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An international open source and open 
development software project for the analysis of  
genomic data

Use the statistical environment and language R as 
the integrating middleware 

Design principles: rapid development, code re-use

Six-monthly release cycle;  release 1.0 in March 
2003 (15 packages), …,  release 2.6 on 23.4.2010 
(389 packages) ‏



Goals
Provide access to powerful statistical and graphical 

methods for the analysis of  genomic data

Facilitate the integration of  biological metadata (e.g. 
EntrezGene, BioMarts, PubMed) in the analysis of  
experimental data

Promote the development of  accessible, extensible, 
transparent and well-documented software

Promote reproducible research

Provide training in computational and statistical 
methods



Best known for microarray data analysis, but has 
now also expanded into:

Graph data structures and visualisation

Next generation sequencing, genotyping, 
association studies

Efficient infrastructure for computing with 
character sequences, intervals

Cell-based assays, flow cytometry, automated 
microscopy



Good scientific software 
is like a good scientific publication

Reproducible

Subject to peer-review

Easy to access and use by others

Builds on the work of  others

Others can build their work on top of  it



European Bioconductor Short Course: 
Brixen, South Tyrol, June 2003, ..., 2010

Bioconductor Conference: 
Seattle, WA, 28-30 July 2010

Developer Meeting: 
Heidelberg, 17-18 Nov 2010

Many further short courses & developer meetings: see 
www.bioconductor.org!





Late 1980s: Poustka, Lennon, Lehrach: cDNAs spotted on nylon 
membranes

1990s: Affymetrix adapts microchip production technology for in situ 
oligonucleotide synthesis („commercial and heavily patent-fenced“)

1990s: Brown lab in Stanford develops two-colour spotted array 
technology („open and free“)

1998: Yeast cell cycle expression profiling on spotted arrays 
(Spellmann) and Affymetrix (Cho)

1999: Tumor type discrimination based on mRNA profiles (Golub)

2000-ca. 2004: Affymetrix dominates the microarray market

Since ~2003: Nimblegen, Illumina, Agilent (and many others)

Throughout 2000‘s: CGH, CNVs, SNPs, ChIP, tiling arrays

Since ~2007: Next-generation sequencing (454, Solexa, ABI Solid,...)

Brief  history



Oligonucleotide microarrays



Base Pairing

Ability to use hybridisation for constructing specific + 
sensitive probes at will is unique to DNA (cf. proteins, 

RNA, metabolites)



Oligonucleotide microarrays

5µm

Millions of copies of a specific
oligonucleotide probe molecule 
per patch

 Image of array after hybridisation and staining

up to 6.5 Mio
different probe patches

Target - single stranded
 cDNA

Oligonucleotide probe

* *
*
*
*

1.28cm

GeneChip

Hybridized Probe Cell



Probe sets



Terminology for transcription arrays

Each target molecule (transcript) is represented by 
several oligonucleotides of (intended) length 25 
bases

Probe: one of these 25-mer oligonucleotides
Probe set: a collection of probes (e.g. 11) targeting the 

same transcript 

MGED/MIAME: „probe“ is ambiguous!
Reporter: the sequence
Feature: a physical patch on the array with molecules 

intended to have the same reporter sequence (one 
reporter can be represented by multiple features)



Image analysis

• several dozen 
pixels per feature
• segmentation
• summarisation into 
one number 
representing the 
intensity level for 
this feature 
 CEL file



µarray data

arrays:
probes = 
gene-specific 
DNA strands



µarray data

samples:
mRNA from
tissue 
biopsies,
cell lines

arrays:
probes = 
gene-specific 
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µarray data

samples:
mRNA from
tissue 
biopsies,
cell lines

arrays:
probes = 
gene-specific 
DNA strands
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Microarray 
Infrastructure in 

Bioconductor



Platform-specific data import and initial processing

Affymetrix 3’ IVT (e.g. Human U133 Plus 2.0, Mouse 430 2.0): 
          affy

Affymetrix Exon (e.g. Human Exon 1.0 ST):  
          oligo, exonmap, xps

Affymetrix SNP arrays: 
          oligo

Nimblegen tiling arrays (e.g. for ChIP-chip): 
          Ringo

Affymetrix tiling arrays (e.g. for ChIP-chip): 
          Starr

Illumina bead arrays: 
          beadarray, lumi

http://www.bioconductor.org/docs/workflows/oligoarrays

http://www.affymetrix.com/estore/browse/products.jsp?productId=131455&categoryId=35760
http://www.affymetrix.com/estore/browse/products.jsp?productId=131455&categoryId=35760
http://www.affymetrix.com/estore/browse/products.jsp?productId=131477&categoryId=35924
http://www.affymetrix.com/estore/browse/products.jsp?productId=131477&categoryId=35924
http://www.bioconductor.org/docs/workflows/oligoarrays/
http://www.bioconductor.org/docs/workflows/oligoarrays/


Flexible data import

Using generic R I/O functions and constructors
Biobase
limma

Chapter Two Color Arrays in the useR-book.
limma user guide

          



Normalisation and quality 
assessment

preprocessCore
limma
vsn

arrayQualityMetrics

          



NChannelSet
assayData can contain N=1, 2, ..., matrices of  the same size
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Annotation / Metadata
Keeping data together with the metadata (about reporters, 
target genes, samples, experimental conditions, ...) is one 
of  the major principles of  Bioconductor

• avoid alignment bugs

• facilitate discovery  

Often, the same microarray design is used for multiple 
experiments. Duplicating that metadata every time would be 
inefficient, and risk versioning mismatches ⇒ 

instead of  featureData, just keep a pointer to an 
annotation package.

(In principle, one could also want to do this for samples.)



Annotation infrastructure for 
Affymetrix

For affy:
hgu133plus2.db “all available” information 
about target genes
hgu133plus2cdf  maps the physical features 
on the array to probesets
hgu133plus2probe nucleotide sequence of  
the features (e.g. for gcrma)

For oligo: 
pd.* packages should rationalise and simplify 
this - but not there yet....

http://www.bioconductor.org/packages/devel/data/annotation/html/pd.ht.hg.u133.plus.pm.html
http://www.bioconductor.org/packages/devel/data/annotation/html/pd.ht.hg.u133.plus.pm.html
http://www.bioconductor.org/packages/devel/data/annotation/html/pd.ht.hg.u133.plus.pm.html
http://www.bioconductor.org/packages/devel/data/annotation/html/pd.ht.hg.u133.plus.pm.html


Genotyping

crlmm Genotype Calling (CRLMM) and Copy Number 
Analysis tool for Affymetrix SNP 5.0 and 6.0 and 
Illumina arrays.

snpMatrix

.... others See also: 
Genome-wide association study of  CNVs in 
16,000 cases of  eight common diseases and 
3,000 shared controls, The Wellcome Trust 
Case Control Consortium, Nature 464, 713-720
(Box 1).

http://www.nature.com/nature/journal/v464/n7289/full/nature08979.html
http://www.nature.com/nature/journal/v464/n7289/full/nature08979.html
http://www.nature.com/nature/journal/v464/n7289/full/nature08979.html
http://www.nature.com/nature/journal/v464/n7289/full/nature08979.html
http://www.nature.com/nature/journal/v464/n7289/full/nature08979.html
http://www.nature.com/nature/journal/v464/n7289/full/nature08979.html


Transcriptomics



Microarray Analysis Tasks

Data import
reformating and setup/curation of  the metadata

Normalisation
Quality assessment & control

Differential expression

Using gene-level annotation
Gene set enrichment analysis

Clustering & Classification

Integration of  other datasets



Why do you need 
‘normalisation’?



From: lymphoma 
dataset

vsn package

Alizadeh et al., 
Nature 2000

Systematic drift effects



Quantile normalisation

Ben Bolstad 2001

Within each column (array), 
replace the intensity values by 
their rank

For each rank, compute the 
average of  the intensities with 
that rank, across columns 
(arrays)

Replace the ranks by those 
averages

arrays (samples)
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library("affydata")
library("preprocessCore")
library("RColorBrewer")
data("Dilution")
nr = apply(exprs(Dilution), 2, rank)
nq = normalize.quantiles(exprs(Dilution))
matplot(nr, exprs(Dilution), pch=".", log="y", 
           xlab="rank", col=brewer.pal(9,"Set1"))



loess normalisation



"loess" normalisation
loess (locally weighted scatterplot smoothing): an 

algorithm for robust local polynomial regression by W. 
S. Cleveland and colleagues (AT&T, 1980s) and handily 
available in R



Local polynomial regression



Local polynomial regression



Making regression against outliers

P.J. Huber: Robust 
Statistics 
P. Rousseeuw: Robust 
regression and outlier 
detection ...Q

http://books.google.it/books?id=lK9gHXwYnqgC&printsec=frontcover&dq=rousseeuw&source=bl&ots=o22WsSZK_E&sig=YWqWlhLyhHYJ0e8fXF_TXjlLWEU&hl=it&ei=DEcVTMqSK6OmsQbkv5yyDA&sa=X&oi=book_result&ct=result&resnum=5&ved=0CDMQ6AEwBA
http://books.google.it/books?id=lK9gHXwYnqgC&printsec=frontcover&dq=rousseeuw&source=bl&ots=o22WsSZK_E&sig=YWqWlhLyhHYJ0e8fXF_TXjlLWEU&hl=it&ei=DEcVTMqSK6OmsQbkv5yyDA&sa=X&oi=book_result&ct=result&resnum=5&ved=0CDMQ6AEwBA
http://books.google.it/books?id=lK9gHXwYnqgC&printsec=frontcover&dq=rousseeuw&source=bl&ots=o22WsSZK_E&sig=YWqWlhLyhHYJ0e8fXF_TXjlLWEU&hl=it&ei=DEcVTMqSK6OmsQbkv5yyDA&sa=X&oi=book_result&ct=result&resnum=5&ved=0CDMQ6AEwBA
http://books.google.it/books?id=lK9gHXwYnqgC&printsec=frontcover&dq=rousseeuw&source=bl&ots=o22WsSZK_E&sig=YWqWlhLyhHYJ0e8fXF_TXjlLWEU&hl=it&ei=DEcVTMqSK6OmsQbkv5yyDA&sa=X&oi=book_result&ct=result&resnum=5&ved=0CDMQ6AEwBA
http://books.google.it/books?id=lK9gHXwYnqgC&printsec=frontcover&dq=rousseeuw&source=bl&ots=o22WsSZK_E&sig=YWqWlhLyhHYJ0e8fXF_TXjlLWEU&hl=it&ei=DEcVTMqSK6OmsQbkv5yyDA&sa=X&oi=book_result&ct=result&resnum=5&ved=0CDMQ6AEwBA
http://books.google.it/books?id=lK9gHXwYnqgC&printsec=frontcover&dq=rousseeuw&source=bl&ots=o22WsSZK_E&sig=YWqWlhLyhHYJ0e8fXF_TXjlLWEU&hl=it&ei=DEcVTMqSK6OmsQbkv5yyDA&sa=X&oi=book_result&ct=result&resnum=5&ved=0CDMQ6AEwBA


C. Loader

Local Regression 
and Likelihood

Springer Verlag



loess normalisation

before after

• local polynomial regression of M against A
• 'normalised' M-values are the residuals



local polynomial regression normalisation 
in >2 dimensions



n-dimensional local regression model for 
microarray normalisation

An algorithm for fitting this robustly is described (roughly) in the 

paper. They only provided software as a binary for Windows. The 
paper has 129 citations in according to Google scholar (6/2010), 
but the method has not found much use.



Estimating relative 
expression 

(fold-changes)



 ratios and fold changes
Fold changes are useful to describe 
continuous changes in expression

1000
1500

3000
x3

x1.5

A B C

0
200

3000
?

?

A B C

But what if the gene is “off” (below 
detection limit) in one condition?



 ratios and fold changes
The idea of the log-ratio (base 2)
 0: no change
  +1: up by factor of 21 = 2
  +2: up by factor of 22 = 4
  -1: down by factor of 2-1 = 1/2
  -2: down by factor of 2-2 = ¼
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a change from 1000 to 2000 units has a similar biological 
meaning to one from 5000 to 10000.
…. data reduction



 ratios and fold changes
The idea of the log-ratio (base 2)
 0: no change
  +1: up by factor of 21 = 2
  +2: up by factor of 22 = 4
  -1: down by factor of 2-1 = 1/2
  -2: down by factor of 2-2 = ¼

What about a change from 0 to 500?
- conceptually
- noise, measurement precision

A unit for measuring changes in expression: assumes that 
a change from 1000 to 2000 units has a similar biological 
meaning to one from 5000 to 10000.
…. data reduction



Many data are measured in 
definite units:

• time in seconds
• lengths in meters
• energy in Joule, etc.
 
Climb Mount Plose (2465 m) from 

Brixen (559 m) with weight of 
76 kg, working against a 
gravitation field of strength 
9.81 m/s2 :

  
 

 What is wrong with microarray data?

(2465 - 559) · 76 · 9.81  m kg m/s2

  = 1 421 037 kg m2 s-2

  = 1 421.037 kJ
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Two component error 
model and variance 

stabilisation



ai per-sample offset

εik  additive noise

bi per-sample
   gain factor

bk sequence-wise
   probe efficiency
ηik  multiplicative noise

 The two component model

measured intensity  =  offset  +       gain   × true abundance



The two-component model

raw scale log scale
B. Durbin, D. Rocke, JCB 2001



The two-component model

raw scale log scale

“additive” noise

“multiplicative” 
noise

B. Durbin, D. Rocke, JCB 2001



The two-component model

raw scale log scale

“additive” noise

“multiplicative” 
noise

B. Durbin, D. Rocke, JCB 2001

We will see something 
similar in with short read 
count data - just replace 
the additive component 
with Poisson



The additive-multiplicative error 
model

Trey Ideker et al.: JCB (2000) 

David Rocke and Blythe Durbin: JCB (2001), 
Bioinformatics (2002) 

Use for robust affine regression normalisation: W. Huber, 
Anja von Heydebreck et al. Bioinformatics (2002). 

For background correction in RMA: R. Irizarry et al., 
Biostatistics (2003).



 Parameterization

two practically 
equivalent forms 

(η<<1)

a: average 
background

on one array, for one 
color, the same for all 
features

also dependent on 
the reporter 
sequence 

ε: background 
fluctuations

same distribution in 
whole experiment

different distributions 

b: average gain factor on one array, for one 
color, the same for all 
features

intensity dependent

η: gain fluctuations same distribution in 
whole experiment

different distributions



 variance stabilizing transformations

Xu a family of random variables with 
E(Xu) = u    and    Var(Xu) = v(u).    Define

Then,   var f(Xu ) ≈  does not depend on u

Derivation: linear approximation,
 relies on smoothness of v(u).



 variance stabilizing transformation

f(x
)

x



 variance stabilizing transformations

1.) constant variance (‘additive’)

2.) constant CV (‘multiplicative’)

4.) additive and multiplicative

3.) offset



 the “glog” transformation

P. Munson, 2001

D. Rocke & B. Durbin, 
ISMB 2002

W. Huber et al., ISMB 
2002



raw scale log glog

difference

log-ratio

generalized 

log-ratio

 glog



raw scale log glog

difference

log-ratio

generalized 

log-ratio

constant part
variance:

proportional part

 glog
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Parameter estimation
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Parameter estimation



Parameter estimation

o maximum likelihood estimator: straightforward – 
but sensitive to deviations from normality
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Parameter estimation

o maximum likelihood estimator: straightforward – 
but sensitive to deviations from normality

o model holds for genes that are unchanged; 
differentially transcribed genes act as outliers. 

o robust variant of ML estimator, à la Least 
Trimmed Sum of Squares regression.

o works well as long as <50% of genes are 
differentially transcribed (and may still work otherwise)



Least trimmed sum of  squares 
regression

minimize

- least sum of squares 
- least trimmed sum of squares

P. Rousseeuw, 1980s



“usual” log-ratio

'glog' 
(generalized 
log-ratio)

c1, c2 are experiment specific parameters (~level 
of background noise)



 Variance Bias Trade-Off
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 Variance-bias trade-off  and shrinkage 
estimators

Shrinkage estimators:
a general technology in statistics:
pay a small price in bias for a large decrease of variance, so 
overall the mean-squared-error (MSE) is reduced. 

Particularly useful if you have few replicates.

Generalized log-ratio is a shrinkage estimator for log fold 
change



 Variance-bias trade-off  and shrinkage 
estimators

Same-same 
comparison

log-ratio

glog-ratio

Lines: 29 data 
points with 
observed 
ratio of 2

Fig. 5.11 from Hahne et al. (useR book)



 Linear and Non-linear

linear affine linear “genuinely” 
non-linear



Always affine?

vsn provides a combination of glog-transformation and 
affine between-array* normalisation

What if you want to normalise for genuine non-linear 
effects, and still use the transformation?

Set parameter calib in vsn2 function to none (default: 
affine) and do your own normalisation beforehand (do 
not (log-)transform). The vignette shows an example for 
use with quantile normalisation.

* print-tip groups or other stratifications are 
also possible



Background



Background correction

Irizarry et al. 
Biostatistics 
2003

0 pm

500 fm 1 pm

750 fm



RMA Background correction

Irizarry et al. (2002)



Background correction: 

raw 
intensities x

biased 
background 
correction

s=E[S|data]

unbiased 
background 
correction

s=x-b

log2(s) glog2(s|data)

?



Comparison between RMA and VSN 
background correction

vsn package 
vignette

Figure 6: Results of vsnrma and rma on the Dilution example data. Array 1 was hybridised with 20µg
RNA from liver, array 3 with 10µg of the same RNA.

method for NChannelSet. The return value is an
NChannelSet, shown in Table 2. Note that, due to
the flexibility in the amount and quality of meta-
data that is in an RGList, and due to differences
in the implementation of these classes, the transfer
of the metadata into the NChannelSet may not al-
ways produce the expected results, and that some
checking and often further dataset-specific postpro-
cessing of the sample metadata and the array fea-
ture annotation is needed. For the current exam-
ple, we construct the AnnotatedDataFrame object
adf and assign it into the phenoData slot of lym-
NCS.

> vmd = data.frame(

+ labelDescription=I(c("array ID",

+ "sample in G", "sample in R")),

+ channel=c("_ALL", "G", "R"),

+ row.names=c("arrayID", "sampG", "sampR"))

> arrayID = lymphoma$name[wr]

> stopifnot(identical(arrayID,

+ lymphoma$name[wg]))

> ## remove sample number suffix

> sampleType = factor(sub("-.*", "",

+ lymphoma$sample))

> v = data.frame(

+ arrayID = arrayID,

+ sampG = sampleType[wg],

+ sampR = sampleType[wr])

> v

arrayID sampG sampR
1 lc7b047 reference CLL
2 lc7b048 reference CLL
3 lc7b069 reference CLL
4 lc7b070 reference CLL
5 lc7b019 reference DLCL
6 lc7b056 reference DLCL
7 lc7b057 reference DLCL
8 lc7b058 reference DLCL

> adf = new("AnnotatedDataFrame",

+ data=v,

+ varMetadata=vmd)

> phenoData(lymNCS) = adf

Now let us combine the red and green values from
each array into the glog-ratio M and use the linear
modeling tools from limma to find differentially ex-
pressed genes (note that it is often suboptimal to
only consider M, and that taking into account ab-
solute intensities as well can improve analyses).

> lymM = (assayData(lymNCS)$R -

+ assayData(lymNCS)$G)

> design = model.matrix( ~ lymNCS$sampR)

> lf = lmFit(lymM, design[, 2, drop=FALSE])

> lf = eBayes(lf)

Figure 7 on page 7 shows the resulting p-values and
the expression profiles of the genes corresponding
to the top 5 features.

6



Summaries for Affymetrix 
genechip probe sets



Data and notation
PMikg , MMikg = Intensities for perfect match and 
    mismatch probe k for gene g on chip i 
i = 1,…, n one to hundreds of chips
k = 1,…, J  usually 11 probe pairs
g = 1,…, G  tens of thousands of probe sets.

Tasks: 
calibrate (normalize) the measurements from different chips 

(samples)
summarize for each probe set the probe level data, i.e., 11 PM 

and MM pairs, into a single expression measure.
compare between chips (samples) for detecting differential 

expression.



Expression measures: 
MAS 4.0

Affymetrix GeneChip  MAS 4.0 software used AvDiff, 
a trimmed mean:

o sort dk = PMk -MMk 
o exclude highest and lowest value
o K := those pairs within 3 standard deviations of 

the average



Expression measures 
MAS 5.0

Instead of MM, use "repaired" version CT
 CT = MM      if MM<PM
     = PM / "typical log-ratio"  if MM>=PM

Signal = Weighted mean of the values log(PM-CT)
   weights follow Tukey Biweight function 
   (location = data median, 
     scale a fixed multiple of MAD)
  
       



Expression measures: 
Li & Wong

dChip fits a model for each gene

where
φi : expression measure for the gene in sample i
θk : probe effect

φi  is estimated by maximum likelihood





dChip

RMA

bi is estimated using the robust method median polish 
(successively remove row and column medians, 
accumulate terms, until convergence).

Expression measures 
RMA: Irizarry et al. (2002)



However, median (and hence median 
polish) is not always so robust...

See also: Casneuf  T. et al. (2007), In situ analysis of  cross-hybridisation on 
microarrays and the inference of  expression correlation. BMC Bioinformatics 
2007;8(1): 461

- median
- trimmed mean (0.15)



Probe effect adjustment by using 
gDNA reference

Huber et al., Bioinformatics 2006



Genechip S. cerevisiae Tiling Array

4 bp tiling path over complete genome
 (12 M basepairs, 16 chromosomes)
Sense and Antisense strands
6.5 Mio oligonucleotides 
5 µm feature size

manufactured by Affymetrix
designed by Lars Steinmetz (EMBL & Stanford Genome 
Center)



RNA Hybridization



Before normalization



Probe 
specific 
response 
normali-
zation

remove ‘dead’ probes

S/N

3.22

3.47

4.04

4.58

4.36



Probe-specific response normalization

si probe specific response factor. 
Estimate taken from DNA hybridization data

bi =b(si ) probe specific background term. 
Estimation: for strata of probes with similar si, 
estimate b through location estimator of 
distribution of intergenic probes, then interpolate to 
obtain continuous b(s)



Estimation of b: joint distribution of (DNA, RNA) 
values of intergenic PM probes

log2 DNA intensity

lo
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ity unannotated 
transcripts

background
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After normalization



Quality assessment
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 What about non-linear effects

o Microarrays can be operated in a linear regime, where 
fluorescence intensity increases proportionally to target 
abundance (see e.g. Affymetrix dilution series) 

Two reasons for non-linearity:

o At the high intensity end: saturation/quenching. This can 
(and should) be avoided experimentally -  loss of data!

o At the low intensity end: background offsets, instead of 
y=k·x we have y=k·x+x0, and in the log-log plot this can 
look curvilinear. But this is an affine-linear effect and can 
be correct by affine normalization. Local polynomial 
regression may be OK, but tends to be less efficient.



 Non-linear or affine linear?


