Gene Set Enrichment Analysis

Martin Morgan Fred Hutchinson Cancer Research Center Seattle, WA, USA

28 April 2009

Motivation

Many analyses:

Exploratory, even in designed experiments: which of 1000's of probes are differentially expressed?

But often...

- A priori understanding of relevant biological processes
- Interested in signal from collection of probes (e.g., genes in a pathway)

Original idea applied to expresion data

▶ Mootha et al. (2003, Nat Genet 34, 267-273) – permutation-based GSEA.

Overall approach

- 1. Identify a priori biologically interesting sets for analysis.
- 2. Pre-process and quality assess as usual.
- 3. Non-specific filtering remove probes that cannot possibly be interesting.
- 4. Compute a test statistic, e.g., *t*-statisitic, for each probe.
- 5. Calculate an appropriate summary, call it z_k , of the test statistic in each set.
- 6. Compare the distribution of z_k across sets; by the *central limit* theorem, the distribution of z_k is approximately Normal.

1. A priori sets

- Biologically motivated.
- Combining 'signal' from several probe sets.
- Examples: KEGG or Gene Ontology pathways, chromosome bands, . . .
- Here we'll use KEGG pathways.
- We'll also restrict attention to pathways represented by 10 or more probes.

2. Pre-processing

▶ Use entire data set for background correction, normalization, probe set summary.

3. Non-specific filtering: invariant genes

- Exclude genes that cannot be interesting
- Must not use criteria to be used in analysis, e.g., must not filter on expression in biological pathway of interest.
- Criterion: exclude genes with limited variation across all samples.

```
> library("genefilter")
```

- > bcrneg_filt1 = nsFilter(bcrneg, var.cutoff = 0.5)\$eset
- > dim(bcrneg_filt1)

```
Features Samples 4487 79
```

3. Non-specific filtering: KEGG I

- Criterion: remove probes with no KEGG annotations, or participating in pathways with fewer than 10 probes represented.
- ▶ How? Create a *GeneSetCollection* from the expression set, identify relevant sets, then filter the expression set.

```
> library(GSEABase)
```

- > gsc <- GeneSetCollection(bcrneg_filt1,</pre>
- + setType = KEGGCollection())

3. Non-specific filtering: KEGG II

```
> gsc
GeneSetCollection
  names: 00010, 00020, ..., 05340 (197 total)
  unique identifiers: 37707_i_at, 32747_at, ..., 33595_r_at
  types in collection:
    geneIdType: AnnotationIdentifier (1 total)
    collectionType: KEGGCollection (1 total)
> gsc[[2]]
setName: 00020
geneIds: 40881_at, 40077_at, ..., 40893_at (total: 21)
geneIdType: Annotation (hgu95av2)
collectionType: KEGG
  ids: 00020 (1 total)
details: use 'details(object)'
```

3. Non-specific filtering: KEGG III

```
> ok <- sapply(geneIds(gsc), length) > 10
> gsc <- gsc[ok]
> length(gsc)
[1] 117
> uids <- unique(unlist(geneIds(gsc)))</pre>
> bcrneg_filt2 <- bcrneg_filt1[uids, ]</pre>
> dim(bcrneg_filt2)
Features Samples
    1539
                79
```

4. Compute a test statistic

- Many statistics possible; idea is to calculate a statistic that meaningfully contrasts expression levels between groups.
- ▶ Statistic chosen should be scale- and sample-size independent.
- ▶ We'll use a simple t-test, with t_k being the statistic associated with the kth probe set.

5. Calculate an average for each set I

- t_k follows a *t*-distribution.
- Sum of independent t-statistics is approximately Normal.
- Sum standardized by the square root of the number of genes |K| in a set K is approximately Normal with mean 0 and variance 1.

$$z_K = \frac{1}{\sqrt{|K|}} \sum_{k \in K} t_k$$

▶ Important that z_K is independent of the number of genes in the set.

5. Calculate an average for each set II

- Write a function to calculate z_K from a list of gene ids
- ▶ Apply that function to all gene ids in our gene set collection

```
> zCalc <- function(ids, tStat) {
+    sum(tStat[ids])/sqrt(length(ids))
+ }
> z <- sapply(geneIds(gsc), zCalc, tStat = rttStat)
> names(z) <- names(gsc)
> head(z)

00010 00020 00030 00051 00052 00071
-0.68 -1.94 -0.93 -0.25 -0.90 -0.93
```

6. Compare to Normal distribution

- We expect our Z_K to have a Normal distribution. How to assess?
- Quantile-quantile plot: close agreement if points in plot lie on a diagonal.
- > qqnorm(z)
- > qqline(z)
 - ► Select a distinct outlier!
- > z[which.min(z)]

03010

-8.3

Figure: Gene set Q-Q plot

Investigating the outlier

```
> keggId <- names(z[which.min(z)])</pre>
> keggGS <- gsc[[keggId]]</pre>
> keggES <- bcrneg_filt2[keggGS,</pre>
> library(Category)
> getPathNames(keggId)
                                     10
$`03010`
                                     6
[1] "Ribosome"
                                     ω
> KEGGmnplot(keggId,
      bcrneg_filt2,
      annotation(bcrneg_filt2),
      bcrneg_filt2$mol.biol,
      pch=16, col="darkblue")
```


Figure: KEGG id 03010

More robust statistical assessment

Issues

- ▶ Strong assumptions, e.g., about independence of t statistics and normality of z_K .
- Very qualitative assessment; do other points deviate from Normal quantiles?

A solution

- ▶ More robust evaluation using permutation tests.
- ► Function gseattperm in Category package provides one implementation.
- Analysis in the lab leads to six significant pathways.

Other approaches possible...

Overlapping gene sets

Issues

- ► Two (or more) gene sets may share the same probes, e.g., 16 genes in common between sets 04512 and 04510.
 - > overlap <- gsc[["04512"]] & gsc[["04510"]]</pre>
 - > length(GSEABase::geneIds(overlap))

[1] 16

▶ If both gene sets are significant, is it because they share the same probes?

A solution

- Perform a series of linear models, e.g., models with (a) 04510, (b) 04512, (c) both sets, followed by a model with (d) probes only in 04510, only in 04512, and in both sets.
- ▶ Analyais in the lab suggests that 04512 is only interesting because of probes it shares with 04510.

Additional types of gene sets

- Chromosome bands
- Predefined sets, e.g., Broad Institute positional, curated, motif-based, or computed gene sets. See ?getBroadSets, BroadCollection
- ► Gene Ontology (GO) and OBO collections.
- Pubmed IDs

Related approaches

- ► PGSEA: implements Kim and Volsky, 2005 (BMC Bioinformatics 6: 144).
- limma: geneSetTest performs like Mootha et al., but with different statistical tests.
- GOstats: gene ontology visualization, testing for statistical over-representation of probe sets in ontologies.
- GlobalAncova: Multivariate analysis suitable for assessing differential expression of specific gene sets.
- GSEAlm: flexible linear models to describe aggregate effects of probes in categories, rather than t-tests only.