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This-generation sequencing
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USC CEGS: the genotype-phenotype map
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Recurrent alterations
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A genome-wide cancer CNV map

- Median of 600 CNVs per matched
normal sample

-40% overlap with Conrad et al, where
CNVs were discovered in 2 HapMap
populations (CEPH,YRI)

-focal CNVs include those spanned by a
single probe (17%)

-Several known breast cancer genes are
targeted by focal CNVs

-These variants affect a substantial
proportion of expression variation
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The landscape of somatic copy
number alterations
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beadarray

e Bioconductor package for bead-level analysis of
lllumina bead arrays (M. Dunning)

* Pipeline for analysis of multiple samples (BADGER)

* Artefact detection: BASH, HULK, registration (A. Lynch,
M. Smith, J. Cairns)

 Annotation a problem (N. Barbosa-Morais, NAR 2009)
ReMOAT (s. Samarajiwa)

e CRLMM for lllumina SNP chips (B. carvalho, M. Ritchie)
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(Some) peak callers

’ ts
data from masks . o contiaence In results,
& control, read features dife 45 genomic scoring criteria EDR estimates for both
either Ifferent stranas N o TF & HM
repeats sensitivity / specificity
read length
CSPF &/ or no orientation merges strands N simple height criteria empirically: ROC curve both
mean fragment length . ) o FDR based on randomised sample
XSET &/ or orientation merges strands N simple height criteria and Poisson probabilities both
Mikkelsen o . p-values produced by .
etal. IP only no orientation no merge / shift Y randomising the datasets no official FDR both
mean fagmentlength g reads | |
MACS &/ or iqnores duplicated reads merges strands N Poisson p-values FDR = no. peaks in control : IP both
shifts reads FDR based on calling peaks
QuEST & orientation merges strands N kernel density estimation in 1/2 the control sample TF
) mean fragment length ) ) ) o Monte-Carlo based FDR
FindPeaks IP only orientation no merge / shift N simple height criteria (ie. from randomised sample) both
SISSR mean fragment length ) compares read density FDR comparing simulated better
&/or orientation no merge / shift N on different strands background peaks to real data ~ for TF
Kharchenko , . , , . FDR based on different randomised ~ better
etal. & orientation no merge / shift N Poisson probabilities versions of the input sample for TF
mean fragment length pre-processing: normalisation FDR: g-values after multiple
PeakSeq orientation merges strands Y Binomial p-values correction adjustment both
mean fragment length . Negative Binomial distribution posterior probabilities
BayesPeak &/or orientation no merge / shift Bayesian posterior probabilities of enrichment presence both

Spyrou et al., BMC Bioinformatics, 10: 299, 2009

Tuesday, August 3, 2010




BayesPeak (genome-wide)
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CNAnova HMMseg

1. Pre-processing and normalization of the dataset

S. lvakhno, Bioinformatics, 2009 l“

GeneChip*

P

Extract read counts from BAM files.
GC-normalize the data
Perform read count smoothing using discrete wavelet transform (DWT)

——

2.HMM segmentation
flowcell lane
I_I.|
normal 1 normal 2 cancer1  cancer2

Split reads by the flowcell of origin. Contrast read counts between
flowcells withing the same sample or between different samples

normal 1 normal 2 normal 1 cancer 1 normal 2 cancer 2 cancer 1 cancer 2

Perform HMM segmentation on four contrasts
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NONLINEAR REGRESSION (Doug Speed)

RESPONSE PREDICTORS

Quantitative Response 4 Tertiary Predictors A
e.g. Gene Expression e.g. Genotypes,

Copy Number Change,

OR — i i1 Ng N KEnvironmentVariabIes)

Binary Response
e.g. Disease Status Q

Regression Model:  g(E[Y]) =  f(X) (usingan appropriate link function g).

Aim: Design regression methodology to identify which predictors contribute to f(X)
and how they contribute.

Sparsity Assumption: Very few predictors are causal for a given response.

Interactions: Might interactions between predictors affect the response?
e.g. Gene Regulatory Networks, Oncogenes.
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EXISTING METHODS

One-at-a-time methods test each predictor for association separately

Consider models of the form: f(X)=a+pB Xq

Pros: Extremely fast and very simple to understand.

Cons: Unlikely to be a realistic model and detection based only on marginal effects.

Possible alternatives suitable for high-dimensional analysis:

Multiple regression with a penalization term

Pair-wise maximum likelihood tests

Classification & Regression Trees (CART) or Random Forests
Logic Regression

Multivariate Adaptive Regression Splines (MARS)
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EXAMPLE ONE - ARABIDOPSIS

Sample: 95 accessions.
Response: Expression level of FRIGIDA Gene.

Predictors: 5419 SNPs — approximate spacing 25 kbp.

Arabidopsis thaliana

=10g1o(p-value)
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EXAMPLE TWO - HUMAN

Sample: 109 CEPH HapMap individuals.
Response: Expression level of MTHFR gene.

Predictors: 763 SNPs within 1Mbp of gene locus.

=10g1o(p-value)
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EXAMPLE THREE - MOUSE

Sample: 1274 “Heterogeneous Stock” Mice.

Response: CD4 Count.

Predictors: Sex + 770 SNPs along Chr 5 — approximate spacing 200 kbp.
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EXAMPLE FOUR - ARABIDOPSIS

Sample: 166 accessions
Response: Expression level of FLC Gene

Predictors: 216,130 SNPs — approximate spacing 580bp

More Arabidopsis

Chromosome 1 Chromosome 2 Chromosome 3 Chromosome 4 Chromosome 5

=10g1o(p-value)

12345678
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EXAMPLE FOUR - ARABIDOPSIS

Close-up of Chromosome 4

A true causal loci “known” to exist near FRIGIDA region (250kbp).

But one-at-a-time tests find at least two larger peaks (500kbp, 1.3Mbp).

=10g1o(p-value)
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SPARSE PARTITIONING

Bayesian nonlinear regression method allowing for interactions between predictors.
Suitable for problems where all predictors tertiary (take no more than three distinct values).

Considers how f(X) partitions predictor set:

Predictor set: {1,2,3,4,5,..,N}

7z | N\
Underlying relationship: e.g. f(X)=X; xX;+X,

o \ N

Partitions predictors as: {1,3} { 4} {2,5, .. ,N}
Group1,G; Group2,G, Null Group, G,
Sparse Partitioning explores space of partitions.

In reverse: Partition G ={G,, G, G,, .., G} => f(X)=f(X5) + f,(Xg,) + ...+ f(X5)
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BAYESIAN METHODOLOGY

Priors:
Prior on the partitions reflects belief that each predictor is associated.
Also assign a prior on the functions of groups which prefers smoother functions.

Likelihood:
Scores each partition by integrating over all possible functions.

Posterior:
Approximated via Markov Chain Monte Carlo using a stepwise search of partitions

{1} {2} {12} {4} {2} {1} {4}
{1 S {12) 2 1 4)

Sparse Partitioning estimates:
probability a predictor not in null group => predictor associated
probability a predictors in same non-null group => predictors interact
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ADVANTAGES OF SPARSE PARTITIONING

Most methods only allow certain forms for f (X)
e.g. insist it is linear, or only consider multiplicative interactions.

Sparse Partitioning fits full degrees of freedom model for f (X)
e.g. suppose G, = {X,X;} => f1(X},X;) =By 5,

This approach inevitably overfits the true model at times
but penalty for overfitting seems less than penalty for underfitting.

Sparse Partitioning only concerned with which predictors contributes to f (X)
Much easier to search space of partitions rather than space of possible f (X)
Exact form of f (X) can be investigated in a follow-up experiment.
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SIMULATION STUDY RESULTS

Compare methods by their power to detect causal predictors in simulated data.
(Binary predictors, continuous response)

Additive Multiplicative Weird Interaction
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Sparse Partitioning appears robust to different regression models.

It is able to consider all possible forms for f (X)
so maintains power in scenarios where other methods fail.
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EXAMPLE ONE - ARABIDOPSIS
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Easy example, one strong association.

Tuesday, August 3, 2010



EXAMPLE TWO - HUMAN
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(Two predictors are almost identical, so given equal posterior scores)
Sparse Partitioning finds two associations and evidence for interaction between them.
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EXAMPLE TWO - HUMAN

SNP 1: 1e-10 SNP 2: 2e-3
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Sparse Partitioning finds strongest association from one-at-a-time test, but also a SNP with no
marginal effect. Finds evidence for interaction between both SNPs and gender.

Tuesday, August 3, 2010



EXAMPLE THREE - MOUSE

SNP 1:3e-8 SNP 2: 5e-3
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-
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LIMITATIONS

Requires tertiary predictors
But can handle quantitative predictors by introducing splines.

Sparse Partitioning Projection Pursuit

Relies on convergence of MCMC sampling which limits size of dataset it can handle
e.g. analysis of 5,000 predictors will take ~1 hour (but can be parallelized).

Currently limited to ¢.15,000 predictors, so not applicable on a genome-wide scale.
Could filter dataset first or...
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DETERMINISTIC VERSION

Instead of exploring partition space, deterministic version explores set of predictors associated
Finds marginal score for sets indicating which predictors are associated:

Predictorset{1,2,4}
Possible Partitions:
{1} {2} {4}
{1}y {2,4} {2}{1,4} {4}{1,2}
{1,2,4}
Score for predictor set is sum of posterior scores for 5 possible partitions.

Stops moving once no improvement possible.

Using this set as “null model” finds posterior probabilities of including other predictors.

Tuesday, August 3, 2010



EXAMPLE FOUR - ARABIDOPSIS
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Deterministic version able to find sensible results on whole-genome data.
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EXAMPLE FOUR - ARABIDOPSIS
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Finds evidence for an association 30kbp upstream of locus, which seems far more plausible.
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EXAMPLE FOUR - ARABIDOPSIS

SNP 1: 2e-7 SNP 2: 4e-10

—_— —_—
' [
_—
'

SNP1XxSNP2:1e-3

Highest scoring set of associations: ; S
{SNP 1,SNP 2} 5

Two possible partitions:

{SNP1} {SNP2} 0.01
{SNP1,SNP2} 0.99
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PROS / CONS OF DETERMINISTIC VERSION

Run time takes a few minutes for 200,000+ predictors.
Slightly less powerful, as only allowed to move to higher scoring models
e.g. will struggle to find pair of interacting predictors if weaker marginal effects.

Also able to incorporate prior knowledge concerning associations.

If desired can set number of groups / maximum size of groups
e.g. maximum group size one => linear model (method becomes forward regression).

If we know a predictor is causal we can set its prior to 1:
then the method will allow for its additive effect (as in forward regression).
BUT ALSO consider the way other predictors might interact with it.

Both versions available at:
http://www.compbio.group.cam.ac.uk/software.html
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