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1 Introduction

Our goal in this section of the course is to describe the use of Bioconductor
software to perform some basic tasks in the analysis of ChIP-Seq data. We will
use the chipseq, IRanges and ShortRead packages, and also use the lattice package
for visualization.

> library(ChIPseqTutorial)

1.1 Example data

The data folder contains two data files, each containing information for three
chromosomes from one Solexa lane, one from a mouse ChIP-seq experiment done
with CTCF antibodies, and one with GFP antibodies (as a background control).
The raw reads were aligned to the reference genome (mouse in this case) using
an external program (MAQ), and the results read in using the readAligned
function in the ShortRead package. All duplicate reads were removed and a
quality score cutoff of 5 was used.

> data(ctcf, package="ChIPseqTutorial")
> data(gfp, package="ChIPseqTutorial")



ctcf and gfp are objects of class AlignedRead.

> ctcf

class: AlignedRead
length: 484957 reads; width: 24 cycles

chromosome: chrl0 chrl0 ... chril2 chri2
position: 3011944 3012936 ... 121253739 121255103
strand: - + ... + +

alignQuality: IntegerQuality
alignData varLabels: nMismatchBestHit mismatchQuality nExactMatch24 nOneMismatch24

> gfp

class: AlignedRead
length: 316176 reads; width: 24 cycles

chromosome: chrl0 chrl0 ... chril2 chri2
position: 3002512 3008979 ... 121255999 121256287
strand: + - ... + +

alignQuality: IntegerQuality
alignData varLabels: nMismatchBestHit mismatchQuality nExactMatch24 nOneMismatch24

Further information on each alignment can be obtained using various accessor
functions whose names are hinted at in the summarized display. For example,

> table(strand(ctcf))

- + *
240633 244324 0

> table(chromosome (gfp))

chr10 chrll chri2
104970 120707 90499

1.2 The mouse genome

The data we have refer to alignments to a genome, and only makes sense in
that context. Bioconductor has genome packages containing the full sequences
of several genomes. The one relevant for us is

> library(BSgenome.Mmusculus.UCSC.mm9)
> mouse.chromlens <- seqlengths(Mmusculus)
> head(mouse. chromlens)

chril chr2 chr3 chr4 chrb chr6é
197195432 181748087 159599783 155630120 152537259 149517037

We will only make use of the chromosome lengths, but the actual sequence will
be needed for motif finding, etc.



2 Coverage, islands, and depth

Extending reads Solexa gives us the first few (24 in this example) bases of
each fragment it sequences, but the actual fragment is longer. By design, the
sites of interest (transcription factor binding sites) should be somewhere in the
fragment, but not necessarily in its initial part. Although the actual lengths of
fragments vary, extending the alignment of the short read by a fixed amount
in the appropriate direction, depending on whether the alignment was to the
positive or negative strand, makes it more likely that we cover the actual site of
interest. We will extend the aligned regions to a length of 150 bases.

The extended regions can be summarized by their coverage, that is, how
many times each base in the genome was covered by one of them.

> cov.ctcf <- coverage(ctcf, width = mouse.chromlens, extend = 126L)

> cov.ctctf

SimpleRleList of length 3

$chri10

'integer' Rle of length 129993255 with 310773 runs
Lengths: 3011817 150 882 86 53 3 2 6 8 ...
Values : 0101234567 ...

$chrit

'integer' Rle of length 121843856 with 389113 runs
Lengths: 3001523 150 100 150 182 150 296 150 372 150 ...
Values : 0101010101

$chri2

'integer' Rle of length 121257530 with 258228 runs
Lengths: 3015326 150 2738 150 25008 150 2242 150 11892 150 ...
Values : 0101010101

> cov.ctcf$chrio

'integer' Rle of length 129993255 with 310773 runs
Lengths: 3011817 150 882 86 5 3 3 26 8 ...
Values : 0101234567 ...

For efficiency, the result is stored in a run-length encoded (Rle) form.

The regions of interest are contiguous segments of non-zero coverage, also
known as islands. Islands can be identified by slicing the coverage at a depth
of 1:

> islands <- slice(cov.ctcf$chri0, lower = 1)
> islands

Views on a 129993255-length Rle subject



views:

start end width
[1] 3011818 3011967 150 [111111111111
[2] 3012850 3013220 371 [11 1111111111
[3] 3018464 3018613 150 [1 11111111111
[4] 3020766 3020915 150 [1 11111111111
[5] 3023019 3023168 150 111111111111
[6] 3023240 3023494 255 [111111111111
[7] 3032586 3032735 150 [111111111111
[8] 3037521 3037670 150 [111111111111
[9] 3038377 3038526 150 [1 11111111111
[99715] 129973225 129973457 233 [112222222222
[99716] 129974863 129975012 150 [1 11111111111
[99717] 129975575 129975724 150 [111111111111
[99718] 129978669 129978818 150 [111111111111
[99719] 129979259 129979521 263 [111111111111
[99720] 129980303 129980452 150 [111111111111
[99721] 129981957 129982106 150 [111111111111
[99722] 129982380 129982529 150 [111111111111
[99723] 129987020 129987169 150 [111111111111
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For each island, we can compute its area, i.e. the sum of the coverage values
within the island, and the maximum coverage value (here, we use the function

head to display results only for the first few islands).
> viewSums (head (islands))

[1] 150 2100 150 150 150 300

> viewMaxs (head (islands))

(1] 113 1 1 1 2

> nread.tab <- table(viewSums(islands) / 150L)
> depth.tab <- table(viewMaxs(islands))
> head(nread.tab, 10)

1 2 3 4 5 6 7 8 9 10
80172 13548 2756 797 324 209 185 119 116 93

> head(depth.tab, 10)

1 2 3 4 5 6 7 8 9 10
80230 14750 2124 472 240 184 1563 121 115 107

Exercise 1
Repeat these steps for the gfp dataset.
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2.1 Processing multiple lanes

Although data from one chromosome within one lane is often the natural unit to
work with, we typically want to apply any procedure to the data from all chro-
mosomes and from all lanes. We can recursively apply a summary function to
all chromosomes using the lapply function. Here is a simple summary function
that computes the frequency distribution of the number of reads per island.

> islandReadSummary <- function(cov)

+ {

+ s <- slice(cov, lower = 1)

+ tab <- table(viewSums(s) / 150)

+ ans <- data.frame(nread = as.numeric(names(tab)),
+ count = as.numeric(tab))

+ ans

+

}
Applying it to our test-case, we get
> head(islandReadSummary (cov.ctcf$chr10))

nread count

1 80172
2 13548
3 2756
4 797
5 324
6 209

DO WN -

We can now use it to summarize the full dataset.

> nread.islands <- lapply(cov.ctcf, islandReadSummary)
> nread.islands <- do.call (make.groups, nread.islands)
> head(nread.islands)

nread count which

chr10.1 1 80172 chri10
chr10.2 2 13548 chri0
chr10.3 3 2756 chri0
chr10.4 4 797 chri0
chr10.5 5 324 chril0
chr10.6 6 209 chri10

Note the use of the make.groups function from the lattice package, which com-
bines several data frames into a single data frame that includes a further column
which indicating which of the data frames each row came from.

> xyplot(log(count) ~ nread | which, data = nread.islands,
+ subset = (nread <= 20), pch = 16, type = c("p", "g"))
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If reads were sampled randomly from the genome, then the null distribution
of the number of reads per island would have a geometric distribution; that is,

P(X =k)=p" ' (1-p)

where p is the probability a randomly drawn read starts within a given interval
of length 150. In other words, log P(X = k) is linear in k. Although our samples
are not random, we can estimate p if we assume that the islands with just one
or two reads are representative of the null distribution.

> xyplot(log(count) ~ nread | which, data = nread.islands,
+ subset = (nread <= 20),

+ pch = 16,

+ panel = function(x, y, ...) {

+ panel.grid(h = -1, v = -1)

+ panel.lmline(x[1:2], y[1:2], col = "black")
+ panel.xyplot(x, y, ...)
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We can create a similar plot of the distribution of depths.

> islandDepthSummary <- function(cov)

+ 4

+ s <- slice(cov, lower = 1)

+ tab <- table(viewMaxs(s))

+ ans <- data.frame(depth = as.numeric(names(tab)), count = as.numeric(tab))
+ ans

+ }



> depth.islands <- lapply(cov.ctcf, islandDepthSummary)
> depth.islands <- do.call(make.groups, depth.islands)
> xyplot(log(count) ~ depth | which, depth.islands,

+ subset = (depth <= 20), pch = 16,

+ panel = function(x, y, ...) {

+ panel.grid(h = -1, v = -1)

+ lambda <- 2 * exp(y[2]) / exp(y[1])

+ null.est <- function(xx) {

+ xx * log(lambda) - lambda - lgamma(xx + 1)
+ }

+ log.N.hat <- null.est(1) - y[1]

+ panel.lines(1:10, -log.N.hat + null.est(1:10), col = "black")
+ panel.xyplot(x, y, ...)

+ »

This assumes that the null distribution of depths has a Poisson distribution,
which is not strictly true, but seems to give a reasonble fit.

log(count)

Exercise 2

Produce similar plots for the gfp dataset. What qualitatitve differences do you
see? Based on your findings, what would be a reasonbale cutoff for deciding
that the depth of an island is too high to be explained by chance, and hence is
likely to contain a C'T'CF binding site?

2.2 Peaks

Going back to our example of chrlO of the first sample, let us define “peaks”
to be contiguous regions of the genome where coverage is 8 or more. (More
sophisticated, model-based or adaptive algorithms exist, and we refer to the
literature in this active area of research).

> peaks <- slice(cov.ctcf$chriO, lower = 8)
> peaks

Views on a 129993255-length Rle subject

views:
start end width



[1] 3012963 3013104 142 [ 8 8 8 8 9 10
[2] 3234799 3234891 93 [8 8 8 8 8 8
[3] 3270074 3270078 5 [8 8 8 8 8]
[4] 3270083 3270260 178 [ 8 8 8 8 8 9
[5] 3277683 3277816 134 [ 8 8 8 8 8 8
(6] 3460866 3460928 63 [8 8 8 8 8 8
[7] 3617844 3617947 104 [ 8 8 8 8 8 8
[8] 3651762 3651972 211 [ 8 8 10 10 10 12
[9] 4310429 4310675 247 [ 8 9 9 10 10 10
[1746] 128986519 128986623 105 [8 8 8 8 8 8 8 8 8
[1747] 128986644 128986647 4 [8 8 8 8]
[1748] 128986652 128986652 1 [8]
[1749] 129058941 129058952 12 [8 88888888
[1750] 129530044 129530190 147 [ 8 8 8 8 8 8
[1751] 129533331 129533381 51 [8 88888888
[1752] 129665388 129665570 183 [ 8 8 8 8 8 8
[1753] 129666765 129666905 141 [8 8 8 8 8 8 8 8 8
[1754] 129750671 129750808 138 [ 8 8 8 8 8 8
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Interesting properties of peaks are their maximum depth and area under the

peak (a relative measure of how localized the peak is).

> peak.depths <- viewMaxs (peaks)
> peak.areas <- viewSums (peaks)
> xyplot(peak.areas ~ peak.depths)
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Exercise 3

Produce a similar plot for the gfp dataset. What differences do you see, partic-

ularly in terms of the number of peaks and the distribution of depths?
We can order the peaks by depth

> wpeaks <- tail(order(peak.depths), 4)
> peaks [wpeaks]

Views on a 129993255-length Rle subject

views:
start end width

[1] 75295028 75295319 292 [ 8 8 8 8 8 8 8 8 810
[2] 126356178 126356472 295 [ 8 8 8 8 8 8 8 10 10 10
[3] 77875714 77876017 304 [ 8 8 9 9 9 9 10 10 11 10
[4] 80750534 80750831 208 [ 8 8 8 8 8 8 9 10 11 12
and plot individual peaks using this function:

coverageplot <- function (peaks, xlab = "Position", ylab =

>
+ 9

+ posl <- seq(start(peaks[1]), end(peaks[1]))
+ covl <- as.integer(peaks[[1]])

+ posl <- c(head(posl, 1), posl, tail(posl, 1))
+ covl <- c(0, covl, 0)

+ xyplot(covl ~ posl, ..., panel = panel.polygon,

+ xlab, ylab = ylab)
+
+

col = "lightgrey", xlab

}

> coverageplot (peaks [wpeaks[1]])
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Exercise 4

How does the amount by which each read is extended affect the analysis? In
calls to coverage, we have used extend=126L to get a total length of 150 for
each read. Try lengths of 100 and 200 and see how the results change.

3 Differential expression

How can we determined which of the peaks present in the CTCF data are not
present in GFP? Here is a list of all peaks, across all chromosomes

> allPeaks <- slice(cov.ctcf, lower = 8)
reads) under the peak
> ctcf.counts <- aggregate(cov.ctcf, allPeaks, sum)

The return value is a list-of-integers, each element of the list corresponding to a
chromosome, and each member of the integer vector the number of reads under
the corresponding peak; in your R session, display ctcf.counts to understand
its structure. We can do the same for GFP

> cov.gfp <- coverage(gfp, width = mouse.chromlens, extend = 126L)
> gfp.counts <- aggregate(cov.gfp, allPeaks, sum)

To coordinate the data, lets put this into a RangedData object, converting the
list-of-integers into a simple integer vector

> counts <- RangedData(allPeaks,
+ CTCF=as. integer (ctcf.counts),
+ GFP=as.integer (gfp.counts))

Finally we can display the counts. We do this by mapping the RangedDatta
object into a standard data.frame to make it easier to use in standard R func-
tions, transform the count data using the inverse hyperbolic sin (asinh) as a
way of accomodating the non-normal distribution of the data, and use xyplot
from lattice to plot the relationship between counts.

> xyplot (asinh(CTCF) “asinh(GFP) |space, as.data.frame(counts),
+ aspect="iso")

10



asinh(CTCF)

asinh(GFP)

Each
point represents a peak. Points on the diagonal correspond to peaks of compa-
rable height in CTCF and GFP; these are not biologically interesting. Points
parallel ot the y-axis at asinh(GFP) equal to 0 reprsent peaks present exclu-
sively in the CTCF lane, whereas points above the diagonal represent points
over-represented in CTCF; these are the biologically interesting peaks. We can
retrieve these peaks with straight-forward operations, such as subsetting and
ordering the data frame based on (a) absence of GFP and (b) number of reads
in the CTCF lane. For instance, on chromosome 10 we have

> rd0 <- counts[counts[["GFP"]] == 0,]["chrio"]
> head(rd0O[order (rdO[["CTCF"]], decreasing=TRUE),])

RangedData with 6 rows and 2 value columns across 1 space

space ranges | CTCF GFP
<character> <IRanges> | <integer> <integer>
1 chr10 [ 77875714, 77876017] | 10994 0
2 chr10 [ 79627784, 79628107] | 10475 0
3 chr10 [ 79388076, 79388383] | 9757 0
4 chr10 [ 76298494, 76298756] | 8769 0
5 chr10 [ 77090319, 77090577] | 8095 0
6 chr10 [121488939, 121489225] | 7912 0
Exercise 5

There are a number of avenues for exploration at this point. The peaks can be
exported to a genome browser (using rtracklayer’s export function). Identified
peaks can be annotated using Bioconductor annotation packages or ChlPse-
gAnno. Count data from multiple samples could be compared using the statis-
tical analysis tools available in edgeR or baySeq. And importantly, alternative
paths through the analysis can be readily explored. Pursue some of these sug-
gestions!

11



4 Version information

e R version 2.10.0 Patched (2009-11-16 r50456),
x86_64-unknown-linux-gnu

e Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,
LC_COLLATE=en_US.UTF-8, LC_MONETARY=C, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

e Base packages: base, datasets, graphics, grDevices, methods, stats, utils

e Other packages: Biostrings 2.14.5, BSgenome 1.14.1,
BSgenome.Mmusculus.UCSC.mm9 1.3.16, chipseq 0.2.0,
ChIPseqTutorial 0.0.1, IRanges 1.4.6, lattice 0.17-26, ShortRead 1.4.0

e Loaded via a namespace (and not attached): Biobase 2.6.0, grid 2.10.0,
hwriter 1.1, tools 2.10.0
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