Getting Started with Lattice

immediate

July 29, 2010

Contents

1	Introduction	1
2	Basic ideas	2
3	Scatter plot (xyplot)	3
4	Box and whisker plots (bwplot)	4
5	Further Reading	5
6	Session information	7

List of Figures

1	Concentration of Indomethicin over time produced using xyplot	5
2	Concentration of Indomethicin over time using Subject as the	
	conditioning variable xyplot	6
3	Concentration vs Time of Indomethicin for 6 subjects using the	
	Grouping variable Subject.	6
4	Concentration vs Time of Indomethicin for 6 subjects using the	
	Grouping variable Subject.	7
	Grouping variable Subject.	

1 Introduction

The *lattice* package implements the Trellis graphics system and provides highlevel functions for visualization of multivariate data. This lab covers some of the basics of the lattice package.

Although the *lattice* package is included in R, you must explicitly load the package to make use of the functions it provides:

> library("lattice")

Lattice functions			
xyplot()	Scatter plot		
dotplot()	Cleveland dot plot		
bwplot()	Box and whisker plot		
histogram()	Histogram		
densityplot()	Kernel density plot		
qq()	Two sample quantile plot		

Lattice provides several plotting functions, some of the commonly used ones are listed below.

Table 1: Commonly used high-level lattice functions

2 Basic ideas

A typical call to the lattice function xyplot is shown below.

```
> xyplot(y ~ x | c, data, groups = g)
```

The arguments to a lattice function can be summarized in terms of

- 1. lattice function: A lattice plotting function such as xyplot, Rfunctiondotplot etc.
- 2. formula: The first argument to a lattice method is a formula. The formula for our example is y ~ x | c. If the lattice method takes only a single vector as input, the formula can be expressed as ~ x | c.
 - primary variables: Variables y (Y axis of the plot) and x (X axis of the plot) that defines the lattice display separated by the ~ character.
 - conditioning variable: Variable c in the example separated from the primary variables by the character |. The conditioning variable divides the plot into separate panels.
- 3. grouping variable: The variable g in the example. The grouping variable segregates data into subgroups within each panel.
- 4. data: A *data.frame* with column names corresponding to the variables y, x, c and g.

Lattice functions do not, in fact, generate a visual display. They return an object of class *trellis* which will generate the desired display when printed using the **print** function.

3 Scatter plot (xyplot)

We will use the Indometh data that contains plasma concentrations of the drug indomethic for six subjects over a period of eight hours to illustrate a few aspects of *lattice*. First, we will use xyplot to produce a scatterplot of concentration of the drug over time. (Figure 1)

```
> data(Indometh)
> df <- Indometh
> head(df)
  Subject time conc
1
        1 0.25 1.50
2
        1 0.50 0.94
3
        1 0.75 0.78
4
        1 1.00 0.48
5
        1 1.25 0.37
6
        1 2.00 0.19
```

Exercise 1

Reproduce the concentration vs time plot from Figure 1 by following the steps described below.

- 1. Create a scatter plot using xyplot. Use the formula conc ~ time with df as the data argument.
- 2. Change the X-axis label to 'Time (hours)' by adding an xlab argument to the xyplot call.
- 3. Similarly, change the Y-axis label to 'Concentration (mcg/ml)' using ylab.
- 4. Finally, change the title of the plot by adding a main argument.

Solution:

```
> myplot <- xyplot(conc ~ time, data = df,
+ xlab = "Time (hours)",
+ ylab = "Concentration (mcg/ml)",
+ main = "Pharmacokinetics of Indomethicin")
```

A scatter plot with the concentration profile for each patient appearing in a separate panel can be seen in Figure 2. This plot was produced by making use of Subject as the conditioning variable.

Exercise 2

1. Create a scatter plot by adding the conditioning variable Subject to the formula from Exercise 1.

2. Modify the conditioning variable in the formula to factor(Subject, levels
= 1:6) and observe the difference in the order of plots.

Solution:

```
> myplot <- xyplot(conc ~ time | factor(Subject, levels = 1:6),
+ data = df, main = "Pharmacokinetics of Indomethicin",
+ ylab = "Concentration (mcg/ml)",
+ xlab = "Time (hours)")
```

A scatter plot produced by superimposing the concentration profiles from all the subjects to a single panel can be seen in Figure 3. The figure makes use of lines instead of points and also has a legend to help distinguish the concentration profiles of different subjects.

Exercise 3

- Create a single scatter plot of the superimposed concentrations by making use of forumula conc ~ time and the additional argument groups = Subject to the xyplot function.
- 2. Add an additional argument type='1' to the function and observe what effect it has on the plot.
- 3. Add an additional arugment auto.key = list(space = "right") to the xyplot to add a legend to the right of the plot.

Solution:

```
> myplot <- xyplot(conc ~ time, data = df, groups = Subject, type='l',
+ auto.key = list(space = "right"),
+ main = "Pharmacokinetics of Indomethicin",
+ ylab = "Concentration (mcg/ml)",
+ xlab = "Time (hours)")
```

4 Box and whisker plots (wplot)

We are interested in finding out differences in the plasma concentration of Indomethicin amongst the six subjects. A box and whisker plot of the concentration of Indomethicin produced using the <code>bwplot</code> method can be observed in Figure 4

Exercise 4

- 1. Create a boxplot using the formula ~ conc and the lattice function bwplot.
- 2. Update the formula to ~ conc | Subject in order to add a conditioning variable to the boxplot.

Pharmacokinetics of Indomethicin

Figure 1: Concentration of Indomethicin over time produced using xyplot

3. Add an additional argument layout=c(6,1) to the buplot and observe its effect on the plot.

Solution:

```
> myplot <- bwplot(~ conc | Subject, data = df, layout = c(1,6),
+ main = "Concentration of Indomethicin",
+ xlab = "Concentration (mcg/ml)"
+ )
```

5 Further Reading

- The *lattice* package includes many detailed help pages. You can get an overview using the *R* command help(package="lattice").
- A good source of several lattice plots along with the code that produced them is http://lmdvr.r-forge.r-project.org.
- Multivariate Data Visualization with R by Deepayan Sarkar the author of lattice. See http://lmdvr.r-forge.r-project.org/.

Pharmacokinetics of Indomethicin

Figure 2: Concentration of Indomethicin over time using Subject as the conditioning variable xyplot

Figure 3: Concentration vs Time of Indomethicin for 6 subjects using the Grouping variable Subject.

Concentration of Indomethicin

Figure 4: Concentration vs Time of Indomethic in for 6 subjects using the Grouping variable ${\tt Subject}.$

6 Session information

- R version 2.11.1 Patched (2010-07-25 r52612), i386-apple-darwin9.8.0
- Locale: C/C/C/C/en_US.UTF-8
- Base packages: base, datasets, grDevices, graphics, methods, stats, tools, utils
- Other packages: lattice 0.18-8
- Loaded via a namespace (and not attached): grid 2.11.1