty and sometimes tricky semantics: character manipulation. We’ll
learn some additional techniques for monitoring performance, as well as gain an
appreciation for the benefits of appropriate function choice.

Let’s look at the the genotypic data only, by dropping the first three columns
from the data frame; we’ll take a peak at the first six rows (head) of the first
five columns of the genotype information.

> gtype <- f2(fname0, keep=1:10000, nrows=-1)

> head(gtype[,1:5])

V1 V2 V3 V4 V5

1 3 1 1 1 1

2 2 1 1 1 1

3 3 1 1 1 1

4 3 1 1 1 1

5 2 1 1 1 1

6 2 1 1 1 1

Note that the columns have names (e.g., id_V1).
A function shuffle0 might come in handy if one were wanting to randomize

genotypes, and to return the randomized genotypes as a matrix.

> shuffle0

function (genotypes, seed = 123L)

{

set.seed(seed)

samp <- sample(genotypes)

g <- unlist(samp)

matrix(g, ncol = ncol(genotypes))

}

We use seed to make the results reproducible across invocations. sample(genotypes)

permutes the columns of the gtype data frame. The unlist and matrix com-
mands are meant as a first attempt at creating a matrix from our permuted
data frame – we ‘collapse’ the sampled genotypes into a vector, and then shape
the vector into a matrix. Let’s measure how long this takes:

> system.time(s0 <- shuffle0(gtype))

user system elapsed

35.152 0.531 38.547

Wow, that seems like a fairly long time for a relatively simple set of operations.
I wonder what’s going on?
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> profFile <- tempfile()

> Rprof(profFile) # start gathering profile information

> s0 <- shuffle0(gtype)

> Rprof(NULL) # stop

> head(summaryRprof(profFile)$by.self)

self.time self.pct

"unlist" 13.18 94.96

"structure" 0.40 2.88

"matrix" 0.14 1.01

"as.vector" 0.12 0.86

"attributes<-" 0.04 0.29

total.time total.pct

"unlist" 13.18 94.96

"structure" 0.44 3.17

"matrix" 0.26 1.87

"as.vector" 0.12 0.86

"attributes<-" 0.04 0.29

A large fraction of the time is spent on the unlist function. A little experimen-
tation suggests what the problem might be:

> gsubset <- gtype[1:2, 1:3]

> unlist(gsubset)

V11 V12 V21 V22 V31 V32

3 2 1 1 1 1

Notice that the value of unlist is a vector with names, and that the names have
been constructed to be unique. We can reference the help page ?unlist, and
arrive at a better solution shuffle1 that avoids creating names.

> shuffle1

function (genotypes, seed = 123L)

{

set.seed(seed)

samp <- sample(genotypes)

g <- unlist(samp, use.names = FALSE)

matrix(g, ncol = ncol(genotypes))

}

This almost trivial change has a big influence on performance, without changing
the result:

> system.time(s1 <- shuffle1(gtype))

user system elapsed

0.156 0.116 0.272
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> identical(s0, s1)

[1] TRUE

Finally, in R its common to be able to ‘cast’ from one data structure to another.
shuffle2 does this

> shuffle2

function (genotypes, seed = 123L)

{

set.seed(seed)

as.matrix(sample(genotypes))

}

> system.time(s2 <- shuffle2(gtype))

user system elapsed

0.444 0.087 0.530

Note that the performance of as.matrix is comparable to our shuffle1. Are the
results the same?

> identical(s1, s2)

[1] FALSE

Oh oh! This doesn’t look good. But maybe it’s just that our results s1 do not
have dimnames, whereas s2 might?

> all.equal(s1, s2)

[1] "Attributes: < Length mismatch: comparison on first 1 components >"

> all.equal(s1, s2, check.attributes=FALSE)

[1] TRUE

(The result of the first call to all.equal is fairly cryptic; this is, unfortunately,
typical.) The built-in function as.matrix is performing as well as our version,
and is doing a better job of tracking important information (row and column
names) through the analysis.

2 Data I/O: Streaming

It can be difficult to fit large data into memory, and it is increasingly necessary
to think of ‘streaming’ algorithms that process a small ‘chunk’ of data at a
time. The following defines a function .fapply that (tries to!) stream data from
a file through a function, much like lapply streams elements of a list through a
function.
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> .fapply

function (con, FUN, ..., .get, .reduce)

{

result <- list()

it <- 1

while (nrow(chunk <- .get(con))) {

message("chunk ", it)

result[[it]] <- FUN(chunk, ...)

it <- it + 1

}

.reduce(result)

}

The function takes an open file connecton, a function to be applied to each
chunk, and parameters influencing how the chunks are input and processed.
Let’s give it a whirl, by reading the GWAS file in chunks of 100 rows at a time.
For each chunk, we’ll calculate the number of individuals in the chunk, and the
heterozygotes for each SNP. Here’s our function

> heterozygosity <- function(chunk, ...)

+ list(N=nrow(chunk), Het=colSums(chunk == 2))

The .get argument to .fapply is meant to retrieve a chunk of data, and takes
as its single argument an open R connection. Here’s our get:

> get <- function(con)

+ f2(con, nrows=100, ncols=.ncols, keep=1:100)

A common operation, both in stream processing and in distribution of tasks for
parallel evaluation, is to ‘reduce’ the results from different chunks / tasks into
a single meaningful object. The .reduce argument to .fapply is meant to be
a function that performs the reduction. It expects a list, with each element of
the list the result of the function operating on a chunk, e.g., each element being
the result of heterozygosity. The result should be a vector of heterozygosities
that we can manipulate or visualize in the usual way. Here’s our simple reduce
function:

> reduce <- function(lst)

+ {

+ n <- sum(sapply(lst, "[[", "N"))

+ het <- Reduce("+", lapply(lst, "[[", "Het"))

+ browser()

+ het / n

+ }

Let’s give this a go. . .

> con <- file(fname0, open="r")

> res <- .fapply(con, heterozygosity, .get=get, .reduce=reduce)
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Figure 1: Individual heterozygosity, ‘stream’ processing

Called from: .reduce(result)

> close(con)

> length(res)

[1] 100

> library(lattice)

> print(densityplot(res, plot.points=FALSE, xlab="Heterozygosity",

+ main="Stream"))

As exercises:

1. Explore different functions that might usefully be used in a streaming
context. For instance, suppose the goal is to calculate heterozygosities for
each individual, rather than each SNP. What might the FUN and .reduce

arguments to .fapply look like?

2. As an advanced exercise, consider how .fapply might be modified to work
in parallel, for instance using the multicore or Rmpi packages.

3. The .reduce argument takes the complete list of results, and reduces it.
This will not be a good strategy if the result of FUN is itself large. Revise
.fapply so that .reduce is a function that takes as its first argument the
current reduction, and as its second argument the current chunk with FUN

already applied.
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