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Abstract

Second-generation sequencing technologies, when used to sequence ge-
nomic DNA with paired-end reads, are extremely powerful and sensitive
tools for discovering structural variation within a genome. Insertions and
deletions as well as translocations (and inversions–not discussed directly
here), if present in the genomic DNA under investigation, may be captured
by examining paired-end reads that are “unusual”. This little vignette
lays out the concepts for finding these structural variants in a simulated
genome (taken from human chromosome 17).

1 Introduction

In both “normal” and “disease” states, the structure of the genome is a poten-
tially important factor in determining biology. Insertions of DNA can alter the
regulatory regions or coding sequence of genes by introducing foreign regulatory
elements or by disrupting coding sequence or splice sites. Deletions can have
similar effects by removing functional elements in DNA. Translocations can place
one functional element (such as a transcription-factor binding site) into proxim-
ity of another functional element such as a miRNA or proteing-coding gene, thus
affecting the normal regulatory pathways. Furthermore, translocations may act
more directly by producing fusion transcripts or chimeras of two protein-coding
genes; this particular phenomenon has been described in numerous types of
cancer.

1



1.1 Paired-end reads

Paired-end reads can encode information about the presence and nature of struc-
tural variants in the genome. Medvedev et al. provide an excellent review in a
recent manuscript ([4]). Paired-end reads are generated in a relatively straight-
forward way. As review, the paired-end sequencing process at a very high level
looks like:

1. Genomic DNA is sheared into fragments

2. The sheared fragments of DNA are size-selected (the target size is based
on the particular sequencing technology), maniupulated to make them
suitable for sequencing (library preparation), and finally placed on the
sequencer

3. One end of the pair (the primary read) is read up to the read length (often
between 30 and 100 bp, for Illumina)

4. The other end of the pair (the secondary read) is read, again up to the
read length

5. The paired ends are aligned to the reference genome resulting in a map of
where the ends of the original genomic fragments originated

Note that in point 2 above, the fragments are size-selected. Therefore, if all the
DNA that was finally prepared for paired-end sequencing was without structural
variation, the distances between the two paired-ends–the insert size–should re-
capitulate the distribution of fragment sizes that were selected. If a pair exhibits
an insert size that is an extreme outlier–an outlier pair–it could be evidence for
a structural variation.

1.2 Insert size and structural variation

The insert size should be systematically affected by structural variation (Table
1, Figure 1).

Table 1: Effects of structural variants on apparent insert size (the insert size as
measured by alignment back to the reference genome).

Structural Variant Affect on Apparent Insert Size
Small insertion Decrease
Small deletion Increase
Large deletion Increase
Intrachromosomal translocation Increase
Interchromosomal translocation Change mate chromosome
Large insertion Increase or lack of mapped mate
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one read maps while the other one does not. Such pairs form a ‘hang-
ing insertion’ signature5 (Fig. 1i). De novo assembly of such hanging 
reads can be used to reconstruct a small inserted segment, although 
if it is substantially larger than the insert size, hanging reads will not 
cover the entire insertion.

Signatures based on depth of coverage
The high coverage of NGS makes it possible to identify a completely 
different type of signature, based on the depth of coverage (DOC). 
Assuming the sequencing process is uniform, the number of reads 
mapping to a region follows a Poisson distribution and is expected 
to be proportional to the number of times the region appears in the 
donor. Thus, a region that has been deleted (duplicated) will have 
less (more) reads mapping to it. Although earlier work used DOC 
to identify recent segmental duplications in the human genome37 
and compare segmental duplications between human and chimp38, 
Campbell et al.34 were the first to use these ‘gain/loss’ signatures 
to detect CNVs between tumor and healthy samples of the same 
individuals (Fig. 2). Unlike the PEM insertion signatures, the gain 
signature does not indicate where an insertion occurred, but rather 

which is composed of two linking signatures 
where the linked regions are close to each 
other (Fig. 1e). Unlike the basic insertion, 
the linked insertion signature can be used 
to identify the region that has been insert-
ed. However, if the size of the insertion is 
large, then the confidence that the two link-
ing signatures are associated with the same 
insertion decreases, and thus this signature 
becomes weak for very large insertions.

Another type of linking signature is creat-
ed by a region of the reference that has been 
tandemly duplicated in the donor. Cooper et 
al.7 first observed that a mate pair that has 
an end in each of the two copies will have an 
‘everted’ mapping: the order of the mates is 
reversed while the orientation stays the same 
(Fig. 1f). We call this an ‘everted duplication’ 
signature. This signature can only be used 
to detect a novel tandem duplication—for 
example, it cannot detect a tandemly repeat-
ed region whose copy count changes from 
two to three.

All of  the methods outlined above, 
although able to identify approximate loca-
tions of breakpoints, cannot indicate the 
exact locations. The methods below describe 
signatures that address this shortcoming.

Breakpoint identification: split mapping 
and hanging insertion. A read sampled 
across a deletion breakpoint will leave a 
‘split mapping’ signature in the reference, 
with a prefix and suffix of the read map-
ping to different locations. Whereas this 
signature is detectable with longer reads5,35, 
there are too many such spurious mappings 
of short read halves, and hence too many 
spurious signatures, with short read data. 
Nevertheless, Ye et al.36 showed that if one uses the fact that the mate 
of a split read must map nearby, then the search space for the split 
mapping of the hanging read can be much reduced. Thus we have 
the ‘anchored split mapping’ signature, in which one of the mates 
maps to the reference and the other has a split mapping with one of 
its parts about 1 insert size away (Fig. 1g). A similar situation occurs 
when there is an insertion of a few base pairs. This will leave behind a 
similar signature, except that the split read will have a prefix and suf-
fix mapping to adjacent locations, and there will be a middle part of 
the read (the bases inserted) that will not be part of either the prefix 
or suffix mapping (Fig. 1h).

The anchored split mapping signature has the advantage that it 
can pinpoint the breakpoint of the event with base-pair precision. 
However, if the deletion is too large, then there will be too many 
spurious hits for the farther part of the split mapping. Similarly, the 
size of the insertion detectable with this signature is only a few base 
pairs, as every inserted base reduces the fraction of the read that 
matches the genome.

To identify insertions that contain a novel genomic segment, it is 
possible to use mate pairs spanning either of the breakpoints, where 
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Figure 1 | Illustrations of PEM signatures. Mate pairs are sampled from the donor, where they 
are ordered with opposite orientation (the blue mate follows the orange), and are mapped to the 
reference (ref). Basic signatures include (a) insertions and (b) deletions, where the mapped distance 
is different from the insert size, as well as (c) inversions, where the order of the two mates is 
preserved but one of them changes orientation. (d) The linking signature has several discordant mate 
pairs with similar mapped distances identifying adjacency in the donor (dashed orange arrows) of 
two distal segments of the reference. The orientation and order of the mapped mate pairs depends 
on the orientation and order of the two segments in the reference; here, these are unchanged. (e) 
A linked insertion signature is composed of two linking signatures and arises when the inserted 
sequence (green) is copied from another location in the genome. (f) A tandem duplication will 
create an everted duplication linking signature, with mates mapping out of order but with proper 
orientations. These mate pairs link the end of the duplicated region to its beginning. (g,h) In the 
anchored split mapping signature, one mate has a good mapping, whereas the other has a split 
mapping. For a deletion (g) the prefix and suffix surround the deletion, whereas for an insertion 
(h) the split read has the prefix and suffix mapped to adjacent locations, while a middle part does 
not map. (i) When a novel genomic segment is inserted, a hanging insertion signature is created, in 
which only one of the mates has a good mapping.
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Figure 1: Illustrations of PEM signatures. Mate pairs are sampled from the
donor, where they are ordered with opposite orientation (the blue mate follows
the orange), and are mapped to the reference (ref). Basic signatures include (a)
insertions and (b) deletions, where the mapped distance is different from the
insert size, as well as (c) inversions, where the order of the two mates is preserved
but one of them changes orientation. (d) The linking signature has several
discordant mate pairs with similar mapped distances identifying adjacency in
the donor (dashed orange arrows) of two distal segments of the reference. The
orientation and order of the mapped mate pairs depends on the orientation and
order of the two segments in the reference; here, these are unchanged. (e) A
linked insertion signature is composed of two linking signatures and arises when
the inserted sequence (green) is copied from another location in the genome. (f)
A tandem duplication will create an everted duplication linking signature, with
mates mapping out of order but with proper orientations. These mate pairs link
the end of the duplicated region to its beginning. (g,h) In the anchored split
mapping signature, one mate has a good mapping, whereas the other has a split
mapping. For a deletion (g) the prefix and suffix surround the deletion, whereas
for an insertion (h) the split read has the prefix and suffix mapped to adjacent
locations, while a middle part does not map. (i) When a novel genomic segment
is inserted, a hanging insertion signature is created, in which only one of the
mates has a good mapping. From [4], figure 1
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2 Finding some structural variants

2.1 Data description

In order to keep the exercises manageable and to have a “gold standard” against
which to check the results, I have generated an “abnormal” segment of human
chromosome 17 that includes several structural variants (see Table 2). The code
to generate the artificial sequence is given in this vignette. The MAQ package
([2]) was used to simulate 100000 pairs of reads (so 200000 reads) with insert
sizes with mean of 200 and a standard deviation of 20. Some errors were allowed
(error rates modeled after typical 36-basepair reads from Illumina). The reads
were aligned to the human genome using the BWA software package ([3]) with
default settings. The samtools package ([1]) was used to convert the output
from BWA into BAM format.

Table 2: Description of insertions and deletions included in the simulated
sequence. In addition, a segment of chromosome 17 between 40400000 and
40500000 was “translocated” from its original location to be attached between
40040000 and 40070000. Finally, five copies of the region between 40100000 and
401100000 were attached tandemly to create a copy number gain region.

Variant Start End Size
deletion 40020000 40020020 20
deletion 40022000 40022040 40
deletion 40024000 40024060 60
deletion 40026000 40026080 80
deletion 40028000 40028100 100
deletion 40030000 40030200 200
deletion 40032000 40034000 2000
insertion 40600000 NA 20
insertion 40602000 NA 100
insertion 40604000 NA 1000

> a = BSgenome:::getSeq(Hsapiens, "chr17", start = 4e+07, width = 1e+06)

> b = paste(sample(c("A", "C", "T", "G"), 10000, replace = TRUE),

+ collapse = "")

> newseq = paste(substr(a, 1, 20000), substr(a, 20020, 22000),

+ substr(a, 22040, 24000), substr(a, 24060, 26000), substr(a,

+ 26080, 28000), substr(a, 28100, 30000), substr(a, 30200,

+ 32000), substr(a, 34000, 40000), substr(a, 4e+05, 5e+05),

+ substr(a, 70000, 1e+05), substr(a, 100001, 110000), substr(a,

+ 100001, 110000), substr(a, 100001, 110000), substr(a,

+ 100001, 110000), substr(a, 100001, 110000), substr(a,

+ 110001, 399999), substr(a, 500001, 6e+05), substr(b,

4



+ 1, 20), substr(a, 600001, 602000), substr(b, 1, 100),

+ substr(a, 602001, 604000), substr(b, 1, 1000), substr(a,

+ 604001, 1e+06))

> f = file("/tmp/sample.sequence.fa", "w")

> writeLines(">sample", f)

> writeLines(newseq, f)

> close(f)

2.2 Data import and preprocessing

Since the data are in BAM format, which is a binary version of the SAM for-
mat, the Rsamtools package will be used for reading in the data. The SAM
format specification provides for storage of paired-end reads. Both ends of the
pair are stored, regardless of whether or not they are mapped. In addition,
each read record has information about the mapping of its mate. Since we are
typically going to be interested in operating on intervals with data attached to
each interval, a natural choice of data structure is the RangedData class. A lit-
tle convenience function, scanBamToRangedData, does the necessary reading and
minor preprocessing for our BAM file of reads.

> require(Rsamtools)

> scanBamToRangedData <- function(...) {

+ tmp = scanBam(...)[[1]]

+ toKeep = TRUE

+ ranges = IRanges(start = tmp$pos[toKeep], width = nchar(tmp$seq[toKeep]))

+ rangeddata = RangedData(ranges, isize = tmp$isize[toKeep],

+ mrnm = tmp$mrnm[toKeep], strand = tmp$strand[toKeep],

+ space = tmp$rname[toKeep], flag = tmp$flag[toKeep])

+ return(rangeddata)

+ }

> fname = system.file("extdata/reads.sorted.bam", package = "StructuralVariant")

> totalRD = scanBamToRangedData(fname, param = ScanBamParam(flag = scanBamFlag(isUnmappedQuery = FALSE)))

> totalRD

RangedData with 199403 rows and 4 value columns across 25 spaces
space ranges | isize mrnm strand flag

<character> <IRanges> | <integer> <factor> <factor> <integer>
1 chr10 [ 894815, 894849] | 0 chr14 + 161
2 chr10 [ 4256528, 4256562] | 0 chr17 - 81
3 chr10 [ 5954230, 5954264] | 0 chr17 - 113
4 chr10 [ 7816566, 7816600] | 0 chr17 - 81
5 chr10 [ 8160489, 8160523] | 0 chr17 - 177
6 chr10 [ 8302659, 8302693] | 0 chr17 - 113
7 chr10 [11553012, 11553046] | 0 chr13 - 177
8 chr10 [11561646, 11561680] | 0 chr1 + 65
9 chr10 [11710832, 11710866] | 0 chr15 - 113
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10 chr10 [11770586, 11770620] | 0 chr8 + 161
...
<199393 more rows>

The first point to note is that, while all the sequence in the sample sequence
file originated from the chr17 human reference sequence, there are mappings to
other chromosomes. Since the simulation allows for errors, such errors can in-
duce enough entropy into the original sequence to facilitate alignment to another
region of the genome. The effect is small, but non-trivial.

> table(space(totalRD))

chr1 chr10 chr11 chr12 chr13 chr14 chr15 chr16 chr17 chr18 chr19
330 157 118 178 104 129 123 140 196093 68 151
chr2 chr20 chr21 chr22 chr3 chr4 chr5 chr6 chr7 chr8 chr9
236 80 35 65 211 174 193 156 222 139 132
chrX chrY
146 23

Using the information contained in the “flag” column of the column, it is
possible to get an overview of the mapping characteristics of the pairs; for
example, which reads have an unmapped mate?

> require(bitops)

> summary(bitAnd(totalRD$flag, 8) == 8)

Mode FALSE TRUE NA's
logical 199012 391 0

These reads with unmapped mates may (among other possibilities) represent
insertions of foreign sequence relative to the reference.

2.3 Clustering outlier read pairs

As discussed above, the insert size is expected to change in systematic ways
when structural variants are present. Those read pairs that show a larger or
smaller insert size or have an unmapped mate represent “outlier read pairs”. For
small insertions, there may be bridging reads that show a smaller-than-expected
insert size. To test the feasibility of this thinking, I first restrict the RangedData
object totalRD to come from chr17.

> chr17RD = totalRD["chr17"]

Using the robust estimates of the mean and standard deviation, the median
and median absolute deviation (mad), it is possible to choose a range of“normal”
insert sizes. Of course, the isize column of the totalRD contains this information,
but it only makes sense to compute on those reads that have a mapped mate
and are on the same chromosome.
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> median(abs(totalRD$isize), na.rm = TRUE)

[1] 200

> mad(abs(totalRD$isize), na.rm = TRUE)

[1] 20.7564

Note that these agree quite well with the parameters from the simulation.
So, filtering the reads to those with isizes smaller than 137 (approximately
µ - 3σ), we can find potential pairs associated with small insertions. More
specifically, if there is clustering of reads that show smaller-than-expected insert
sizes, there may be evidence for a deletion in the vicinity of the clustering. To
calculate clustering, it is fairly straightforward to use ideas similar to those
demonstrated for ChIP-seq analysis; the little function, extendReadsRD takes as
input a RangedData object and returns a modified RangedData object with the
start and end values adjusted to have the specified width after accounting for
the read strand (which must be in the RangedData object in the strand column).

> extendReadsRD <- function(rangeddata, width = 100) {

+ s = start(rangeddata)

+ e = end(rangeddata)

+ w = width - width(rangeddata)

+ strand = rangeddata$strand

+ s[strand == "-"] = s[strand == "-"] - w[strand == "-"]

+ e[strand == "+"] = e[strand == "+"] + w[strand == "+"]

+ start(rangeddata) <- s

+ end(rangeddata) <- e

+ return(rangeddata)

+ }

To look for the reads that have a mapped mate that also maps to chr17 and
have insert sizes less than 137 bases long, we use the following incantation. Ba-
sically, the first command finds reads that have a mapped mate where the mate
is mapped to chromosome 17 and the insert size is smaller than expected. The
reads are then extended to half of the expected insert size. Coverage is calculated
on the extended reads and finally the coverage vector is sliced (thresholded) to
find regions that are somewhat enriched in short-insert-size pairs. The last step
would require some statistical modeling to determine the best threshold; here,
a convenient threshold was chosen empirically.

> smallInsertRD = chr17RD[(bitAnd(chr17RD$flag, 8) != 8) & (chr17RD$mrnm ==

+ "chr17") & (abs(chr17RD$isize) < 137), ]

> smallInsertRD = extendReadsRD(smallInsertRD, 135)

> cvgSI = coverage(smallInsertRD)

> sliceSI = slice(cvgSI, 10)
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Reads with insert sizes larger than expected (263 bp, approximately µ + 3σ)
may be associated with regions of the genome that are physically attached but
on the reference sequence are actually far apart. Deletions and translocations
would be expected to show reads that have larger-than-expected insert sizes.
Again, we find these reads and then cluster them to find putative regions of
deletion or translocation. Using an analogous set of functions to short-insert-
size pairs, it is possible to cluster the long-insert-size pairs.

> largeInsertRD = chr17RD[(bitAnd(chr17RD$flag, 8) != 8) & (chr17RD$mrnm ==

+ "chr17") & (abs(chr17RD$isize) > 263), ]

> largeInsertRD = extendReadsRD(largeInsertRD, 135)

> cvgLI = coverage(largeInsertRD)

> sliceLI = slice(cvgLI, 4)

Finally, it is possible to do the same with reads with unmapped mates.

> unmappedRD = chr17RD[(bitAnd(chr17RD$flag, 8) == 8), ]

> unmappedRD = extendReadsRD(unmappedRD, 135)

> cvgUM = coverage(unmappedRD)

> sliceUM = slice(cvgUM, 5)

2.4 Interpretation of results

Currently, there is little infrastructure in place to facilitate the interpretation of
the results of clustering outlier read pairs. Using the large-insert-pairs clustering
result as an example is still instructive, though, for gaining insight into the
structural variation present. Examining the text output of the sliced coverage
is informative, but leaves a sour feeling in the lack of insight it provides.

> sliceLI[["chr17"]]

Views on a 78092744-length Rle subject

views:
start end width

[1] 40021994 40021997 4 [4 4 4 4]
[2] 40022013 40022013 1 [4]
[3] 40023968 40024137 170 [4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ...]
[4] 40025888 40026055 168 [4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 6 7 7 7 ...]
[5] 40028049 40028225 177 [4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 ...]
[6] 40029880 40030011 132 [4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 ...]
[7] 40030161 40030275 115 [4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 ...]
[8] 40031937 40032066 130 [4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 ...]
[9] 40034005 40034119 115 [4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 ...]
[10] 40039872 40040055 184 [ 4 4 4 4 4 4 5 5 6 6 7 7 7 7 ...]
[11] 40069925 40070083 159 [ 4 4 4 4 4 5 5 5 5 5 5 6 6 6 ...]
[12] 40099911 40100155 245 [ 4 6 6 6 6 6 6 6 6 6 6 6 6 6 ...]
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[13] 40109839 40110096 258 [ 4 4 4 4 4 4 4 4 4 5 5 6 7 7 ...]
[14] 40399874 40400150 277 [4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 ...]
[15] 40417415 40417487 73 [4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ...]
[16] 40417813 40417862 50 [4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ...]
[17] 40499863 40500143 281 [4 4 4 4 5 5 5 5 5 5 5 6 7 7 7 7 7 7 7 7 8 8 ...]

However, some simple plots can be very informative about the fine- and
large-scale structure of this artificial segment of chromosome 17. A little plotting
function, plotSV, generates a plot showing the regions captured by the clustering
process and then overlays the connections as encoded in the paired-end reads
that overlap with the clusters. The resulting plots can be instructive (indeed,
they led me to a bug in the generation of the original sequence).

> plotSV <- function(rangeddata, cvgslice, space = "chr17", ...) {

+ xl = min(start(rangeddata)[space(rangeddata) == space])

+ xr = max(end(rangeddata)[space(rangeddata) == space])

+ par(las = 2)

+ plot(c(xl, xr), c(0, 3), pch = "", xlab = "genomic coordinates",

+ ylab = "", axes = FALSE, ...)

+ for (i in 1:length(cvgslice[[space]])) {

+ rect(start(cvgslice[[space]])[i], 0, end(cvgslice[[space]])[i],

+ 0.5, col = "red", border = "red")

+ }

+ subrd = rangeddata[rangeddata %in% RangedData(IRanges(start = start(cvgslice[[space]]),

+ end = end(cvgslice[[space]])), space = rep(space, length(cvgslice[[space]]))),

+ ]

+ for (i in 1:length(start(subrd))) {

+ strandq = ifelse(bitAnd(subrd$flag[i], 16) == 16, "-",

+ "+")

+ strandmate = ifelse(bitAnd(subrd$flag[i], 32) == 32,

+ "-", "+")

+ if (strandq == "+" & strandmate == "-")

+ col = "red"

+ if (strandq == "-" & strandmate == "+")

+ col = "green"

+ if (strandq == "+" & strandmate == "+")

+ col = "blue"

+ if (strandq == "-" & strandmate == "-")

+ col = "orange"

+ lines(list(x = c(start(subrd)[i], start(subrd)[i] + subrd$isize[i]),

+ y = c(0.5, 2.5)), col = col)

+ }

+ axis(side = 1)

+ box()

+ }
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Using this function, it is possible to generate some interesting plots. Figures
2 and 3 show the entire 1MB region and a zoomed-in view of the region with a
number of small deletions, respectively.

> pdf("fullRegionLI.pdf", width = 9, height = 7)

> plotSV(chr17RD, sliceLI, xlim = c(4e+07, 4.1e+07))

> dev.off()

null device
1

> pdf("zoomDeletionsLI.pdf", width = 9, height = 7)

> plotSV(chr17RD, sliceLI, xlim = c(40020000, 40045000))

> dev.off()

null device
1

3 Conclusions and future work

While multiple software packages for finding structural variants exist (see table
1 in [4]), the R and Bioconductor tools offer an opportunity to build on existing
infrastructure for short-read data analysis, to experiment with methodologies
for extending existing methods, and to capitalize on the extremely powerful
graphics and data handling capabilities inherent in R. There is a need to improve
handling of paired-end reads (and related mate-pair reads) in a memory- and
computationally-efficient manner. Also, clustering of reads could be done using
other models or statistical or computational techniques. After the processing of
reads down to clusters is complete, a mechanism to help to truly understand the
variants that lead to those clustering results, such as a graph-theoretic approach
to linking clusters, needs to be developed. Finally, and perhaps most difficult,
is to come to some new biologic understanding or knowledge (are fusion genes
formed, regulatory regions disrupted, etc.) based on the results.

4 sessionInfo()

> toLatex(sessionInfo())

• R version 2.11.0 Under development (unstable) (2009-11-13 r50424),
i386-apple-darwin10.2.0

• Locale: en_US/en_US/C/C/en_US/en_US

• Base packages: base, datasets, graphics, grDevices, methods, stats, utils

• Other packages: Biostrings 2.15.6, bitops 1.0-4.1, BSgenome 1.15.2,
BSgenome.Hsapiens.UCSC.hg18 1.3.15, IRanges 1.5.6, Rsamtools 0.1.19

• Loaded via a namespace (and not attached): Biobase 2.7.0
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Figure 2: A view of the the entire 1MB region showing some large-scale rear-
rangements. The red bars represent the locations of the clusters of abnormal
read pairs. The lines lines demonstrate how the reads that map to the loca-
tions covered by the clusters connect to their mates. The colors of the lines
correspond to the combinations of strand information in the two ends of the
pair; read means the first pair is + and the second is - strand while green is
the opposite. All the lines are drawn from the first pair location on the lower
part of the plot to the second pair of the read on the upper part of the plot. A
translocation is clearly visible as is the region of copy-number gain (which is a
tandem repeat).
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Figure 3: A zoomed-in view of some small deletions. The markup of the figure
is as for Figure 2. Refer to Table 2 for details of the locations of the deletions.
Note that there is what appears to be a“extra” large deletion–this was a mistake
in the code for generating the artificial sequence that I caught only after making
the plots.
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