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Purpose of this Document

This document describes how to use the flowClust and flowMerge BioConduc-
tor packages to analyze flow cytometry data. It provides examples of running
flowClust and flowMerge in a fully automated and semi—automated manner,
and describes how to run flowMerge and flowClust in a parallel computing en-
vironment using the snow and snowfall package, as well as a single processor
setup. The document provdes worked examples that demonstrate the effects
of differentflowClust parameters on flow cytometry gating results. The docu-
ment also covers downstream analysis of flowClust and flowMerge gated data
for metaclustering of gated cell populations across multiple samples. Metaclus-
tering is the matching of corresponding cell populations across replicated or
similar samples.

Hardware and Software Requirements

The analysis described here was run on an Intel-based Macbook pro running
Mac OS X 10.6.4, with a 2.93 GHz core 2 duo processor and 8 GB of RAM. It was
run on BioConductor version 2.7, R 2.12.0, flowMerge 1.3.7 (development), flow-
Clust 2.7.0 (development), and flowCore 1.15.1. The development versions of
these packages are available at http://bioconductor.org/checkResults/2.7/bioc-
LATEST/. The metaclustering examples presented at the end of the document
require the flowMetaClust packgage, which is currently in development and not
yet available.

Goals

After working through the examples in this document, you should be able to:
e Run flowClust and flowMerge in a fully automated manner

e Run flowClust and flowMerge in a semi-automated manner



e Run high throughput flowClust model fitting in parallel using snow and
snowfall packages

e Understand the role of different model parameters and how changing them
impacts gated cell pouplations

e Be able to manipulate and evaluate flowClust and flowMerge model objects
in R

e Perform metaclustering of cell populations across samples using flowMeta-
Cluster

Overview

Analyzing flow cytometry data within R and BioConductor can be quite chal-
lenging for new users of the BioConductor flow cytometry tools. This is partic-
ularly true little prior experience programming or using R and BioConductor.
Manual analysis of flow data is inherently suited to a graphical user interface, so
R’s and BioConductor’s command line environment can be counter—intuitive.

However, the size and complexity of flow cytometry data sets is growing,
and manual gating approaches can be inefficient and error-prone for such data.
The tools available through BioConductor are extremely powerful and flexible,
allowing automated and semi-automated analysis of many samples in a high-
throughput manner. Many of the flow packages include flexible functionality
for visualizing flow cytometry data in a multitude of different ways. Many of
these will have been covered during the other practical sessions.

Data Set

We will use the same data set you have encountered in the previous tutorials
on FCM data analysis. This is a data set comparing two treatment protocols
(Drug A vs Drug B). We will be gating and measuring the fraction of T—helper
cells and cytotoxic T cells that express HLADr activation marker following dif-
ferent treatments. We will work through the gating steps using different sets of
parameters, and we will explore different modeling assumptions, comparing the
results. Some of the data analysis may be time consuming if run on a laptop, so
we have included pre-analyzed data that can be loaded using data(). We note
these points in the document, and the data are included in the data subdirectory
in the supplied package.

Loading flow libraries
BioConductor is modular, with different functionality coming from different

user—submitted packages. In order to utilize the functionality provided by a
package, that package must first be loaded into R. Therefore, in order to analyze



flow cytometry data in BioConductor, we need to load the appropriate packages
and libraries.

require (flowMerge)
require(flowViz)
require (flow@)
require(flowStats)
require (snowfall)
require(fpc)
require (flowTrack)

The require() function tells R that the package provided as an argument
must be loaded in order to run the code which follows. R will therefore check
whether the package is loaded, and if not, will load the packge. If the package
is not installed or does not load correctly, the function returns FALSE which can
be tested inside other functions. Similar behaviour can be obtained with the
library() function, except that library will quit if the library is not installed
or fails to load correctly.

Loading the Data

The raw flow data are is located individual files in FCS (flow cytometry data
standard) format, with one sample per file. The data are stored in the flowdata
subdirectory. Additional annotation information about each sample is in a user—
generated text file, annotation.txt. BioConductor provides data structures for
storing and working with metadata about biological samples. The class Anno-
tatedDataFrame, part of the Biobase core BioConductor package, is the object
that handles storage and management of biological metadata for a variety of
data types, including flow cytometry. More information about the Annotated-
DataFrame or any other R command can be found by typing ? followed by the
command name at the R command line (i.e. ?AnnotatedDataFrame.

To load the data we run:

file.loc <- system.file("extdata",
package = "flowTrack")

data <- read.flowSet(path = file.loc,
pattern = "fcs", phenoData = "annotation.txt",
transformation = FALSE)

The above command, read.flowSet is pretty self-explanatory. It reads in
several fcs files into a flowSet object. The flowSet is an object that combines
related flow cytometry samples. The samples must have the same number of



dimensions and the same labels in order to be combined into a flowSet. Another
way to view a flowSet is as a combination of flowFrames. A flowFrame is the
BioConductor object that represents an individual flow cytometry sample. The
read.flowSet () function takes a number of parameters. The first is the path,
or directory where the fcs data files are located. The second, phenoData, is the
name of an annotation file containing additiona metadata about each sample,
including sample names, file names, and any treatment information associated
with each sample. The annotation information is used to internally construct an
AnnotatedDataFrame, which is the BioConductor data structure that keeps track
of sample metadata relating to an experiment. This annotation information
is attached to the flowSet. An alternate way to specify the file names is via
the files argument (omitted above). This should be a character vector of file
names. If files and phenoData arguments are both omitted, all files in path
will be loaded. The transformation argument specifies how the data should be
transformed upon loading (see 7read.FCS for more information).

Once the data are read into a flowSet, we can manipulate them. Each ele-
ment of the flowSet can be extracted using R’s list access notation (i.e. datal[[1]]
would extract the first flowFrame from the flowSet).

We can get additional information about the flowSet by entering the name of
the flowSet at the R command line:

data

A flowSet with 14 experiments.

An object of class "AnnotatedDataFrame"
rowNames: 01126211 _NB8_I025.fcs, 01247181
_NBO6_I025.fcs, ..., 12015151_NB8_I025.fc
s (14 total)
varLabels and varMetadata description:

PatientID:
GroupID:

name: Filename
(6 total)

column names:
FSC-A SSC-A FITC-A PE-A FL3-A PE-Cy7-A APC-A Time

We see it is composed of 14 sample (experiments), and we see some additional
information about the AnnotatedDataFrame associated with the flowSet (we see
file names, and that there are 6 pieces of metadata assocaited with each sample).



Similarly, by calling:
data[[1]]

flowFrame object '01126211_NB8_I025.fcs'
with 4000 cells and 8 observables:

name desc range minRange
$pP1 FSC-A <NA> 1024 0
$p2 SSC-A <NA> 1024 0
$P3  FITC-A CD8 FITC-A 1024 1
$p4 PE-A CD69 PE-A 1024 1
$pP5 FL3-A CD4 1024 1
$P6 PE-Cy7-A CD3 PE-Cy7-A 1024 1
$p7 APC-A HLADr APC-A 1024 1
$pP8 Time <NA> 1024 0
maxRange
$P1 1023
$p2 1023
$pP3 1023
$p4 1023
$pP5 1023
$pP6 1023
$p7 1023
$pP8 1023

98 keywords are stored in the 'description' slot

we get some additional information about the first lowFrame. We see it has
4000 events and 8 channels. It is named using its associated FCS file name. The
channels are named by their associated dye ("names” column). The assocaited
markers are in the "desc” column.

If we examine the default sample and marker names associated with the flowSet,
we see that they are not very informative:

colnames (data)

[1] "FSC-A"  "SSC-A"  "FITC-A"
[4] "PE-A" "FL3-A"  "PE-Cy7-A"
[7] "APC-A"  "Time"

sampleNames (data)

[1] "01126211_NB8_I025.fcs"
[2] "01247181_NB06_I025.fcs"



[3] "02276161_NB8_I025.fcs"
[4] "03157141_NB06_I025.fcs"
[5] "05107251_NB06_I025.fcs"
[6] "06226101_NB8_I025.fcs"
[7] "07115141_NB8_I025.fcs"
[8] "07215281_NB8_I025.fcs"
[9] "08045071_NB8_I025.fcs"
[10] "09225121_NB8_I025.fcs"
[11] "10175181_NB8_I025.fcs"
[12] "10276181_NB8_I025.fcs"
[13] "11145351_NB8_I025.fcs"
[14] "12015151_NB8_I025.fcs"

The default sample and channel names appear on any generated plots and graph-
ics. We want to assign the more informative "PatientID" from the annotation
metadata as sample names:

We can view the metadata via:

PatientID GroupID

01126211_NB8_I025.fcs pid349 DRUG A
01247181_NB06_I025.fcs pid300 DRUG B
02276161_NB8_I025.fcs pid778 DRUG A
03157141 _NBO6_1025.fcs pid291 DRUG B
05107251_NB06_I025.fcs pid214 DRUG A
06226101_NB8_I025.fcs pid867 DRUG B
07115141_NB8_I025.fcs pid877 DRUG B
07215281_NB8_I025.fcs pid409 DRUG A
08045071_NB8_I025.fcs pid993 DRUG B
09225121_NB8_I025.fcs pid847 DRUG A
10175181 _NB8_I025.fcs pid244 DRUG B
10276181 _NB8_I025.fcs pid149 DRUG B
11145351 _NB8_I025.fcs pid225 DRUG A
12015151 _NB8_I025.fcs pid333 DRUG A
Technician Project
01126211_NB8_I025.fcs Jill BIDC2009
01247181_NB06_I025.fcs Jill BIOC2009
02276161_NB8_I025.fcs Jill BIOC2009
03157141_NB06_I025.fcs Peter BIOC2009
05107251 _NB06_I025.fcs Peter BIOC2009
06226101_NB8_I025.fcs Jill BIOC2009
07115141_NB8_I025.fcs Jill BIDC2009
07215281_NB8_I025.fcs Jill BIOC2009
08045071_NB8_I025.fcs Jill BIOC2009
09225121_NB8_I025.fcs Mark BIOC2009
10175181 _NB8_I025.fcs Mark BIOC2009
10276181 _NB8_I025.fcs Mark BIOC2009



11145351 _NB8_I025.fcs
12015151 _NB8_I025.fcs

01126211 _NB8_I025.fcs
01247181 _NB06_I025.fcs
02276161 _NB8_I025.fcs
03157141 _NBO6_1025.fcs
05107251_NBO6_I025.fcs
06226101 _NB8_I025.fcs
07115141 _NB8_I025.fcs
07215281 _NB8_I025.fcs
08045071 _NB8_I025.fcs
09225121_NB8_I025.fcs
10175181 _NB8_I025.fcs
10276181 _NB8_I025.
11145351 _NB8_I025.
12015151 _NB8_I025.

fcs
fcs
fcs

01126211_NB8_I025.fcs
01247181 _NB06_I025.fcs
02276161 _NB8_I025.fcs
03157141 _NB06_I025.fcs
05107251_NB0O6_1025.fcs
06226101_NB8_I025.fcs
07115141_NB8_I025.fcs
07215281 _NB8_I025.
08045071 _NB8_I025.
09225121 _NB8_I025.
10175181 _NB8_I025.
10276181 _NB8_I025.
11145351 _NB8_I025.
12015151 _NB8_I025.

fcs
fcs
fcs
fcs
fcs
fcs
fcs

Renaming Samples

The following code assigns the "PatientID" columns as the sample names:

sampleNames (data) <- as.character(pData(data) [,

Mark BIOC2009

Mark BI0OC2009

Stain
CD8/CD69/CD4/CD3/HLADR
CD8/CD69/CD4/CD3/HLADR
CD8/CD69/CD4/CD3/HLADR
CD8/CD69/CD4/CD3/HLADR
CD8/CD69/CD4/CD3/HLADR
CD8/CD69/CD4/CD3/HLADR
CD8/CD69/CD4/CD3/HLADR
CD8/CD69/CD4/CD3/HLADR
CD8/CD69/CD4/CD3/HLADR
CD8/CD69/CD4/CD3/HLADR
CD8/CD69/CD4/CD3/HLADR
CD8/CD69/CD4/CD3/HLADR
CD8/CD69/CD4/CD3/HLADR
CD8/CD69/CD4/CD3/HLADR
name

01126211 _NB8_I025.fcs
01247181_NB06_I1025.fcs
02276161 _NB8_I025.fcs
03157141_NB06_I025.fcs
05107251_NB06_I1025.fcs
06226101 _NB8_I025.fcs
07115141 _NB8_I025.fcs
07215281 _NB8_I025.fcs
08045071 _NB8_I025.fcs
09225121 _NB8_I025.fcs
10175181 _NB8_I025.fcs
10276181 _NB8_I1025.fcs
11145351 _NB8_I025.
12015151 _NB8_I025.

fcs
fcs

"PatientID"])

Renaming Channels

In order to use the more informative marker names as the channel names, rather

than the names of the dyes, we run the following:

for (i in seq_len(length(data))) {
pData(parameters (datal[[i]])) [,



"desc"] <- c("NA", "NA",
"CD8", "CD69", "CD4", "CD3",
"HLADr", "NA")
}
colnames (data) <- c("FSC", "SSC",
"cD8", "CD69", "CD4", "CD3",
"HLADr", "Time")

The for—loop iterates over each flowFrame in the flowSet and assigns the vector
of simpler marker names to the channels. These names are used to access each
channel when performing data transformations, for example. The last line of
the code snippet renames the channel names that are used for plotting.

Transformation and Preprocessing
The data are now in a form that we can work with more easily. Before we can

begin gating we need to perform some simple preprocessing steps. Let’s begin
by visualizing the data.

densityplot(~., data)
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These density plots show that although the forward and side scatter data
are well represented on the linear scale, the fluorescence channels need to be
transformed to a log—like scale via an appropriate transformation. flowCore
gives many to choose from, including the arcsinh, biexponential, logicle, and
logarithm. We will choose the commonly applied logicle transformation.

Data Transformation

tData <- transform(data, transformList(colnames(data)[3:7],
logicleTransform()))

The above code transforms the data via the transform() function, which
takes as input the flowSet to be transformed, and an object called a trans-
formList, which takes a vector of dimensions to be transformed (in this case
channels 3 through 7, excluding FSC and SSC), as well as a transformation
function, (logicleTransform()). There are other ways to perform data trans-
formation; please refer to the transform and transformList documentation for
other examples.

We can now plot the transformed data for comparison.



densityplot(~., tData)
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Looking at the CD3 and CD4 dimensions we can see that the different pop-
ulations are readily visible. Let’s also take a look at some scatterplots.

SplOm(tData[[QJJ[y C(I: 2: 3: 5:
6, 7)], smooth = TRUE)
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Scatter Plot Matrix

Again, we see the different populations are readily visualized in the different
pairwise scatterplots following transformation. We need to also take care of
boundary events in FSC and SSC by removing them. flowCore provides a variety
of filtering functions for such purposes. Here we will be using boundaryFilter.

tData.f <- Subset(tData, filter(tData,
boundaryFilter (c("FSC", "SSC"))))

The above code constructs a boundary filter object via boundaryFilter (), tak-
ing the names of the channels to be filtered. Next, via filter() the filtering
operation is performed on tData. Finally, the filtered data are extracted into a
new flowFrame object via Subset(). Let’s visualize some of the filtered data:

splom(tData.f[[2]][, c(1, 2, 3, 5,
6, 7)], smooth = TRUE)
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Scatter Plot Matrix

Finally, we’ll perform some normalization of the fluorescence channels so that
corresponding populations line up across multiple samples. These functions

come from the flowSet package.

tData.n <- normalize(tData.f, normalization(parameters
normFun = function(x, parameters,
...) warpSet(x, parameters,

..)))

Estimating landmarks for channel CD8 ...
Estimating landmarks for channel CD69 ...
Estimating landmarks for channel CD4 ...
Estimating landmarks for channel CD3 ...
Estimating landmarks for channel HLADr ...
Registering curves for parameter CD8 ...
Registering curves for parameter CD69 ...
Registering curves for parameter CD4 ...
Registering curves for parameter CD3 ...
Registering curves for parameter HLADr ...

12
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Let’s plot the normalized data, just to check.

densityplot(~., tData.n)
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With the preprocessing completed, we move on to automated gating with
flowClust and flowMerge.

Gating and Gating Strategy

For this data set, the general gating strategy is to identify lymphocytes in FSC
vs SSC that are CD3+/CD4+ or CD3+/CD8+, and express activation marker
HLADr. There are a number of ways to attack the problem using flowClust and
flowMerge. One tempting approach would be to run flowClust on the entire data
set, using all channels to cluster the data simultaneously. Unfortunately, such
an “all-at—once” gating approach can sometimes lead to problems, specifically
if the scatter and fluorescence channels are not on the same scale.

The reason for this is that flowClust can optionally transform the data using
a Box—Cox transformation. FlowClust estimates a Box—Cox transformation
parameter from the data that can either be cluster specific or common across
all clusters. However, if different dimensions of a cluster are on radically different
scales, then, it becomes difficult to identify a transformation that is truly optimal
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for that cluster. In practice, we can get around this issue by performing the
gating in multiple stages, first gating the scatter dimensions, followed by gating
the fluorescence dimensions. However, we will try both approaches and compare
the results.

There are a number of other parameters associated with flowClust that can
substantially impact the resulting model fit. The most important are: degrees
of freedom, nu, how the degrees of freedom is estimated, nu.est={0,1,2}, and
how the Box—Cox transformation parameter is estimated, trans={0,1,2}.

The degrees of freedom determines how robust the distribution used to model
cell subpopulations will be to outliers. When the degrees of freedom is infinite
(i.e. nu=Inf), then a Gaussian distribution is used to model the data. Gaussian
distributions are not robust to outliers, and so the presence of these will affect
the position and shape of the resulting clusters. This is in contrast to a t—
distribution, which is used to model cell subpopulations when nu is between 1
and Infinity. The smaller the degrees of freedom, the more robust to outliers the
t—distribution. However, a small degrees of freedom will make it more difficult
for flowClust to detect and effectively model rare cell populations. Therefore,
the choice of degrees of freedom is a tradeoff between robustness to outliers,
and the ability to model rare cell populations (i.e. cell populations with small
numbers of events).

The argument nu.est determines whether the degrees of freedom is be fixed
(nu.est=0), or whether it is estimated during the model fitting procedure (nu.est=1
or nu.est=2). A value of nu.est=1, means that a common degrees of freedom
will be estimated for all cell populations in the data. In contrast, a value of
nu.est=2, tells flowClust to estimate the degrees of freedom independently for
each cell subpopulation. The latter approach provides more flexibility to the
model, and is useful if the data contains both rare and abundant cell subpopu-
lations of interest.

The final parameter of interest to us is the transformation-related parameter
trans, which determines whether, and how the Box—Cox transformation should
be applied to the data. Setting trans=0, instructs flowClust not to transform
the data, whereas setting trans=1 instructs flowClust to estimate a common
transformation parameter for all clusters. Again, more model flexibility can be
introduced by setting trans=2, instructing flowClust to estimate a distinct trans-
formation parameter for each cluster. Applying a transformation is generallly
a good idea if the cell populations appear to be asymmetric, as they frequently
are in the forward and side scatter dimensions. In the fluorescence channels,
sometimes the populations of interest are relatively symmetric and spherical, in
which case one may opt not to transform the data, in order to save time, and
reduce the number of parameters in the model.

We will examine the effects of applying a common, distinct, and no trans-
formation during flowClust fitting, as well as common and distinct degrees of
freedom as we analyze the example data.
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Fraction of CD3+4/CD4+ and CD3+/CD8+ T-cells that express activation
marker HLADr following treatment with two different drugs.

All-at-once gating (scatter + fluorescence dimensions)

Sequential gating: scatter channels first, followed by fluorescence channels.
e Gaussian vs t-mixture models.
e With and without transformation.

We'll begin by comparing sequential vs all-at—once gating.

Sequential Gating

We begin by comparing the sequential vs all-at—once gating strategies on the
first sample in the flowSet, using the following code:

Since this may take some time to compute, you can load pre-computed data
with:

Note: these results can be loaded with:
data(flowMergel)

We'll look at just the first sample for now. Compare sequential vs all-at—once
gating, with and without transformation..

fc.all <- flowClust(tData.n[[1]],
K = 1:10, varNames = colnames(tData.n[[1]])[1:7],
trans = 1, nu = 4, nu.est = 1)
fc.all.notrans <- flowClust(tData.n[[1]],
K = 1:10, varNames = colnames(tData.n([[1]])[1:7],
trans = 0, nu = 4, nu.est = 1)
fc.sequential <- flowClust (tData.n[[1]],
K = 1:10, varNames = colnames(tData.n[[1]]) [c(1,
2)], trans = 1, nu = 4,
nu.est = 1)
fc.sequential.notrans <- flowClust(tData.n[[1]],
K = 1:10, varNames = colnames (tData.n[[1]]) [c(1,
2)], trans = 0, nu = 4,
nu.est = 1)

The first call to flowClust fits models containing from 1 through 10 clusters
(specified by X) to all the dimensions of the data (specified by the varNames
parameter). We applied the default parameter values for transformation and
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degrees of freedom, specifically, common degrees of freedom, and common Box—
Cox transformation parameter. The second call applies only to the scatter
dimensions.

We can examine the BIC plots for each set of models and we can choose the
model with the max BIC from each fitting procedure and then we can proceed
to plot the best fitting models to get an idea how they differ.

par(mfrow = c(2, 2))
plot(BIC(fc.all), main = "All at Once + Transformation",

type = "o")

plot(BIC(fc.all.notrans), main = "All at Once",
type = "o")

plot(BIC(fc.sequential), main = "FSC v SSC + Transformation",
type = "o")

plot (BIC(fc.sequential.notrans),
main = "FSC v SSC", type = "o")
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Model selection can be automated, without examining the BIC plots.
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fc.all <- fc.all[[which.max(BIC(fc.all))]]

fc.all.notrans <- fc.all.notrans[[which.max(BIC(fc.all.notrans))]]
fc.sequential.notrans <- fc.sequential.notrans[[which.max(BIC(fc.sequential.notrans))]]
fc.sequential <- fc.sequential[[which.max(BIC(fc.sequential))]]

The above code identifies the model with the maximum bayesian information
criterion (BIC) value and selects it from the list of flowClust fitted models. To
plot the models, we need to pass the flowClust fit and the data frame to the plot
function, and specify which dimensions we want to plot. This is cumbersome.
The flowMerge package provides another option. We can construct a flowObj
object using the data and fitted model. This can be passed directly to the plot
function which will plot all projections of the data.

flowClust generates multiple models for the same set of data. In order to keep
track of which data set corresponds to which model, we can combine them in
a flowObj object. Plotting flowClust models is also simplified for this type of
object.

fc.all <- flowObj(fc.all, tData.n[[1]])

fc.all.notrans <- flowObj(fc.all.notrans,
tData.n[[1]])

fc.sequential <- flowObj(fc.sequential,
tData.n[[1]])

fc.sequential.notrans <- flowObj(fc.sequential.notrans,
tData.n[[1]])

e flowObj combined model and data
e Memory efficient: keep only one copy of the data for multiple models

e Extract data via getData(object)

The flowObj function will combine the flowClust model and the flowFrame
into a single object. This simplifies data manipulation later on since we won'’t
have to keep track of which flowFrame goes with which model when we’re ana-
lyzing multiple samples.

par (mfrow = c(2, 2))

plot(as(fc.all, "flowClust"), data = tData.n[[1]],
subset = c("CD3", "CD8"), pch = 20,
main = "All at once + transformation")

plot(as(fc.all.notrans, "flowClust"),
data = tData.n[[1]], subset = c("CD3",
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"CD8"), pch = 20, main = "All at once")

plot(as(fc.sequential, "flowClust"),

data = tData.n[[1]], pch = 20,
main = "FSC v SSC + transformation")

plot(as(fc.sequential.notrans,

CD8

SSC
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0.0
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"flowClust"), data = tData.n[[1]],
pch = 20, main = "FSC v SSC")
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All-at—once clustering with or without transformation doesn’t identify the
CD8/CD3+ cell population correctly.

Optimal parameters for scatter dimensions and fluorescence dimensions
are different.

Could use gaussian mixtures, but it would affect the clustering of scatter
dimensions.

Best option is sequential gating of scatter followed by fluorescence dimen-
sions.

Single cell population modeled by three clusters in the scatter channels.

flowMerge can help model it as distinct cell population.
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We see that the model in the first panel (clustering all dimensions simultane-
ously) doesn’t identify the CD8+/CD3+ cell subpopulation properly. Similarly,
the second model (clustering all dimensions, no transformation) also doesn’t pick
up the CD8+/CD3+ populations. It is possible that the degrees of freedom is
too low (set to nu=4, and estimated from the data). However, if we were to
use a Gaussian distribution, this would impact gating of the populations in the
scatter dimensions. We see that the sequential gating approach (FSC vs SSC
with and without transformation) does a good job of fitting the cell populations
in the scatter dimensions. Furthermore, visually, we don’t see any substantial
difference between the two models fit to the scatter data in this case. The only
issue is that three clusters are required to model what is clearly a single popu-
lation in the upper left of the FSC vs SSC plot. This is where the flowMerge
package comes into play. FlowMerge makes some specific assumptions about
the parameters passed used to fit the flowClust model. Specifically , flowMerge
requires that a common degrees of freedom and a common transformation pa-
rameter have been used during model fitting, (i.e. (trans=1, nu.est=1)). This

was the case above, so we can continue.

flowMerge Objects

getSlots("flowMerge")

merged entropy
"numeric" "numeric"
DATA expName
"environment" "character"
varNames K
"character" "numeric"
w mu

"vector" "matrix"
sigma lambda
"array" "numeric"

nu Z
"numeric" "matrix"

u label

"matrix" "vector"
uncertainty ruleOutliers
"vector" "vector"
flagQutliers rm.min
"vector" "numeric"
Irm.max logLike
"numeric" "numeric"
BIC ICL
"numeric" "numeric"
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Merge overlapping clusters to model distinct cell populations.

flowMerge requires that each cluster is modeled with a common degrees of free-
dom and a common transformation parameter. Merging clusters is trivial, given
the flowObj model object:

ml <- merge(fc.sequential.notrans)
m2 <- merge(fc.sequential)

The code above merges clusters in the sequentially gated model, with and
without transformation. The output is a list of merged models. The next step
is to identify the optimal merged model.

FlowMerge iteratively merges the clusters in the flowClust model to generate
distinct cell populations that are represented by single model components. Each
merged model is evaluated based on the entropy of clustering. The change in
entropy can be plotted as a function of the number of clusters, or as a function
of the cumulative number of merged observations. The optimal merged model
is the one where the slope of the entropy vs number of clusters or entropy vs
number of merged observations plot changes.

par(mfrow = c(2, 2))
fitPiecewiseLinreg(ml, plot = T,
normalized = TRUE, )
fitPiecewiselLinreg(ml, plot = T,
normalized = FALSE)
fitPiecewiselLinreg(m2, plot = T,
normalized = TRUE)
fitPiecewiseLinreg(m2, plot = T,
normalized = FALSE)
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The optimal num-
ber of clusters is chosen to be either two or three, depending on which model
and which model selection method we choose.

We can plot the different merged models to see how they differ.

par (mfrow = c(2, 2))
plot(mi[[3]1])
plot(m2[[3]])
plot(m2[[2]]1)
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In practice, any of these model fits seems to be acceptable. We’ll choose to
use the 3 cluster model based on sequential gating with transformation.

We can identify the optimal merged model from the model 2 series of fits using
fitPiecewiseLinreg and then extract the gated populations:

m <- m2[[fitPiecewiseLinreg(m2,
normalize = FALSE)]]
f1 <- split(f = m)

The split () function extracts the cells within each of the gates that match
the filtering criteria for outliers. By default the filtering criteria selects events
that that are within the 90% quantile of the gate. We can change the filtering
criteria using the ruleOutliers() function. Below, we change the quantile level
for filtering events from 0.9 to 0.99. As a result, when we extract the data we
have more events included in the gate.

We can modify the threshold for outlier detection when plotting or extracting
a cell population. The ruleOutliers function modifies the outlier detection
rule. Most commonly, we’ll use a certain quantile of the distribution, beyond
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which events are considered outliers. The default is the 90% quantile. When we

extract the population, we see the number of included events changes based on
the outlier threshold.

ruleQutliers(m)
Rule of identifying outliers: 907 quantile
dim(split(f = m)[[1]])

events parameters
481 8

ruleQutliers(m) <- list(level = 0.99)
Rule of identifying outliers: 997 quantile
dim(split(f = m)[[1]])

events parameters
510 8

Once populations have been gated and extracted in the scatter dimensions,
we can proceed to gate populations in the fluorescence dimensions. It is inter-
esting to plot the gated populations to have a look.

splom(fl[[l]][, C(l: 2: 3: 5) 6:
7)1)
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o

FSC

Scatter Plot Matrix

print (splom(£1[[2]]1[, c(1, 2, 3,
5,6, 71))
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Examining the previous plots, we see that popu

lation 1 contains CD3+,
CD4+, and CD8+ cells. This is the population we will focus on. We will use
flowClust to gate the CD4,CDS8, and CD3 populations. Looking at the scatter
plots, we see the positive cell populations we’re interested appear to be somewhat
rare. We will use Gaussian, rather than ¢-distributions to fit the data. We will

also try fitting the data with and without transformation.

fl.trans <- flowClust(f1[[1]],
varNames = colnames(f1[[1]]) [c(3,
5, 6)], K =1:10, trans = 1,
nu = Inf, nu.est = 0)
fl.notrans <- flowClust(f1[[1]],
varNames = colnames(f1[[1]])[c(3,
5, 6)], K =1:10, trans = 0,
nu = Inf, nu.est = 0)

We run the second stage clustering on the CD3/CD

data(flowMerge2)

25

4/CDS8 fluorescence chan-
nels, using gaussian mixtures and t—mixtures. Populations are relatively sym-
metric in the fluorescence channels, so we opt for no transformation.

Again, the data has been pre-computed to save time. You can load it with:




Next we plot and choose the best fitting model, again by examining the BIC
plots.

par(mfrow = c(1, 2))
plot (BIC(f1l.trans), type = "o",

main = "BIC, flowClust\nmodels with transformation')
plot (BIC(fl.notrans), type = "o",
main = "BIC, flowClust\mmodels without transformation")
BIC, flowClust BIC, flowClust
models with transformation models without transformation
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We see that the best fitting
model with or without transformation has four clusters. Also note that some of
the models with no transformation failed to converge, returning a BIC value of
NA. These are dealt with apporpriately within flowClust. How do the max BIC
models compare?

plot(flowObj (f1.trans[[4]], f1[[1]1]),
pch = 20, new = T, main = "With transformation, K=4")

plot(flowObj (f1l.notrans[[4]], f1[[1]]),
pch = 20, new = T, main = "Without Transformation, K=4")
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It’s interesting to note that the CD3+/CD8+ cell population identified
in the model without transformation, and K=4 clusters picks up a couple of
CD3+4/CDS8- events. This is due to the low density nature of this cell popula-
tion and our use of t—mixtures for modeling. We could have a look at the K=5
solution (even though it doesn’t have the highest BIC value) to see if we get

further resolution of this cell population.

plot (flowObj (f1.notrans[[5]]1, f1[[1]11),
"Without Transformation, K=5")

pch = 20, new = T, main

NULL
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The CD34/CD8+ and CD3+/CD4+ cell populations are now well defined.
There are two additional populations that pick up some dim events in the CD4
and CD8 dimensions. This is acceptable. We modify the filter to pull in a
few extra events when we look for HLADr+ cells in the CD3+/CD4+ and
CD8+/CD3+ populations. In the end, we’re using Gaussian distributions here,
so it’s acceptable. We can use the order () function to pull out the populations
of interest, based on their mean fluorescence intensities.

We want the CD8+4/CD3+ and CD4+/CD3+ subpopulations. We can make use
of model parameters estimated by flowClust to select these programmatically.

f1.2 <- flowObj(f1l.notrans[[5]],
f1[[111)
ruleOutliers(f1.2) <- list(level = 0.99)

Rule of identifying outliers: 997 quantile

order (f1.26@muf[, 1], f1.2@mul, 3],
decreasing = TRUE) [1]

[1] 2
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order (f1.20@mul, 2], fl1.2@mul, 3],
decreasing = TRUE) [1]

[1]1 3
e Raise the outlier threshold.

e Use order to sort populations on their CD8/CD3, and CD4/CD3 columns.

e The CD8+/CD3+ and CD4+/CD3+ populations are the first in the list
returned by the above code.

The above code orders the mean fluorescence intensity of each population,
in increasing order, by the CD8/CD3 (columns 1 and 3) and CD4/CD3 markers
(columns 2 and 3). The first element of each of these are the indices of the
CD8+/CD3+ population, and CD4+/CD3+ populations, respectively. We can
pull these out using the split function again.

hladr <- split(x = getData(f1l.2),
f = as(f1.2, "flowClust"),
population = 1ist(CD8CD3 = order (f1.2@mul,
1], f1.2@6mu[, 3], decreasing = TRUE)[1],
CD4CD3 = order (fl.2@mul,
2], fl1.26mul, 3], decreasing = TRUE)[1]))
print (densityplot (“CD8 + CD4 +
HLADr, as(hladr, "flowSet'")))
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We see that the HLADr+ cells are really rare, so there’s no point running
flowClust on these. We’ll use the rangeGate() function for one dimensional
gating instead.

hladr.cd3.cd4 <- Subset(hladr([[1]],
rangeGate (hladr[[1]], stain = "HLADr",
plot = FALSE, alpha = 0.5,
filterId = "CD3+CD4+HLAct"))
hladr.cd3.cd8 <- Subset(hladr([[2]],
rangeGate (hladr[[2]], stain = "HLADr",
plot = FALSE, alpha = 0.5,
filterId = "CD3+CD8+HLAct"))
100 * dim(hladr.cd3.cd4)[1]/dim((data[[1]]))[1]

events
0.025

100 * dim(hladr.cd3.cd8)[1]/dim((data[[1]]))[1]

events
0.075
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We find that 0.02 percent of the cells are CD3+/CD8+/HLADr activated,
and 0.05 percent of the cells are CD4+/CD3+/HLADr activated. We have
determined what the gating procedure should be for a single sample. Now we
want to analyze the rest of the samples in the same manner. We would also like
this to be analyzed quickly, and if we have multiple processors available, we can
use the snowfall package to help us distribut the work.

Automated Gating with FlowClust in Parallel

In order to use the snow and snowfall package, you need to construct a snow
cluster. Snowfall simplifies all this for you with a call to sfInit().

flowClust has support for parallel processing via the snow and snowfall packages.
We initialize snowfall by running:

sfInit(parallel = TRUE, cpus = 4)

sfInit constructs a snow cluster utilizing 2 cpus on the local machine. flow-
Clust will detect that snowfall is in use and will utilize the snowfall package to
distribute computations amongst the cluster nodes.

The following code performs the forward and side scatter gating on the full set
of samples. f£sApply cycles through the samples in the flowSet. We’ll use the
parameter settings we decided upon from the first run.

result <- fsApply(tData.n, function(x) flowClust (x,
K =1:10, trans = 1, nu = 4,
nu.est = 1, varNames = colnames(x)[1:2]))
sfStop ()

The data takes some time to process. A pre-computed version has been provided
to save time:

data(flowMerge3)

Next we extract the max BIC solution for each sample, construct flowObj
objects, and do the merging.

Essentially, we proceed as before, but wrapping calls in lapply, and sapply
statements to loop through the different samples.
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result <- lapply(result, function(x) x[[which.max(BIC(x))1])
result <- sapply(1:length(data),

function (i) flowObj(result[[i]],

tData.n[[i]]))

result <- lapply(result, function(x) {

m <- merge (x)

m[[fitPiecewiseLinreg(m)]]

»

Semiautomated Gating
We now need to select the lymphocyte populations. These can vary from one
instance of running the algorithm to another due to random initialization. The
code below plots each FSC vs SSC gating and allows you to click with your mouse
in the center of the lymphocyte cluster (usually the high density population
around FSC 400, SSC 200).

indices <- unlist(lapply(result,
function(x) {
plot (x)
z <- unlist(locator(n = 1))
inc <- which.min(sapply(1:x@K,
function(i) mahalanobis (box(z,
lambda = x@lambda),
x@mu[i, 1:2], x@sigmali,
, 1))
plot(x, include = inc)
inc

»)

We load the pre-gated data for this analysis. We then proceed to exract
the populations of interest (see vignette for details), and run the next stage of
clustering.

The code above will compute the mahalanobis distance between the location
you select and each cell population on the transformed scale. The mahalanobis()
function is provided by the stats package. The Box—Cox transformation box ()
is provided by flowClust, and takes the transformation parameter specific to the
sample under consideration as an argument, as well as the data being trans-
formed.

Again, we extract the populations of interest using split (), and run the next
stage of clustering on the fluorescence channels.

result.split <- sapply(1:length(result),
function(i) split(f = result[[i]])[[indices[i]]])
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Stage 2 Clustering

We'll run flowClust with cluster—specific transformation parameters. We
won’t be able to run flowMerge in this case, but it will give us more model
flexibility.
sfInit(parallel =

TRUE, cpus = 2)
result.fl <- lapply(result.split,

function(x) flowClust(x, B.init

100,
K = 1:10, varNames =

colnames (x) [c (3,

5, 6)], nu = Inf, nu.est = 0,
trans = 2))

sfStop ()

And, again, we can load the pre-computed data to save time here:
data(flowMerge4)

We will extract the max BIC model for the fluorescence clustering, construct
the flowObj object, and plot it to determine whether the fit is good. We can

manually explore models with fewer or more clusters if the max BIC fit is not
appropriate. Extract the max BIC model
result.fl.bic <- sapply(1:length(result.fl),
function (i) flowObj (result.f1[[i]][[which.max(BIC(result.f1[[i]]))]1],
result.split[[i]]))

clusters.

Recall that the CD8+/CD3+ population is not well defined for sample 1.
We manually select a model with five clusters rather than the model with 4

plot(result.fl.bic[[1]], pch = 20)

result.fl.bic[[1]] <- flowObj(result.f1[[1]1][[5]],
result.split[[1]])
plot(result.fl.bic[[1]], pch = 20)
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Extract the CD4+/CD3+ and CD8+/CD3+ populations and look at the
HLADr markers.

fl.split.cd8 <- sapply(1:length(result.fl.bic),
function(i) split(x = result.split[[i]],
f = as(result.fl.bic[[i]],
"flowClust"), population = list(order(result.fl.bic[[i]]@mul,
1], result.fl.bic[[i]]@mul,
3], decreasing = TRUE)[1])))
fl.split.cd4 <- sapply(1:length(result.fl.bic),
function(i) split(x = result.split[[i]],
f = as(result.fl.bic[[i]],
"flowClust"), population = list(order(result.fl.bic[[i]l]@mul,
2], result.fl.bic[[i]]Gmul,
3], decreasing = TRUE)[1])))

Finally, we can gate the HLADr positive populations using the rangeGate func-
tion again.
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all.hladr.cd3.cd8 <- lapply(fl.split.cd8,
function(x) Subset(x, rangeGate(x,
stain = "HLADr", plot = FALSE,
border{uant = 0.5, alpha = 0.5,
filterId = "CD3+CD8+HLAct")))
all.hladr.cd3.cd4 <- lapply(fl.split.cd4,
function(x) Subset(x, rangeGate(x,
stain = "HLADr", plot = FALSE,
border{uant = 0.5, alpha = 0.5,
filterId = "CD3+CD4+HLAct")))

We can get the percentage of cells from the counts.

CD4.hladr <- sapply(1:length(all.hladr.cd3.cd4),

function(i) 100 * dim(all.hladr.cd3.cd4[[i]])[1]/dim(data[[i]]) [1])
CD8.hladr <- sapply(1:length(all.hladr.cd3.cd8),

function(i) 100 * dim(all.hladr.cd3.cd8[[i]])[1]/dim(data[[i]])[1])

print (barchart (reorder (PatientID,
as.numeric(factor(GroupID))) ~
pr, data = data.frame(pr = as.vector(CD4.hladr),
pData(data) [, c("GroupID",
"PatientID")]), groups = GrouplID,
auto.key = T))

print (barchart (reorder (PatientID,
as.numeric (factor (GroupID)))
pr, data = data.frame(pr = as.vector(CD8.hladr),
pData(data) [, c("GroupID",
"PatientID")]), groups = GroupID,
auto.key = T))

DRUG A DRUG A
DRUG B DRUG B
. . . . .
[ — pidos3 ]
pide77 f—— 1 pide77
pides7 = e E—
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Metaclustering

Next we will examine how to match cell populations across multiple samples
using the models output by flowClust and flowMerge. We will use a different
data set for this example, consisting of nine lymph node samples from individuals
with DLBCL, labelled with three different antibodies, in addition to forward and
side-scatter.

require(flowMetaCluster)
require (snowfall)
data (1ymphoma)

We load the lymphoma data above and run flowClust in parallel using the
snowfall package. We’ll run the clustering on the fluorescence dimensions only,
since the forward and side scatter dimensions are pretty clean, as we can see
below.

print (xyplot(FS ~ SS, lymph[[1]1))
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The above plot is representative of the data distribution in the forward and
side scatter dimensions of this data set. Therefore there is no need to run flow-
Clust on FSC and SSC. We choose the default parameterization of an estimated
transformation, and an estimated degrees of freedom, and fit models with one
through ten components on the fluorescence channels.

We run flowClust on the data, followed by flowMerge.

result.lymph <- fsApply(lymph,
function(x) flowClust(x, varNames = colnames(x)[-c(1:2)],
K =1:10, nu = 4, trans = 1,
nu.est = 1))

sfInit(parallel = TRUE, cpus = 4)
clusterEval@(sfGetCluster (), library(flowMerge))
m <- sfLapply(result.lymph.opt,
merge)
k <- sfLapply(m, fitPiecewiseLinreg)
sfStop ()
m <- sapply(1:length(k), function(i) m[[i]][[k([[i]11])
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With the merged results we can now metacluster the samples. We have two
possible approaches. The first uses the flowMerge methodology to merge cell
populations across samples using the entropy measure. The second method uses
the pairwise mahalanobis distance between cell populations and their centers,
with the additional constraints of allowing only a single cell population from
each sample to belong to each metacluster. We provide examples using these
methods below. The package included, flowMetaCluster is a development release
for this workshop.

#Mahalanobis distance metaclustering
meta<-metaCluster(m) ;

#Entropy-based metaclustering
meta2<-metaClusterByMerging (m) ;

Two different data structures, meta and meta2 store information required to
generate metacluster memberships for entropy—based metaclustering and meta-
clustering based on Mahalanobis distance between populations. The flowMeta-
Cluser provides functionality for extracting and plotting the metaclustered cell
populations using these structures. More information is provided in the Vi-
gnette.

flowMetaCluster Objects

Mahalanobis distance based metaclustering

getSlots("flowMetaCluster") #S4 object

flow Indicator
"environment" "data.frame"

Entropy Based Metaclustering

names (meta2); #S3 object

(1] "z" "adjacency" "entropy"

The two function calls above perform metaclustering of the cell populations
across samples using two different methods. The first metaCluster applies a Ma-
halanobis distance based approach to identify and cluster cell populations that
are near each other. The algorithm applies an additional constraint that allows
no more than one cell population from each sample to belong to a single meta-
cluster (i.e. there is a one-to-one, rather than many-to-one mapping between
samples and metaclusters). The second method makes use of cluster merging
based on the entropy of overlapping clusters. We concatenate the individual
flowFrames to be metaclustered, and evaluate each flowClust model against the
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entire data set. We then apply the merging algorithm used in flowMerge to com-
bine overlapping cell populations, and look for the changepoint in the entropy
vs cumulative number of merged observations plot.

The flowMetaCluster package provides implementations of both of these
methods, together with functions for visualization of the metaclustered data.
The mahalanobis-distance based metaclustering can be visualized by calling the
plot () method.

print(plot (meta, by = "metacluster",
KK = 1, main = "Metacluster 1"))
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print(plot (meta, by = "metacluster",
KK = 2, main = "Metacluster 2"))
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print (plot(meta, by = "metacluster",
KK = 3, main = "Metacluster 3"))

print(plot (meta, by = "metacluster",
KK = 4, main = "Metacluster 4"))
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There are a number of helper methods for working with the metaclustered
data.

# Return metacluster membership of each cell population.

metaClusterPopulations (meta)

# Return the transformed or untransformed means of the populations in each metacluster
getClassMeans (meta)

# Return the list of flowMerge objects being clustered

getFlow(meta)

#Return clustering statistics about each metacluster

getClusterStats (meta)

# Return the distance matrix used for clustering the data

getDist (meta)

These methods can be used to extract information about each metacluster for
further analysis.

We can use the split method to extract individual cell populations within each
metacluster. From the plots above, we we want to extract metaclusters two and
four. flowMetaCluster implements the split method for this purpose.

2)
4)

metacluster2 <- split(meta, metaK
metacluster4 <- split(meta, metakK

print (splom(metacluster2[[1]1][,
c(3, 4, 5)1))

41



FL4.LOG

FL1.LOG

FL2.LOG

print(splom(metacluster4[[1]][,

Scatter Plot Matrix

c(3, 4, 5)1))
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FL4.LOG

FL2.LOG

FL1.LOG

Scatter Plot Matrix

We can also have a look at the entropy vs cumulative number of merged obser-
vations plot for the entropy based metaclustering.

screePlot (meta2)
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e The entropy vs cumulative number of merged observations identifies when
sufficient populations have been merged across samples.

e Localization of the changepoint can be done automatically, as in flowMerge.

cp <- findChangePoint (screePlot (meta2,
main = "Entropy vs Cum. # Merged Obs."))
print (cp)

[1] 16

The screePlot function generates a plot of the entropy vs cumulative number
of merged clusters, and returns the data that can be used as input to the find-
ChangePoint function. The changepoint in this plot corresponds to the model
where further merging of populations doesn’t significantly decrease the entropy
because the remaining populations do not significantly overlap. We can fit a
two-component linear regression to this plot to automatically identify the loca-
tion of the changpoint and plot the corresponding model.

The changepoint corresponds to the model with 16 populations. We can plot
this model to see how it looks.
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We can plot the populations identified by entropy based metaclustering.

plot(meta2)

FL1.LOG
FL1.LOG

0 200 600 0 200 400 600

FL2.LOG FL4.LOG

FL2.LOG

0 200 400 600

FL4.LOG

There are four major populations with the remaining 12 populations corre-
sponding to various outlier points.

print (plot(m([[1]], pch = ".", new = T,
main = "flowClust fit: Sample 1"))

NULL
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Ongoing Work

Work on the metaclustering package is ongoing. We hope to have development
version ready for submission in the near future. We are in the process of devel-
oping greater depth and functionality for the package.

Feature Requests

e Integrate flowMerge more closely with workFlows.
e Add explicit parallelization support
e Expand plotting and graphing capabilities

flowMetaCluster
e Add support for user provided distance matrix.
e Add more robust support for labeling of cell populatons.

e Entropy-based merging: map metacluster labelled events back to original
populations.
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e Implement bayesian priors for rare cell populations.

Selected References

o Merging Mizture Components for Cell Population Identification in Flow
Cytometry Greg Finak, Ali Bashashati, Ryan Brinkman, Raphael Got-
tardo. Adv. In Bioinformatics.

o Automated Gating of Flow Cytometry Data via Robust Model-Based Clus-
tering Kenneth Lo, Ryan Brinkman, Raphael Gottardo. Cytometry A.

R Code

HAARRRH AR R R A AR R AR R R R AR R HAR R R AR R R HHRRRHARRRHARRH R
### chunk number 1: pre
g
options (prompt=" ",continue="\t",width=43);

HAAARUH AR R R AR BB AR R H AR B HAR R AR R HARRHARRRAARRHHHR
### chunk number 2: loadpackages
B
require (flowMerge)

require(flowViz)

require (flowQ)

require(flowStats)

require(snowfall)

require (fpc) ;

require(flowTrack)

HRURBURRURAURARRRRURAURAURRARRARRRR BB AR ARRARU AR U AR

### chunk number 3: loaddata

HURBHHHHARHH AR R R HARRIHH R R R AR 3

file.loc<-system.file("extdata",package="flowTrack");

data<-read.flowSet (path=file.loc,pattern="fcs",phenoData="annotation.txt",
transformation=FALSE)

s
### chunk number 4: summary
T
data
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i T
### chunk number 5: summary?2
st
datal[[1]]

HUABURRURAUR AR R AR UR AU R AR AR R AR RRR BB AR AR RARBARURAEH
### chunk number 6: names
HRAHAHHRRRRRRRRRBR R AU AR AR AR R RRRRRRRRR R AR R R AR AR AR
colnames (data) ;

sampleNames (data) ;

G i G g
### chunk number 7: phenoData2
g i i
pData(data)

B T

### chunk number 8: renamesamples

HARBARH AR R AR AR AR AR R R R AR AR HRRARR AR AR R BB ARG AR HARH
sampleNames (data)<-as.character (pData(data) [, "PatientID"])

HRERBUARUR AU RRRRRRBR R UL R B AR R AR BRR UL R R AR R AR

### chunk number 9: renamechannels

RURBURRURABRAR R AR URRURARRAR R AR RRR BB AR RAR R AR RR AR EH

for(i in seq_len(length(data))){

pData(parameters(datal[[i]])) [, "desc"]<-c("NA","NA","CD8", "CD69",
"CD4","CD3", "HLADr","NA")

}

colnames (data)<-c("FSC","SSC", "CD8","CD69", "CD4","CD3", "HLADr", "Time")

2
### chunk number 10: densityplotcode eval=FALSE
i 3
## densityplot(~.,data);

HAH BRI R R
### chunk number 11: densityplot
3
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print (densityplot(~.,data));

HRUABURRUR AU RAR R AR UR AU R AR AR R AR RAR U R AR RAR R AR RARBRAEH

### chunk number 12: transform

RARAHRHRRRR BB AR AR R R AR AR R AR R RRRRRRR BB R R AR R AR
tData<-transform(data,transformList (colnames (data) [3:7],logicleTransform()))

B
### chunk number 13: demnsityplot2code eval=FALSE
HAH BRI R R R R
## densityplot(~.,tData);

RRHHHH AR AR R R HH AR R AR R R R R RAARARRRR R R #H#
### chunk number 14: densityplot3
HARBAHHARHRBHR AR R AR R BB AR R R R AR AR AR R R RHRR AR AR RS
print (densityplot(~.,tData));

B i
### chunk number 15: scatterplotcode eval=FALSE
i 3
## splom(tDatal[2]][,c(1,2,3,5,6,7)],smooth=TRUE)

HRUERBHARUR AU RRRRRRBR R UL R R R BB RRBRR BB AR RRR R ARG ARG
### chunk number 16: scatterplot
RURBURRURABRARRRRUR R U R AR RAR R AR RRR BB AR RAR R AR AR URARH
print (splom(tDatal[2]]1[,c(1,2,3,5,6,7)],smooth=TRUE)) ;

g

### chunk number 17: boundaryfilter
L L D S

tData.f<-Subset (tData,filter(tData, boundaryFilter (c("FSC","SSC"))))

i 3
### chunk number 18: scatterplot2code eval=FALSE

B
## splom(tData.f[[2]][,c(1,2,3,5,6,7)],smooth=TRUE)

B g
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### chunk number 19: scatterplot2
HAHBR IR R R
print (splom(tData.f[[2]][,c(1,2,3,5,6,7)],smooth=TRUE))

RRHHHHH R AR AR R R R R R R AR AR R H R R AR AR R R R ##
### chunk number 20: opts

HARBARH AR H AR AR AR AR R R R AR AR R BB ARG AR AR HRRARR AR HRRH
options (width=40) ;

HRURBUARUR AU RRRBRRBRRUR AR B R BB RR B AR BB R URRRR R ARG

### chunk number 21: normalization

RURBURRURAURARRRRRR AU RARRAR R AR RRR BB AR AR R AR RRURARH

tData.n<-normalize (tData.f,normalization(parameters=colnames (tData.f)[3:7],
normFun=function (x,parameters, ...)warpSet (x,parameters,...)))

3
### chunk number 22: normplotcode eval=FALSE

B
## densityplot(~.,tData.n)

e
### chunk number 23: normplot
B
print(densityplot(~.,tData.n))

B
### chunk number 24: loadsequentialGating
B i
data(flowMergel) ;

RARRBRBRRR BB AR RBRBRGRBRURRRRRARRRRRRRBRBR G R BB R AR

### chunk number 25: sequentialGating eval=FALSE

BUERBHARUR AU RRRBRRBR R U AR BB BB B AR BB R R AR RR AR

## fc.all<-flowClust(tData.n[[1]],K=1:10,varNames=colnames (tData.n[[1]])[1:7],
##trans=1,nu=4,nu.est=1)

## fc.all.notrans<-flowClust(tData.n[[1]],K=1:10,varNames=colnames (tData.n[[1]1])[1:7],
##trans=0,nu=4,nu.est=1)

## fc.sequential<-flowClust(tData.n[[1]],K=1:10,varNames=colnames (tData.n[[1]]) [c(1,2)],
##trans=1,nu=4,nu.est=1)

## fc.sequential.notrans<-flowClust (tData.n[[1]],K=1:10,varNames=colnames(tData.n[[1]])
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##[c(1,2)],trans=0,nu=4,nu.est=1)

e i

### chunk number 26: bicplots
T

par (mfrow=c(2,2));

plot(BIC(fc.all),main="A11 at Once + Transformation",type="o");
plot(BIC(fc.all.notrans),main="A11 at Once",type="o");

plot (BIC(fc.sequential),main="FSC v SSC + Transformation",type="o0");
plot (BIC(fc.sequential.notrans),main="FSC v SSC",type="o");

HARBARH AR H AR AR AR AR HRR AR AR R BB AR R AR AR R BB AR AR AR S

### chunk number 27: bestfit

HURRRRHARRHBARRRHAR R R AR B R HHR R R AR R R BRRRH AR R R BRRRH AR
fc.all<-fc.all[[which.max(BIC(fc.all))]]
fc.all.notrans<-fc.all.notrans[[which.max(BIC(fc.all.notrans))]]
fc.sequential.notrans<-fc.sequential.notrans[[which.max(BIC(fc.sequential.notrans))]]
fc.sequential<-fc.sequential [[which.max (BIC(fc.sequential))]]

B

### chunk number 28: mkflowobj
e e
fc.all<-flowObj(fc.all,tData.n[[1]])
fc.all.notrans<-flowObj(fc.all.notrans,tData.n[[1]])
fc.sequential<-flowObj (fc.sequential,tData.n[[1]])
fc.sequential.notrans<-flowObj (fc.sequential.notrans,tData.n[[1]])

RARRBRRRRRRBRRRBRURGRBRURRRRRRRR BB BB R BB BB B RRR AR H

### chunk number 29: plot2 eval=FALSE

HRURBUARURR BB AR RR BB R ARG R AR BB R R RR R R AR

## par (mfrow=c(2,2));

## plot(as(fc.all, "flowClust"),data=tData.n[[1]],subset=
##c("CD3","CD8") ,pch=20,main="A11 at once + transformation");

## plot(as(fc.all.notrans, "flowClust"),data=tData.n[[1]],
##subset=c ("CD3", "CD8") ,pch=20,main="A11 at once");

## plot(as(fc.sequential,"flowClust"),data=tData.n[[1]],
##pch=20,main="FSC v SSC + transformation");

## plot(as(fc.sequential.notrans, "flowClust"),data=tData.n[[1]],
##pch=20,main="FSC v SSC");

e g

o1



### chunk number 30: plotl

HRURBUARURRURRRRRRRR AR BB R AR R AR R AR R AR SH

par (mfrow=c(2,2));

plot(as(fc.all,"flowClust"),data=tData.n[[1]],subset=c("CD3","CD8"),
pch=20,main="A11 at once + transformation");

plot(as(fc.all.notrans, "flowClust"),data=tData.n[[1]],subset=c("CD3", "CD8"),
pch=20,main="A11 at once");

plot(as(fc.sequential, "flowClust"),data=tData.n[[1]],pch=20,
main="FSC v SSC + transformation");

plot(as(fc.sequential.notrans, "flowClust"),data=tData.n[[1]],
pch=20,main="FSC v SSC");

3
### chunk number 31: flowMergeObjects
i
getSlots("flowMerge")

e
### chunk number 32: flowMerge
s
mi<-merge(fc.sequential.notrans);

m2<-merge (fc.sequential);

B
### chunk number 33: opts
2
options (width=40) ;

T
### chunk number 34: fitPiecewiselLinreg
e g
par (mfrow=c(2,2));
fitPiecewiselLinreg(ml,plot=T,normalized=TRUE,) ;
fitPiecewiseLinreg(ml,plot=T,normalized=FALSE) ;
fitPiecewiseLinreg(m2,plot=T,normalized=TRUE) ;
fitPiecewiseLinreg(m2,plot=T,normalized=FALSE) ;

i
### chunk number 35: opts

HAHBR AR R R
options (width=40) ;
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3
### chunk number 36: plotmerged

B
par (mfrow=c(2,2));

plot(m1[[3]1);

plot(m2[[3]11);

plot(m2[[2]]);

BARHAR AR R BRI A i
### chunk number 37: rm2

BARBHRH AR R BRI R AR R R
rm(m1) ;

HRURBUAR ARG RRRRR BB R AR AR BB R BB R AR AR
### chunk number 38: extract

HUABURRURAUR AR R AR R R A UR AR RARRARRARUR AR ARR AR R AR B RAEH
m<-m2[[fitPiecewiseLinreg(m2,normalize=FALSE)]];
fl1<-split(f=m);

RURBURRURAUR AR R AR U R AUR AR AR R AR RRRUR AR ARR AR B ARBRAEH
### chunk number 39: ruleQutliers

RARAHRBRRR BB AR AR R R AU RR AR R R RRRRRR AR AR R R R R RR AR
ruleOutliers(m);

dim(split (f=m)[[1]])
ruleOutliers(m)<-list(level=0.99);
dim(split (f=m) [[1]]);

HAHB R AR IR
### chunk number 40: flplots3 eval=FALSE
2
## splom(£1[[1]]1[,c(1,2,3,5,6,7)]1);

i 3
### chunk number 41: flplots4
B
print (splom(f1[[1]7][,c(1,2,3,5,6,7)1));

e g
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### chunk number 42: flplotsbb eval=FALSE
HAHBR IR R R
## print (splom(£f1[[2]][,c(1,2,3,5,6,7)1));

B i
### chunk number 43: flplotsb
i 3
print (splom(£f1[[2]]1[,c(1,2,3,5,6,7)1));

HRURBUARUR AU RRRBRRBRRUR AR B R BB RR B AR BB R URRRR R ARG

### chunk number 44: secondstage eval=FALSE

RURBURRURAURARRRRRR AU RARRAR R AR RRR BB AR AR R AR RRURARH

## fl.trans<-flowClust(f1[[1]],varNames=colnames(f1[[1]])[c(3,5,6)],
##K=1:10, trans=1,nu=Inf,nu.est=0)

## fl.notrans<-flowClust(f1[[1]],varNames=colnames(f1[[1]])[c(3,5,6)],
##K=1:10, trans=0,nu=Inf,nu.est=0)

B
### chunk number 45: loadstageZdata

HAHBR AR R R R R
data(flowMerge2)

RUHHHHH R R AR AR R R R R R R AR A R AR R R R R R RARARRR R R R #H

### chunk number 46: bicplot

HARBARHARH BB AR AR AR R R R AR AR R BB ARG AR R R R BB ARG AR RS

par (mfrow=c(1,2));

plot (BIC(f1l.trans),type="o",main="BIC, flowClust\nmodels with transformation")

plot (BIC(f1.notrans),type="0",main="BIC, flowClust\nmodels without transformation")

e B i i B i3
### chunk number 47: flplot
e i i e e 3
plot (flowObj (f1.trans[[4]],

f1[[1]1]),pch=20,new=T,

main="With transformation, K=4")

RRHHHH AR AR AR R R R R R AR AR R R R R R R R RARARRRR R #H#
### chunk number 48: flplot2
HUAARUH AR R R AR BB AR R H AR B HARRHRARR R AR RRHARR R AR BB R HHR
plot (flowObj (fl.notrans[[4]],
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f1[[1]]),pch=20,new=T,
main="Without Transformation, K=4")

RARHBRRRRR BB AR RBRBRGRUBRBRRRRRRRRRRBR B R BB G R BB AR RAH

### chunk number 49: flplot3

BURBUARURRURRRRBRR BB BB R AR BB R AR R AR AR AR AR

plot(flowObj (f1.notrans[[5]],f1[[1]]),pch=20,new=T,main="Without Transformation, K=5")

HRARRBHBRRRRRRRRBR R ARG RR AR RRRRRRRRRRRR R AR R R R AR AR
### chunk number 50: flowObj
B B R R R i
f1.2<-flowObj (fl.notrans([[5]],f1[[1]])
ruleOutliers(f1.2)<-1list(level=0.99);

order (f1.2@mu[,1],f1.2@mu[,3],decreasing=TRUE) [1]
order (f1.2@mu[,2],f1.2@mu[,3],decreasing=TRUE) [1]

HUABURRURAUR AR R AR R R AU R AR AR R AR RARUR AR AR R AR RARURAEH

### chunk number 51: split2

HAHABHRRRR BB AR AR R R AR R AR R RRRRRR AR RRRR R AR AR

hladr<-split (x=getData(f1.2),f=as(fl.2,"flowClust"),
population=1ist (CD8CD3=order (f1.2@mu[,1],f1.2@mu[,3],decreasing=TRUE) [1]
,CD4CD3=order (f1.2@mu[,2],f1.2@mul[, 3] ,decreasing=TRUE) [1]))

print (densityplot ("CD8+CD4+HLADr,as (hladr, "flowSet")));

B B R B R R R i

### chunk number 52: rangegate

HUARUARUR AU R AR R AR U R AU R AR AR R AR RA BB R AR R AR R AR B AR B RAEH

hladr.cd3.cd4<-Subset (hladr[[1]],rangeGate (hladr[[1]],
stain="HLADr", plot=FALSE,alpha=0.5, filterId="CD3+CD4+HLAct") )

hladr.cd3.cd8<-Subset (hladr[[2]],rangeGate (hladr[[2]],
stain="HLADr", plot=FALSE,alpha=0.5, filterId="CD3+CD8+HLAct") )

100*dim(hladr.cd3.cd4) [1]/dim((data[[1]])) [1]

100*dim(hladr.cd3.cd8) [1]/dim((data[[1]])) [1]

HARRBRBRHRRRAR AR ARAR AR AR RUERBRHRRRRRRRRRA R AR ARG R R

### chunk number 53: loaddata

RARRBH AR B R BR R R AR AR AR AR AR R R B R B R BB BB AR AR BB AR R R R R RS

file.loc<-system.file("extdata",package="flowTrack");

data<-read.flowSet (path=file.loc,pattern="fcs",
phenoData="annotation.txt",transformation=FALSE)

sampleNames (data)<-as.character (pData(data) [, "PatientID"])
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for(i in seq_len(length(data))){

pData (parameters(datal[[i]])) [, "desc"]<-c("NA","NA","CD8","CD69", "CD4","CD3", "HLADr", "NA")

}

colnames (data)<-c("FSC","SSC", "CD8", "CD69", "CD4","CD3", "HLADr", "Time")

tData<-transform(data,transformList (colnames (data) [3:7],logicleTransform()))

tData.f<-Subset (tData,filter (tData, boundaryFilter (c("FSC","SSC"))))

tData.n<-normalize(tData.f,normalization(parameters=colnames(tData.f)[3:7],
normFun=function (x,parameters, . ..)warpSet (x,parameters,...)))

i i i
### chunk number 54: snow

HARBHHH AR H BB AR AR AR R BB AR AR R AR ARG A RHRHRH BB ARG AR AR
sfInit(parallel=TRUE, cpus=4);

B b b b e i o

### chunk number 55: autogatingsnow eval=FALSE

HRURBURRURAU R AR RRRURRUR AR AR R ARRRRURARRAR R AR AR RAEH

## result<-fsApply(tData.n,function(x)flowClust (x,K=1:10,trans=1,nu=4,
##nu.est=1,varNames=colnames (x)[1:2]))

## sfStop();

B 2
### chunk number 56: loadautogating

B
data(flowMerge3)

e

### chunk number 57: maxbic
T
result<-lapply(result,function(x)x[[which.max(BIC(x))1]);
result<-sapply(1:length(data),function(i)flowObj(result[[i]],tData.n[[i]]))
result<-lapply(result,function(x){m<-merge(x);m[[fitPiecewiseLinreg(m)]1]})

e

### chunk number 58: semiautogating eval=FALSE

HARHARHARH AR AR AR R AR R RR AR AR R AR ARR AR AR A BB ARRARHARH

## indices<-unlist(lapply(result,function(x){plot(x);
##z<-unlist (locator(n=1));inc<-which.min(sapply(1:x@K,
##function (i)mahalanobis (box (z,lambda=x@lambda) ,x@mu[i,1:2],
##x0sigmali,,])));plot(x,include=inc);inc}))
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B e i i e
### chunk number 59: loadindices
B v i i
data(flowMergeIndices)

HUAARBH AR R R AR BB ARRGH AR B R HARRHARRRHA BB AR R R AARRRHHR

### chunk number 60: split

RRRHHH AR AR R R R R R R AR AR R R R HHAAARARRRR AR HH#
result.split<-sapply(1:length(result),function(i)split(f=result([[i]])[[indices[i]]])

HARBARHARH BB AR AR AR R R R AR AR HRRARR AR AR A BB ARR AR RS

### chunk number 61: parallelflowClust eval=FALSE

RRHHHH AR AR AR R R R R R AR AR AR R R R R R R AR ARRRR R R #H#

## sfInit(parallel=TRUE, cpus=2);

## result.fl<-lapply(result.split,function(x)flowClust(x,B.init=100,
##K=1:10,varNames=colnames (x) [c(3,5,6)] ,nu=Inf,nu.est=0, trans=2))

## sfStop();

B L B L A3
### chunk number 62: loaddata4
e e e e 3
data(flowMerge4)

HUAARBHARRHHARBH AR R R H AR R R HARR R AR R HARBHARBRHARRHHHR
### chunk number 63: flhighthrpt
i
result.fl.bic<-sapply(1:length(result.f1l),function(i)

flowObj (result.f1[[i]] [[which.max (BIC(result.f1[[i]]))]1],result.split[[i]]))

HUABURRURAUR AR R AR URAUR AR AR R AR RA R BB AR AR R ARBARBRAEH

### chunk number 64: manual
B B i b b B b e
plot(result.fl.bic[[1]],pch=20);
result.fl.bic[[1]]1<-flowObj(result.f1[[1]]1[[5]],result.split[[1]]);
plot(result.fl.bic[[1]],pch=20);

HUBBR LR R R BB B R LR B R BB B LR R R R AR BB R R AR R RS R R S Y
### chunk number 65: extract2
HUBBRBRBRUBBBRRRBRBRRRRRRBUBBRRBRBRBRRRR BB BBRRR B BRY
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fl.split.cd8<-sapply(1:length(result.fl.bic),function(i)
split(x=result.split[[i]],f=as(result.fl.bic[[i]],"flowClust"),
population=list(order(result.fl.bic[[i]]@mu[,1],result.fl.bic[[i]]@mul[,3],
decreasing=TRUE) [1])))

fl.split.cd4<-sapply(1:length(result.fl.bic),function(i)
split(x=result.split[[i]],f=as(result.fl.bic[[i]],"flowClust"),
population=list(order(result.fl.bic[[i]]@mu[,2],result.fl.bic[[i]]lC@mul[,3],
decreasing=TRUE) [1])))

i i i
### chunk number 66: rangeGate
HARBHHH AR H BB AR AR AR R BB AR AR R AR ARG A RHRHRH BB ARG AR AR
all.hladr.cd3.cd8<-lapply(fl.split.cd8,function(x)
Subset (x,rangeGate (x, stain="HLADr", plot=FALSE,borderQuant=0.5,
alpha=0.5, filterId="CD3+CD8+HLAct") ))
all.hladr.cd3.cd4<-lapply(fl.split.cd4,function(x)
Subset (x,rangeGate (x, stain="HLADr", plot=FALSE,borderQuant=0.5,
alpha=0.5, filterId="CD3+CD4+HLAct") ))

HURRRRH AR R R R AR R R AR R R R AR R R HRRRH AR R R HRRRH AR R R HARRH AR

### chunk number 67: hladrproportions

HARBAHH AR H AR R RR AR AR R R R AR AR HRRARR AR AR R BB ARG AR HRRH

CD4.hladr<-sapply(1:length(all.hladr.cd3.cd4),
function(i)100*dim(all.hladr.cd3.cd4[[i]]) [1]/dim(data[[i]]) [1])

CD8.hladr<-sapply(1:length(all.hladr.cd3.cd8),
function(i)100%dim(all.hladr.cd3.cd8[[i]]) [1]/dim(data[[i]]) [1])

HARHARH AR HRRARH AR R AR HRR AR AR R BB ARR AR AR HRR AR AR AR S

### chunk number 68: barchart

T

print(barchart (reorder (PatientID,as.numeric(factor (GroupID))) “pr,
data=data.frame (pr=as.vector(CD4.hladr),pData(data)
[,c("GroupID", "PatientID")]),groups=GroupID,auto.key=T))

e

### chunk number 69: barchart2

e i

print (barchart (reorder (PatientID,as.numeric (factor (GroupID))) “pr,data=data.frame(
pr=as.vector (CD8.hladr),pData(data) [, c("GroupID", "PatientID")]), groups=GroupID,auto.key=T))

B g
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### chunk number 70: loadlymphdata

RARBHHHARH R R R R AR R AR R BB AR AR R AR ARR AR R R R R AR AR RARH AR
require(flowMetaCluster)

require(snowfall)

data (lymphoma)
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