
First Steps with R

Seth Falcon Martin Morgan

27 January, 2010

Contents

1 Install R 1

2 Atomic Vectors – R’s Basic Types 2

3 Subsetting Vectors 5
3.1 Integer subsetting . 5
3.2 Logical subsetting . 7
3.3 Subsetting by name . 8

4 Matrix, data.frame, and 2-D Subsetting 9

5 Lists 12
5.0.1 Extracting elements from a list 13
5.0.2 Subsetting lists . 14

6 Environments 16

7 Functions 17

8 Getting Help in R 18
8.1 HTML Help System . 19
8.2 Vignettes . 19

9 Exploring R objects 19

10 Session information 20

1 Install R

The first step is to select a nearby CRAN mirror site from the list at http:
//cran.r-project.org/mirrors.html. You should now have a web browser
open displaying the main page of your selected CRAN mirror.

Now follow the instructions below appropriate for your operating system:

1

http://cran.r-project.org/mirrors.html
http://cran.r-project.org/mirrors.html

Windows 1. Click the Windows link.

2. Click the base link for “Binaries for base distribution (managed by
Duncan Murdoch)” and then download the main link for Download
R 2.10.1 for Windows.

3. Double-click the file you downloaded (R-2.10.1-win32.exe) and follow
the installation prompts. You can accept all of the default values.

4. Start Rby double-clicking on the Ricon on your desktop or selecting
the entry from the Start, Program Files menu.

Mac OS X 1. Click the MacOS X link.

2. Download the first link with name R-2.10.1.pkg. This is a universal
binary for OS X 10.5 and higher. If you have an older version of
OS X, read the details on that page to determine which package to
download.

3. Double-click the downloaded pkg file and follow the installation prompts.
You can accept all of the default values.

4. Start Rby clicking the R.app icon in your Applications folder.

Linux • Your Linux distribution’s package manager may already have the
latest version of Ravailable (R-2.10.1). If not there may be a precom-
piled binary package available. Click the Linux link on CRAN and
follow the instructions based on your distribution.

• You can build from source instead of using a precompiled binary.
In this case, download the source package from the main page of
your CRAN mirror: R-2.10.1.tar.gz. Installation instructions can be
found here: http://cran.fhcrc.org/doc/manuals/R-admin.html

• If R is not in your PATH, add it. Then start Rwith the R command.

2 Atomic Vectors – R’s Basic Types

There are six basic data types in Rthat are always represented as vectors (see
Table 2). A vector is a one-dimensional array of items of the same type. In
R, these vectors are called atomic vectors because they cannot be split into
individual items; single items are represented as vectors of length one.

Since “everything’s a vector”1, most functions in R are vectorized. Vectorized
functions accept vectors as input and perform an action element-wise on the
input. Consider the following example:

> ## length, width, and height measurements

> L <- c(1.2, 4.3, 2.3, 3)

> W <- c(13.8, 22.4, 18.1, 17)

1Well, almost everything. R also has lists, environments, S3, and S4 classes none of which
are vectors

2

http://cran.fhcrc.org/doc/manuals/R-admin.html

type example
logical TRUE, FALSE
integer 0L, 1L
numeric 1, 3.14
complex 1+1i
character "a"
raw as.raw(255)

Table 1: The atomic vector data types in R. The “L” suffix indicates an integer
literal in Rcode; digits with no decimal point are interpreted as type numeric
(real).

> H <- c(7, 7, 10, 3.4)

> volume <- L * W * H

> volume

[1] 115.92 674.24 416.30 173.40

> total_length <- sum(L)

> total_length

[1] 10.8

The example above defines three numeric vectors representing length, width,
and height measurements of four objects. Vector literals are constructed using
the c function which should be given a comma separated list of items of the
same type to concatenate into a vector. The assignment operator in R is <-
although you can also use =. Comments begin with # and continue to the end
of the line. The volume of each object is computed by vectorized multiplication
using * which operates element-wise. The sum function accepts a vector and
returns a new vector of length one containing the sum of the elements of the
input.

Start up a new R session and try the following exercises:

Exercise 1
Create a vector representing the radii of three circles with lengths 5, 10, and
20. Use * and the built-in constant pi to compute the areas of the three circles.
Then subtract 2.1 from each radius and recompute the areas.

> circles <- c(5, 10, 20)

> # areas are:

> pi * circles * circles

[1] 78.53982 314.15927 1256.63706

> # you could also use ^

> pi * circles^2

3

[1] 78.53982 314.15927 1256.63706

> # reduce radii by 2.1

> pi * (circles - 2.1)^2

[1] 26.42079 196.06680 1006.59770

Exercise 2
Creating regular numeric sequences is a common task in statistical computing.
You can use the seq function to create sequences as well as a shorthand : (e.g.
1:10).

1. Read the help page for seq by entering help(seq).

2. Generate a decreasing sequence from 50 to 1, then another sequence from
1 to 50. See if you can understand the meaning of the [i] prefix that R
uses to print vectors.

3. Use seq to generate a sequence of the even integers between one and ten.

> ## sequences from 100 to 1 and 1 to 100

> 50:1 # or seq(100, 1)

[1] 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
[19] 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15
[37] 14 13 12 11 10 9 8 7 6 5 4 3 2 1

> 1:50 # or seq(1, 100)

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
[19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
[37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50

> ## the [i] prefix tells you the index of the first

> ## item on the current line within the vector

> ## being displayed.

>

> ## even integers

> seq(2, 10, 2)

[1] 2 4 6 8 10

Exercise 3
All R functions have a manual page that you can access via help(funcName),
or the shorthand ?funcName. Most manual pages include an example section
which you can execute in your session by calling example(funcName). Run the
examples for the paste function. Use paste to create a character vector of
length one that looks like "id-1, id-2, id-3".

4

> example(paste)

paste> paste(1:12) # same as as.character(1:12)
[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11"
[12] "12"

paste> paste("A", 1:6, sep = "")
[1] "A1" "A2" "A3" "A4" "A5" "A6"

paste> paste("Today is", date())
[1] "Today is Tue Jan 26 16:48:38 2010"

> paste("id", 1:3, sep="-", collapse=", ")

[1] "id-1, id-2, id-3"

3 Subsetting Vectors

Next we will take a tour of the ways that one can slice, extract, index, subset
and otherwise get data out of vectors in R. We will use the following vector v
as an example.

> ## You can name the elements of a vector

> ## The names do not have to be unique, but

> ## often you will want them to be.

> v <- c(a = 1.1, b = 2, b = 100, c = 50, d = 60)

> v

a b b c d
1.1 2.0 100.0 50.0 60.0

3.1 Integer subsetting

> v[1]

a
1.1

> v[length(v)]

d
60

> v[3:5]

5

b c d
100 50 60

> v[c(1, 1, 4, 4)]

a a c c
1.1 1.1 50.0 50.0

Exercise 4
Create an integer vector i that can be used to subset v such that it will output
the elements of v in decreasing order. For the general case, read the help pages
for order and sort.

> ## you need the L's if you want an _integer_ vector,

> ## otherwise you get a numeric (double) vector.

> v[c(3L, 5L, 4L, 2L, 1L)]

b d c b a
100.0 60.0 50.0 2.0 1.1

> v[order(v, decreasing = TRUE)]

b d c b a
100.0 60.0 50.0 2.0 1.1

Zero values are ignored in integer subsetting and negative values can be used
to exclude elements (positive and negative indices cannot be mixed).

> v[c(1, 0, 0, 0, 0, 3)]

a b
1.1 100.0

> v[-2]

a b c d
1.1 100.0 50.0 60.0

> v[seq(1, length(v), 2)]

a b d
1.1 100.0 60.0

> v[-seq(1, length(v), 2)] # note the '-' sign

b c
2 50

6

> ## two other special cases

> v[]

a b b c d
1.1 2.0 100.0 50.0 60.0

> v[integer(0)]

named numeric(0)

3.2 Logical subsetting

In a subset expression v[i] when i is a logical vector (TRUE/FALSE) with the
same length as v we refer to it as logical subsetting. Values of v that align with
a TRUE in i are selected.

> v[c(TRUE, FALSE, FALSE, FALSE, FALSE)]

a
1.1

> v > 5

a b b c d
FALSE FALSE TRUE TRUE TRUE

> v[v > 5]

b c d
100 50 60

> v[!(v > 5)] # or (v <= 5)

a b
1.1 2.0

> v[(v > 5) & (v < 90)] # element-wise AND

c d
50 60

> v[(v < 5) | (v > 90)] # element-wise OR

a b b
1.1 2.0 100.0

> v[v == 100]

b
100

7

Exercise 5
The names of a vector can be obtained using names. Create a logical vector
that has a TRUE for all names equal to “b”. Use this logical vector to extract all
elements of v with a name of “b”.

> v[names(v) == "b"]

b b
2 100

3.3 Subsetting by name

Finally, in the case of a named vector, you can use the names to select elements.
If the vector has non-unique names, the first element to match is returned.

> v["c"]

c
50

> v[c("d", "a")]

d a
60.0 1.1

> v["b"] # only get first match

b
2

Exercise 6
Use sample to randomly select three names of v and then use the result to
extract the corresponding elements of v.

> set.seed(5644L)

> i <- sample(names(v), 3)

> v[i]

c d b
50 60 2

8

4 Matrix, data.frame, and 2-D Subsetting

After vectors, two very common data structures in R are the matrix and the
data.frame. A matrix is a two-dimensional vector. Like vectors, all elements
share a common type. The data.frame class groups together a set of vectors
(columns) of the same length. A data.frame is analogous to a table in a relational
database, and is used to represent statistical data sets where each row represents
a sample and each column an attribute of the sample. The columns can be of
different types, but within a column all elements are the same type.

Subsetting a matrix or data.frame is similar to subsetting vectors, except
that two arguments are given to the [operator. All of the subsetting approaches
(integer, logical, character) that you’ve used with vectors can be used with
matrices and data.frames. Consider the following examples and then explore
the exercises that follow.

> m <- matrix(1:25, ncol = 5,

+ dimnames = list(letters[1:5], LETTERS[1:5]))

> m

A B C D E
a 1 6 11 16 21
b 2 7 12 17 22
c 3 8 13 18 23
d 4 9 14 19 24
e 5 10 15 20 25

> ## extract an element

> m[3, 1]

[1] 3

> ## subset the matrix

> m[1:3, 1:3]

A B C
a 1 6 11
b 2 7 12
c 3 8 13

> ## empty index argument means

> ## select all of the dimension

> m[, 2] # 2nd column all rows

a b c d e
6 7 8 9 10

> m[4,] # 4th row all columns

9

A B C D E
4 9 14 19 24

Exercise 7
Create a new matrix from m by removing the second row and the fourth column.
Hint: use negative indices.

> m[-2, -4]

A B C E
a 1 6 11 21
c 3 8 13 23
d 4 9 14 24
e 5 10 15 25

Exercise 8
Subset m such that you keep only rows where the value in the “D” column is
greater than 17.

> d_gt17 <- m[, "D"] > 17

> m[d_gt17,]

A B C D E
c 3 8 13 18 23
d 4 9 14 19 24
e 5 10 15 20 25

Exercise 9
Find the element-wise product of rows “b” and “d”.

> m["b",] * m["d",]

A B C D E
8 63 168 323 528

We’ll use the Indometh data set that comes with R to work some examples
with the data.frame class. If you want to know what this data represents, call
help(Indometh).

> ## load a dataset that comes with R

> data(Indometh)

> df <- Indometh # use a shorter name

> class(df)

10

[1] "nfnGroupedData" "nfGroupedData" "groupedData"
[4] "data.frame"

> dim(df)

[1] 66 3

> names(df)

[1] "Subject" "time" "conc"

> df[1:3,]

Subject time conc
1 1 0.25 1.50
2 1 0.50 0.94
3 1 0.75 0.78

> ## The following are all ways of

> ## extracting the time column

> ##

> ## df[, "time"]; df[, 2]

> ## df[["time"]]; df[[2]]

> ## df$time

> identical(df[, 2], df$time)

[1] TRUE

Exercise 10
1. Extract the rows of df that contain data for subject 2.

2. Extract the rows for time point 0.50.

3. Which subjects had a concentration greater than 0.38 at time point 2.0?

> ## Subject 2

> head(df[df$Subject == "2",])

Subject time conc
12 2 0.25 2.03
13 2 0.50 1.63
14 2 0.75 0.71
15 2 1.00 0.70
16 2 1.25 0.64
17 2 2.00 0.36

> ## time point 0.50

> head(df[df$time == 0.50,])

11

Subject time conc
2 1 0.5 0.94
13 2 0.5 1.63
24 3 0.5 1.49
35 4 0.5 1.39
46 5 0.5 1.04
57 6 0.5 1.44

> ## conc > 0.38 at time point 2.0

> df[df$time == 2.0 & df$conc > 0.38,]

Subject time conc
28 3 2 0.39
39 4 2 0.40
61 6 2 0.42

5 Lists

A limitation of R’s atomic vectors is that all items must be of the same type.
R provides two data types for organizing arbitrary collections of R objects: list
and environment . Both are recursive data structures meaning that a list can
contain other lists (as well as other types) and an environment can contain other
environments (and other types). Lists are discussed below. See Section 6 for an
introduction to environment .

In Section 4 you worked with a data.frame which at its core is a list of
vectors. In fact, except for the 2-dimensional subsetting, you will see many
similarities between list subsetting and accessing the columns of a data.frame2

> things <- list(a = 1:3, b = c("X", "Y"),

+ uspaper = list(length = 11, width = 8.5, units = "in"),

+ eupaper = list(length = 297, width = 210, units = "mm"),

+ TRUE)

> things

$a
[1] 1 2 3

$b
[1] "X" "Y"

$uspaper
$uspaper$length
[1] 11

2In many cases, the underlying code is the same: a data.frame is a list .

12

$uspaper$width
[1] 8.5

$uspaper$units
[1] "in"

$eupaper
$eupaper$length
[1] 297

$eupaper$width
[1] 210

$eupaper$units
[1] "mm"

[[5]]
[1] TRUE

> names(things)

[1] "a" "b" "uspaper" "eupaper" ""

> length(things)

[1] 5

List elements, like items in a vector, can be named, but this is not required.
In the example above, all elements of things are named except for the last
element, a logical vector of length one containing the value TRUE.

You can extract the element names of a list using names just as you can with
a vector (recall that for a data.frame, names returns the names of the columns).

5.0.1 Extracting elements from a list

You can extract elements of a list using double square brackets as shown below.

> ## by position using [[

> things[[4]]

$length
[1] 297

$width
[1] 210

13

$units
[1] "mm"

> ## by name using [[

> things[["b"]]

[1] "X" "Y"

> ## by name using $

> things$a

[1] 1 2 3

5.0.2 Subsetting lists

List subsetting is achieved using single square brackets which will always return
a new list.

> ## by index

> things[2]

$b
[1] "X" "Y"

> things[c(1, 5)]

$a
[1] 1 2 3

[[2]]
[1] TRUE

> ## negative indices remove just like vectors

> things[-c(3, 4)]

$a
[1] 1 2 3

$b
[1] "X" "Y"

[[3]]
[1] TRUE

> ## by name

> things[c("a", "b")]

14

$a
[1] 1 2 3

$b
[1] "X" "Y"

> ## logical works too

> hasLenTwo <- sapply(things, function(x) length(x) == 2)

> hasLenTwo

a b uspaper eupaper
FALSE TRUE FALSE FALSE FALSE

> things[hasLenTwo]

$b
[1] "X" "Y"

Exercise 11
Explain the difference between things[["uspaper"]] and things["uspaper"].

Using double square brackets extracts an element from the things list, in
this case a list with three elements. Single square brackets subsets the things
list and returns a list of length one, its first and only element is the list of length
three returned by the double bracket expression.

Exercise 12
Extract the “uspaper” and “eupaper” lists from things and assign each to a
variable. Subset each list to remove the element with name “units”. Convert
each resulting two-element list to a numeric vector using as.numeric. Convert
the uspaper values to millimeters by multiplying by 25.4. Finally, use prod to
compute the areas of the two paper sizes. Can you compute each area in a
one-liner without assigning temporary variables?

> usp <- things[["uspaper"]]

> usp <- as.numeric(usp[-3])

> usp <- 25.4 * as.numeric(usp)

> eup <- things[["eupaper"]]

> eup <- as.numeric(eup[-3])

> prod(usp)

[1] 60322.46

> prod(eup)

[1] 62370

15

> ## one line versions

> prod(25.4 * as.numeric(things[["uspaper"]][-3]))

[1] 60322.46

> prod(as.numeric(things[["eupaper"]][-3]))

[1] 62370

6 Environments

The environment type is a data structure that maps keys to values. In other
programming languages these structures may be called dictionaries, hash tables,
or associative arrays. The keys of R’s environments must be strings, but the
values can be arbitrary R objects. The items in an environment are not ordered
(unlike a named list).

Here is what basic environment assignment and extraction looks like:

> env <- new.env(parent = emptyenv())

> ## we haven't talked about assignment, but similar

> ## forms also work for lists (and with "[" for vectors).

> env[["a"]] <- 1:3

> env$b <- "hello"

> env[["b"]]

[1] "hello"

> env$a

[1] 1 2 3

> mget(c("b", "a", "b"), env)

$b
[1] "hello"

$a
[1] 1 2 3

$b
[1] "hello"

> ## list all keys

> ls(env)

[1] "a" "b"

16

The environment data type behaves differently than (almost) all other data
types in R. Other data types in R have pass-by-value semantics, which means
that when you pass an object to a function or assign it to a new variable name
you make a copy of the original object. environments have pass-by-reference
semantics, which means that no copy is made when you pass an environment
to a function or assign it to a new variable name. Here’s an example to explore:

> ## create an environment

> env1 <- new.env(parent = emptyenv())

> env1[["name"]] <- "alice"

> env1[["count"]] <- 100

> ## create a similar list

> lst1 <- list(name = "bob", count = 100)

> ## this just creates a new reference,

> ## NOT a copy

> env2 <- env1

> ## this effectively copies the list

> lst2 <- lst1

> ## now modify original environment and list

> env1[["count"]] <- 200

> lst1[["count"]] <- 200

> ## env2 points to same data as env1

> env2[["count"]]

[1] 200

> ## but lst2 is a copy and was not changed

> lst2[["count"]]

[1] 100

7 Functions

Defining your own functions is an essential part of creating efficient and repro-
ducible analyses as it allows you to organize a sequence of computations into a
unit that can be applied to any set of appropriate inputs.

Here’s a basic function definition:

> say <- function(name, greeting = "hello")

+ {

+ paste(greeting, name)

+ }

> ## these two calls use positional argument matching

> say("world")

[1] "hello world"

17

> say("world", "goodbye")

[1] "goodbye world"

> ## this call matches arguments by name, order

> ## doesn't matter for this case

> say(greeting = "g'day", name = "Seattle")

[1] "g'day Seattle"

The name of this function is say_hello. It has one formal argument : name.
The body of the function is between the curly braces. The return value of a
function in R is the value of the last evaluated expression in the body. Arguments
to a function can specify default values, as is the case with greeting above. The
default value is used if a value is not provided when the function is called.

When calling functions in R, you can provide arguments in the same order as
in the definition of the function, or you can name the arguments as shown in the
last call to say above. Naming arguments is a good practice because it makes
code more self-explanatory and robust (a change in the function’s argument
order won’t impact your call, for example).

Exercise 13
Write a function that separates the data in the Indometh data.frame by subject.
Your function should take a single argument and return a list of data.frames
such that each data.frame has the data for one of the subjects. The returned list
should have names Subject1, Subject2, . . . , Subject6 when given the Indometh

data.frame as input. Also, since the Subject column is now redundant, remove
it from the subject-specific data.frames returned by your function.

> splitBySubject <- function(df)

+ {

+ list(Subject1 = df[df$Subject == "1", -1],

+ Subject2 = df[df$Subject == "2", -1],

+ Subject3 = df[df$Subject == "3", -1],

+ Subject4 = df[df$Subject == "4", -1],

+ Subject5 = df[df$Subject == "5", -1],

+ Subject6 = df[df$Subject == "6", -1])

+ }

We will explore some ways of making this more elegant in class.

8 Getting Help in R

You’ve already learned how to get help on a particular function in R using
help(funcName). Here we’ll discuss some other aspects of R’s help system.

18

8.1 HTML Help System

In addition to “online” help accessed via help or ?, R provides an HTML-based
help system that you can access locally using your web browser. To start the
help system enter:

> help.start()

There is a link“Search Engine & Keywords”on the start page of help.start
that allows you to query the help system for a topic of interest. You can also
search for help using help.search and RSiteSearch, the latter will search R
mailing lists in addition to documentation. Finally, apropos is useful for finding
functions that are in the current search path.

Exercise 14
Find the function for performing a Mann-Whitney test.

Executing help.search("mann-whitney") should lead you to wilcox.test.

Exercise 15
Find all the functions on your search path that have a name consisting of a
single character.

See the example section of the manual page for apropos.

> apropos("^.$")

[1] "!" "$" "&" "(" "*" "+" "-" "/" ":" "<" "=" ">" "?" "@"
[15] "C" "D" "F" "H" "I" "L" "T" "W" "[" "^" "c" "i" "m" "q"
[29] "t" "v" "{" "|" "~"

8.2 Vignettes

Many R packages come with a vignette, a short document providing a detailed
example of how to make use of the package’s functionality. Vignettes contain
executable R code that allow you to step through the examples as you read the
document. You can use the browseVignettes function to explore the vignettes
available on your system.

9 Exploring R objects

Every object in R has an associated class which you can determine using the
class function. This is often a good way to begin exploring an unfamiliar
object. Other functions useful for exploring are length, dim, summary, and str.

19

Exercise 16
Execute the following call and then determine what type of object is stored in
pkgs.

> pkgs <- installed.packages()

> class(pkgs)

[1] "matrix"

Exercise 17
What do the length and dim functions return for pkgs? Can you reconcile the
answers given by these two functions?

> ## matrices in R are stored as a vector

> ## with a dim attribute. Data is stored

> ## in column-major order.

> dp <- dim(pkgs)

> length(pkgs)

[1] 896

> dp[1] * dp[2]

[1] 896

10 Session information

• R version 2.10.1 Patched (2009-12-14 r50736),
i386-apple-darwin10.2.0

• Locale: C/C/C/C/C/en_US.utf-8

• Base packages: base, datasets, grDevices, graphics, methods, stats, tools,
utils

• Other packages: ALL 1.4.7, AnnotationDbi 1.8.1, Biobase 2.6.1,
DBI 0.2-5, RSQLite 0.8-0, genefilter 1.28.2, hgu95av2.db 2.3.5,
lattice 0.17-26, org.Hs.eg.db 2.3.6

• Loaded via a namespace (and not attached): annotate 1.24.1, grid 2.10.1,
splines 2.10.1, survival 2.35-7, xtable 1.5-6

20

	Install R
	Atomic Vectors – R's Basic Types
	Subsetting Vectors
	Integer subsetting
	Logical subsetting
	Subsetting by name

	Matrix, data.frame, and 2-D Subsetting
	Lists
	Extracting elements from a list
	Subsetting lists

	Environments
	Functions
	Getting Help in R
	HTML Help System
	Vignettes

	Exploring R objects
	Session information

