
How to access Annotations in Bioconductor

Marc Carlson

April 27, 2009

1 Introduction

There are two basic ways to get annotations in bioconductor. You can
either use an annotation package, or you can use biomaRt. In either case,
it is critical to understand where the data comes from and how it relates
(or doesn’t) to other annotation data. The annotation packages are always
gene-centric, and usually this means that they entrez-gene centric. The
packaged data is usually based primarily on data from NCBI. This means
that the heart of the data is usually an entrez gene ID, and that all the other
data in a package will be tied to that central ID. Furthermore, the packaged
annotations are frozen at release time, so that they are all updated twice a
year.

In contrast, data accessed through biomaRt usually originates from en-
sembl. So users who try to combine data from the different sources should
not be shocked to discover that data from ensembl and NCBI are not always
in perfect agreement. Also, biomaRt uses a web-based interface to a set of
sources that are always changing. This is an advantage when you want to
have the very most current data available, but it can be a disadvantage
when you are trying to troubleshoot a process or carefully control variables
to make sense of your analysis.

2 Using an annotation package

The organism packages provide a range of different gene-centric annotations
about an organism. For most organisms, the packages are entrez gene cen-
tric. One such package is the org.Hs.eg.db package.

The org packages provide basic annotation for an entire organism. The
data is always gene centric and there is always an identifier that is used as the
central ID for the packages database. For most species that we support this

1

is an entrez gene ID. But there are some exceptions. One notable exception
is yeast where we use the systematic names as the central ID instead of
entrez gene IDs. The structure of the internal database is such that all the
other data in an organism package is connected to this central ID.

You can see a few things about an organism package just by looking
at its name. The second part of the name is the Genus and species of the
package as a two letter abbreviation, and the 3rd part of the name indicates
the origin of the data. So while the human organism package listed above is
based on entrez gene IDs, the yeast package is named org.Sc.sgd.db because
its data comes primarily from SGD.

The data in an organism package is organized into a series of mappings
that will connect the central gene IDs to various other kinds of information.

> ##load the package

> library("org.Hs.eg.db")

> ##look what we just loaded

> ls(2)

[1] "org.Hs.eg" "org.Hs.eg_dbconn"
[3] "org.Hs.eg_dbfile" "org.Hs.eg_dbInfo"
[5] "org.Hs.eg_dbschema" "org.Hs.egACCNUM"
[7] "org.Hs.egACCNUM2EG" "org.Hs.egALIAS2EG"
[9] "org.Hs.egCHR" "org.Hs.egCHRLENGTHS"
[11] "org.Hs.egCHRLOC" "org.Hs.egCHRLOCEND"
[13] "org.Hs.egENSEMBL" "org.Hs.egENSEMBL2EG"
[15] "org.Hs.egENSEMBLPROT" "org.Hs.egENSEMBLPROT2EG"
[17] "org.Hs.egENSEMBLTRANS" "org.Hs.egENSEMBLTRANS2EG"
[19] "org.Hs.egENZYME" "org.Hs.egENZYME2EG"
[21] "org.Hs.egGENENAME" "org.Hs.egGO"
[23] "org.Hs.egGO2ALLEGS" "org.Hs.egGO2EG"
[25] "org.Hs.egMAP" "org.Hs.egMAP2EG"
[27] "org.Hs.egMAPCOUNTS" "org.Hs.egOMIM"
[29] "org.Hs.egOMIM2EG" "org.Hs.egORGANISM"
[31] "org.Hs.egPATH" "org.Hs.egPATH2EG"
[33] "org.Hs.egPFAM" "org.Hs.egPMID"
[35] "org.Hs.egPMID2EG" "org.Hs.egPROSITE"
[37] "org.Hs.egREFSEQ" "org.Hs.egREFSEQ2EG"
[39] "org.Hs.egSYMBOL" "org.Hs.egSYMBOL2EG"
[41] "org.Hs.egUNIGENE" "org.Hs.egUNIGENE2EG"
[43] "org.Hs.egUNIPROT"

2

> ##Just like user accessible functions, all Mappings have a manual page which

> ##will show you what to expect as well as where the data came from

> # ?org.Hs.egCHRLOC

>

> ##Have a peak:

> as.list(org.Hs.egCHRLOC[1:4])

$`1`
19

-63549983

$`10`
8

18293034

$`100`
20

-42681576

$`1000`
18

-23784927

> ##for the stop locations use:

> as.list(org.Hs.egCHRLOCEND[1:4])

$`1`
19

-63556677

$`10`
8

18303003

$`100`
20

-42713790

$`1000`
18

-24011443

3

> ##or can use get, mget etc. with the entrez gene ID

> EGs = c("10","100","1000")

> mget(EGs, org.Hs.egCHRLOC, ifnotfound=NA)

$`10`
8

18293034

$`100`
20

-42681576

$`1000`
18

-23784927

> mget(EGs, org.Hs.egCHRLOCEND, ifnotfound=NA)

$`10`
8

18303003

$`100`
20

-42713790

$`1000`
18

-24011443

> ##You can also retrieve ENSEMBL IDs using this package

> mget(EGs, org.Hs.egENSEMBL, ifnotfound=NA)

$`10`
[1] "ENSG00000156006"

$`100`
[1] "ENSG00000196839"

$`1000`
[1] "ENSG00000170558"

4

> ##And GO IDs

> mget(EGs[1], org.Hs.egGO, ifnotfound=NA)

$`10`
$`10`$`GO:0008152`
$`10`$`GO:0008152`$GOID
[1] "GO:0008152"

$`10`$`GO:0008152`$Evidence
[1] "IEA"

$`10`$`GO:0008152`$Ontology
[1] "BP"

$`10`$`GO:0005829`
$`10`$`GO:0005829`$GOID
[1] "GO:0005829"

$`10`$`GO:0005829`$Evidence
[1] "EXP"

$`10`$`GO:0005829`$Ontology
[1] "CC"

$`10`$`GO:0005737`
$`10`$`GO:0005737`$GOID
[1] "GO:0005737"

$`10`$`GO:0005737`$Evidence
[1] "IEA"

$`10`$`GO:0005737`$Ontology
[1] "CC"

$`10`$`GO:0004060`
$`10`$`GO:0004060`$GOID
[1] "GO:0004060"

5

$`10`$`GO:0004060`$Evidence
[1] "TAS"

$`10`$`GO:0004060`$Ontology
[1] "MF"

$`10`$`GO:0016407`
$`10`$`GO:0016407`$GOID
[1] "GO:0016407"

$`10`$`GO:0016407`$Evidence
[1] "IEA"

$`10`$`GO:0016407`$Ontology
[1] "MF"

$`10`$`GO:0016740`
$`10`$`GO:0016740`$GOID
[1] "GO:0016740"

$`10`$`GO:0016740`$Evidence
[1] "IEA"

$`10`$`GO:0016740`$Ontology
[1] "MF"

> ##And KEGG pathway IDs etc.

> mget(EGs, org.Hs.egPATH, ifnotfound=NA)

$`10`
[1] "00232" "00983"

$`100`
[1] "00230" "05340"

$`1000`
[1] "04514"

6

> ##Other convenient functions

> ##Lkeys, RKeys, mappedLkeys(),mappedRkeys()

> Lkeys(org.Hs.egENZYME)[110:112]

[1] "100033807" "100033808" "100033809"

> Rkeys(org.Hs.egENZYME)[110:112]

[1] "1.14.99.9" "1.15.1.1" "1.16.1.-"

> ##Left keys and right keys can be mapped or un-mapped.

> length(Lkeys(org.Hs.egPATH))

[1] 40784

> length(Rkeys(org.Hs.egPATH))

[1] 205

> length(mappedLkeys(org.Hs.egPATH))

[1] 4799

> length(mappedRkeys(org.Hs.egPATH))

[1] 205

> ##keys() and mappedkeys() both return the left keys

> length(keys(org.Hs.egPATH))

[1] 40784

> length(mappedkeys(org.Hs.egPATH))

[1] 4799

> ##revmap() can USUALLY be used to reverse the direction of a mapping.

> PATHIDs = unlist(mget(EGs[1], org.Hs.egPATH, ifnotfound=NA))[[1]]

> PATHIDs

[1] "00232"

> mget(as.character(PATHIDs), revmap(org.Hs.egPATH), ifnotfound=NA)

7

$`00232`
[1] "9" "10" "1544" "1548" "1549" "1553" "7498"

> ##toTable

> toTable(revmap(org.Hs.egPATH))[1:4,]

gene_id path_id
1 2 04610
2 9 00232
3 9 00983
4 10 00232

> ##special symbols: packagename(), _dbfile(), _dbinfo(), and _dbconn()

> ls(2)

[1] "org.Hs.eg" "org.Hs.eg_dbconn"
[3] "org.Hs.eg_dbfile" "org.Hs.eg_dbInfo"
[5] "org.Hs.eg_dbschema" "org.Hs.egACCNUM"
[7] "org.Hs.egACCNUM2EG" "org.Hs.egALIAS2EG"
[9] "org.Hs.egCHR" "org.Hs.egCHRLENGTHS"
[11] "org.Hs.egCHRLOC" "org.Hs.egCHRLOCEND"
[13] "org.Hs.egENSEMBL" "org.Hs.egENSEMBL2EG"
[15] "org.Hs.egENSEMBLPROT" "org.Hs.egENSEMBLPROT2EG"
[17] "org.Hs.egENSEMBLTRANS" "org.Hs.egENSEMBLTRANS2EG"
[19] "org.Hs.egENZYME" "org.Hs.egENZYME2EG"
[21] "org.Hs.egGENENAME" "org.Hs.egGO"
[23] "org.Hs.egGO2ALLEGS" "org.Hs.egGO2EG"
[25] "org.Hs.egMAP" "org.Hs.egMAP2EG"
[27] "org.Hs.egMAPCOUNTS" "org.Hs.egOMIM"
[29] "org.Hs.egOMIM2EG" "org.Hs.egORGANISM"
[31] "org.Hs.egPATH" "org.Hs.egPATH2EG"
[33] "org.Hs.egPFAM" "org.Hs.egPMID"
[35] "org.Hs.egPMID2EG" "org.Hs.egPROSITE"
[37] "org.Hs.egREFSEQ" "org.Hs.egREFSEQ2EG"
[39] "org.Hs.egSYMBOL" "org.Hs.egSYMBOL2EG"
[41] "org.Hs.egUNIGENE" "org.Hs.egUNIGENE2EG"
[43] "org.Hs.egUNIPROT"

> ##package info

> org.Hs.eg()

8

Quality control information for org.Hs.eg:

This package has the following mappings:

org.Hs.egACCNUM has 29687 mapped keys (of 40784 keys)
org.Hs.egACCNUM2EG has 590454 mapped keys (of 590454 keys)
org.Hs.egALIAS2EG has 102986 mapped keys (of 102986 keys)
org.Hs.egCHR has 40539 mapped keys (of 40784 keys)
org.Hs.egCHRLENGTHS has 25 mapped keys (of 25 keys)
org.Hs.egCHRLOC has 20599 mapped keys (of 40784 keys)
org.Hs.egCHRLOCEND has 20599 mapped keys (of 40784 keys)
org.Hs.egENSEMBL has 20255 mapped keys (of 40784 keys)
org.Hs.egENSEMBL2EG has 19903 mapped keys (of 19903 keys)
org.Hs.egENSEMBLPROT has 19927 mapped keys (of 40784 keys)
org.Hs.egENSEMBLPROT2EG has 44871 mapped keys (of 44871 keys)
org.Hs.egENSEMBLTRANS has 19965 mapped keys (of 40784 keys)
org.Hs.egENSEMBLTRANS2EG has 44931 mapped keys (of 44931 keys)
org.Hs.egENZYME has 2015 mapped keys (of 40784 keys)
org.Hs.egENZYME2EG has 870 mapped keys (of 870 keys)
org.Hs.egGENENAME has 40784 mapped keys (of 40784 keys)
org.Hs.egGO has 17482 mapped keys (of 40784 keys)
org.Hs.egGO2ALLEGS has 10438 mapped keys (of 10438 keys)
org.Hs.egGO2EG has 7659 mapped keys (of 7659 keys)
org.Hs.egMAP has 36549 mapped keys (of 40784 keys)
org.Hs.egMAP2EG has 2946 mapped keys (of 2946 keys)
org.Hs.egOMIM has 14080 mapped keys (of 40784 keys)
org.Hs.egOMIM2EG has 16415 mapped keys (of 16415 keys)
org.Hs.egPATH has 4799 mapped keys (of 40784 keys)
org.Hs.egPATH2EG has 205 mapped keys (of 205 keys)
org.Hs.egPFAM has 24009 mapped keys (of 40784 keys)
org.Hs.egPMID has 28206 mapped keys (of 40784 keys)
org.Hs.egPMID2EG has 232955 mapped keys (of 232955 keys)
org.Hs.egPROSITE has 24009 mapped keys (of 40784 keys)
org.Hs.egREFSEQ has 28158 mapped keys (of 40784 keys)
org.Hs.egREFSEQ2EG has 90796 mapped keys (of 90796 keys)
org.Hs.egSYMBOL has 40784 mapped keys (of 40784 keys)
org.Hs.egSYMBOL2EG has 40763 mapped keys (of 40763 keys)
org.Hs.egUNIGENE has 24864 mapped keys (of 40784 keys)
org.Hs.egUNIGENE2EG has 25562 mapped keys (of 25562 keys)

9

org.Hs.egUNIPROT has 20652 mapped keys (of 40784 keys)

Additional Information about this package:

DB schema: HUMAN_DB
DB schema version: 1.0
Organism: Homo sapiens
Date for NCBI data: 2009-Mar11
Date for GO data: 200903
Date for KEGG data: 2009-Mar10
Date for Golden Path data: 2008-Sep3
Date for IPI data: 2009-Mar03
Date for Ensembl data: 2009-Mar6

> ##location of the database file

> org.Hs.eg_dbfile()

[1] "/home/mcarlson/arch/x86_64/R-devel/library/org.Hs.eg.db/extdata/org.Hs.eg.sqlite"

> ##Data frame with Information

> org.Hs.eg_dbInfo()

name
1 DBSCHEMAVERSION
2 DBSCHEMA
3 ORGANISM
4 SPECIES
5 EGSOURCEDATE
6 EGSOURCENAME
7 EGSOURCEURL
8 GOSOURCENAME
9 GOSOURCEURL
10 GOSOURCEDATE
11 GOEGSOURCEDATE
12 GOEGSOURCENAME
13 GOEGSOURCEURL
14 KEGGSOURCENAME
15 KEGGSOURCEURL
16 KEGGSOURCEDATE
17 GPSOURCENAME

10

18 GPSOURCEURL
19 GPSOURCEDATE
20 IPISOURCENAME
21 IPISOURCEURL
22 IPISOURCEDATE
23 ENSOURCEDATE
24 ENSOURCENAME
25 ENSOURCEURL

value
1 1.0
2 HUMAN_DB
3 Homo sapiens
4 Human
5 2009-Mar11
6 Entrez Gene
7 ftp://ftp.ncbi.nlm.nih.gov/gene/DATA
8 Gene Ontology
9 ftp://ftp.geneontology.org/pub/go/godatabase/archive/latest
10 200903
11 2009-Mar11
12 Entrez Gene
13 ftp://ftp.ncbi.nlm.nih.gov/gene/DATA
14 KEGG GENOME
15 ftp://ftp.genome.jp/pub/kegg/genomes
16 2009-Mar10
17 UCSC Genome Bioinformatics (Homo sapiens)
18 ftp://hgdownload.cse.ucsc.edu/goldenPath/currentGenomes/Homo_sapiens
19 2008-Sep3
20 The International Protein Index
21 ftp://ftp.ebi.ac.uk/pub/databases/IPI/current
22 2009-Mar03
23 2009-Mar6
24 Ensembl
25 ftp://ftp.ensembl.org/pub/current_fasta

> ##Connection object

> org.Hs.eg_dbconn()

<SQLiteConnection:(19636,0)>

Behind the scenes, all of the annotation packages are really just small

11

SQLite databases wrapped up with a familiar interface. Because of this, it is
possible to connect directly to these databases. SQLite also has the property
that multiple databases can be attached which allows the tables of multiple
databases to be joined together on the fly. We accomodate this feature by
providing annotation packages that are a snapshot from a particular time
period. Thus the data from different annotation packages can be combined
on the fly in interesting ways as needed.

> ##simple examples of using the DBI interface

> library(org.Hs.eg.db)

> dbconn <- org.Hs.eg_dbconn()

> sql <- "SELECT * FROM genes LIMIT 4;"

> result <- dbGetQuery(dbconn, sql)

> result

_id gene_id
1 1 1
2 2 2
3 3 3
4 4 9

> ##Here is a simple join of the type that generates the mappings

> sql <- "SELECT * FROM genes,kegg WHERE genes._id=kegg._id;"

> result <- dbGetQuery(dbconn, sql)

> result[1:4,]

_id gene_id _id path_id
1 2 2 2 04610
2 4 9 4 00232
3 4 9 4 00983
4 5 10 5 00232

> ##simple example of a join across DBs

> ##get the entrez genes in humans and in mouse which share a kegg pathway ID.

>

> ## 1st we must get the pathway to the database file

> path = system.file("extdata", "org.Mm.eg.sqlite", package = "org.Mm.eg.db")

> ##then we have to attach the database

> sql <- paste("ATTACH '",path,"' AS Mm;",sep="")

> dbSendQuery(dbconn, sql)

12

<SQLiteResult:(19636,0,63)>

> ##Then we can make our query

> sql <- "SELECT g.gene_id, k.path_id, mk.path_id, mg.gene_id

+ FROM genes AS g, kegg AS k, Mm.kegg AS mk, Mm.genes AS mg

+ WHERE g._id=k._id AND mg._id=mk._id AND k.path_id=mk.path_id

+ limit 1000;"

> result <- dbGetQuery(dbconn, sql)

> result[1:4,]

gene_id path_id path_id gene_id
1 2 04610 04610 11537
2 2 04610 04610 11905
3 2 04610 04610 12061
4 2 04610 04610 12062

> ##can even use SQLite specific stuff

> sql = "SELECT * FROM sqlite_master;"

> result = dbGetQuery(dbconn, sql)

> head(result)

type name tbl_name rootpage
1 table metadata metadata 2
2 index sqlite_autoindex_metadata_1 metadata 3
3 table map_metadata map_metadata 4
4 table map_counts map_counts 5
5 index sqlite_autoindex_map_counts_1 map_counts 6
6 table genes genes 7

sql
1 CREATE TABLE metadata (name VARCHAR(80) PRIMARY KEY, value VARCHAR(255))
2 <NA>
3 CREATE TABLE map_metadata (\n map_name VARCHAR(80) NOT NULL,\n source_name VARCHAR(80) NOT NULL,\n source_url VARCHAR(255) NOT NULL,\n source_date VARCHAR(20) NOT NULL\n)
4 CREATE TABLE map_counts (\n map_name VARCHAR(80) PRIMARY KEY,\n count INTEGER NOT NULL\n)
5 <NA>
6 CREATE TABLE genes (\n _id INTEGER PRIMARY KEY,\n gene_id VARCHAR(10) NOT NULL UNIQUE -- Entrez Gene ID\n)

3 Using a chip based annotation package

Sometimes you will want a more customized experience. That is what chip
packages are for. Internally, a chip packages is just a subest of an org package

13

with an extra table to capture the probe-gene relationships. Thus when you
use the mappings in a chip package, AnnotationDbi will automatically map
through the entrez gene ID to connect your probe to the data of interest for
you.

> ##Things work very similarly to an org package

> library(hgu95av2.db)

> ls(2)

[1] "hgu95av2" "hgu95av2_dbconn" "hgu95av2_dbfile"
[4] "hgu95av2_dbInfo" "hgu95av2_dbschema" "hgu95av2ACCNUM"
[7] "hgu95av2ALIAS2PROBE" "hgu95av2CHR" "hgu95av2CHRLENGTHS"
[10] "hgu95av2CHRLOC" "hgu95av2CHRLOCEND" "hgu95av2ENSEMBL"
[13] "hgu95av2ENSEMBL2PROBE" "hgu95av2ENTREZID" "hgu95av2ENZYME"
[16] "hgu95av2ENZYME2PROBE" "hgu95av2GENENAME" "hgu95av2GO"
[19] "hgu95av2GO2ALLPROBES" "hgu95av2GO2PROBE" "hgu95av2MAP"
[22] "hgu95av2MAPCOUNTS" "hgu95av2OMIM" "hgu95av2ORGANISM"
[25] "hgu95av2PATH" "hgu95av2PATH2PROBE" "hgu95av2PFAM"
[28] "hgu95av2PMID" "hgu95av2PMID2PROBE" "hgu95av2PROSITE"
[31] "hgu95av2REFSEQ" "hgu95av2SYMBOL" "hgu95av2UNIGENE"
[34] "hgu95av2UNIPROT"

> ##Gene symbols and aliases

> probes = keys(hgu95av2SYMBOL)[1:4]

> probes

[1] "1000_at" "1001_at" "1002_f_at" "1003_s_at"

> ##You can use the probes in the same way you would have used Entrez Genes

> ##Here is a mapping that retrieves NCBIs official gene symbols

> mget(probes, hgu95av2SYMBOL, ifnotfound=NA)

$`1000_at`
[1] "MAPK3"

$`1001_at`
[1] "TIE1"

$`1002_f_at`
[1] "CYP2C19"

14

$`1003_s_at`
[1] "CXCR5"

> ##And here is a mapping that retrieves all known gene symbols

> mget(probes, revmap(hgu95av2ALIAS2PROBE), ifnotfound=NA)

$`1000_at`
[1] "ERK1" "HS44KDAP" "HUMKER1A" "MAPK3" "MGC20180" "P44ERK1" "P44MAPK"
[8] "PRKM3"

$`1001_at`
[1] "JTK14" "TIE" "TIE1"

$`1002_f_at`
[1] "CPCJ" "CYP2C" "CYP2C19" "P450C2C" "P450IIC19"

$`1003_s_at`
[1] "BLR1" "CD185" "CXCR5" "MDR15" "MGC117347"

> ##Be careful with Aliases as they are NOT unique

> ##This is easier to demonstrate with an org package.

> ##But its even more of a problem in a chip package.

> library(org.Hs.eg.db)

> EG2AliasList = as.list(org.Hs.egALIAS2EG)

> EG2AliasList["KAT"]

$KAT
[1] "10300" "50848" "100134860"

> ##We can calculate out how many things match each Alias like this:

> lengths = unlist(lapply(EG2AliasList, length))

> lengths["KAT"]

KAT
3

> table(lengths)

lengths
1 2 3 4 5 6 7 8 9 10 12 15 36

99536 2933 364 97 25 10 10 4 3 1 1 1 1

15

> ##And just out of curiosity:

> lengths[lengths==36]

VH
36

> EG2AliasList["VH"]

$VH
[1] "3507" "6545" "28385" "28388" "28391" "28392" "28394" "28395" "28400"
[10] "28401" "28408" "28409" "28410" "28412" "28414" "28420" "28423" "28424"
[19] "28426" "28429" "28432" "28434" "28439" "28444" "28445" "28447" "28448"
[28] "28450" "28451" "28452" "28454" "28455" "28457" "28464" "28466" "28467"

4 Creating a custom chip based package

Sometimes you may wish that you had a package that mapped the probes for
a currently unsupported platform. When this happens you can make a cus-
tom package that conforms to the standard chip package database schemas
by using SQLForge. To guarantee that the package you make matches the
other annotation packages in a given release, you have to 1st install the .db0
package that goes with the organism you wish to make a package for. Then
you just have to call the appropriate function in AnnotationDbi

> ##1st you need the appropriate DBO package

> library(AnnotationDbi)

> available.db0pkgs()

[1] "arabidopsis.db0" "bovine.db0" "canine.db0" "chicken.db0"
[5] "ecoliK12.db0" "ecoliSakai.db0" "fly.db0" "human.db0"
[9] "malaria.db0" "mouse.db0" "pig.db0" "rat.db0"
[13] "worm.db0" "yeast.db0" "zebrafish.db0"

> ##Then you need to get that package

> ##But Don't actually do this step (if you are copy/pasting along)

> # source("http://bioconductor.org/BiocLite.R")

> # biocLite("human.db0")

>

> ##Then you can get a tab-delimited file that has your probes paired with IDs

> hcg110_IDs = system.file("extdata", "hcg110_ID", package="AnnotationDbi")

> head(read.delim(hcg110_IDs,header=FALSE))

16

V1 V2
1 1000_at X60188
2 1001_at X60957
3 1002_f_at X65962
4 1003_s_at X68149
5 1004_at X68149
6 1005_at X68277

> ##For this example lets not actually write anything to the file sys.

> tmpout = tempdir()

> ##Then you can make the package

> makeHUMANCHIP_DB(affy=FALSE,

+ prefix="hcg110",

+ fileName=hcg110_IDs,

+ baseMapType="gb",

+ outputDir = tmpout,

+ version="1.0.0",

+ manufacturer = "Affymetrix",

+ chipName = "Human Cancer G110 Array",

+ manufacturerUrl = "http://www.affymetrix.com")

baseMapType is gb or gbNRefPrepending MetadataCreating Genes tableAppending ProbesFound 2059 Probe AccessionsAppending Gene InfoFound 1440 Gene NamesFound 1440 Gene SymbolsAppending ChromosomesAppending Cytogenetic LocationsAppending OmimAppending RefSeqAppending PubmedAppending UnigeneAppending ChrLengthsAppending 3 GO tablesAppending 3 GO ALL tablesAppending KEGGAppending ECAppending Chromosome LocationsAppending PfamAppending PrositeAppending AliasAppending EnsemblAppending UniprotAppending Metadata

Creating package in /tmp/RtmppH4kiv/hcg110.db

5 Using specialized annotation packages

Sometimes more specialized data is needed that is not necessarily affiliated
with a particular organism. Examples of this are GO.db, KEGG.db and
PFAM.db. We will demonstrate using GO.db. Before we start it is impor-
tant to remember that GO is the gene ontology. Which means that there
are parent-child relationships between terms within the ontology.

> ##You may have already noticed that the organism packages have some GO

> ##information in them already. This mapping represents the relationship

> ##between these EG IDs and the GO IDs. For example: org.Hs.egGO,

> ##org.Hs.egGO2EG, and org.Hs.egGO2ALLEGS

> ls("package:org.Hs.eg.db")[22:24]

[1] "org.Hs.egGO" "org.Hs.egGO2ALLEGS" "org.Hs.egGO2EG"

17

> ##There are two types of such mappings. org.Hs.egGO will map GO terms to

> ##entrez gene IDs, while org.Hs.egGO2ALLEGS maps GO terms and relevant child

> ##terms to specific entrez gene IDs The man pages will help you remember which

> ##is which.

>

>

> ##All the other GO information is found in GO.db

> library(GO.db)

> ls("package:GO.db")

[1] "GO" "GO_dbconn" "GO_dbfile" "GO_dbInfo"
[5] "GO_dbschema" "GOBPANCESTOR" "GOBPCHILDREN" "GOBPOFFSPRING"
[9] "GOBPPARENTS" "GOCCANCESTOR" "GOCCCHILDREN" "GOCCOFFSPRING"
[13] "GOCCPARENTS" "GOMAPCOUNTS" "GOMFANCESTOR" "GOMFCHILDREN"
[17] "GOMFOFFSPRING" "GOMFPARENTS" "GOOBSOLETE" "GOSYNONYM"
[21] "GOTERM"

> ##The mapping that you usually want is the one that describes all the terms

> keys = keys(GOTERM[1:500])

> x = mget(as.character(keys), GOTERM, ifnotfound=NA)

> x[30]

$`GO:0000038`
GOID: GO:0000038
Term: very-long-chain fatty acid metabolic process
Ontology: BP
Definition: The chemical reactions and pathways involving fatty acids

with a chain length of C18 or greater.
Synonym: very-long-chain fatty acid metabolism

> ##GO is a directed acyclic graph, so there are many parent and child

> ##relationships among terms.

> ##Therefore GO.db also has mappings to tell you about the parent and child

> ##terms as well as all the ancestor or offspring terms

> mget(as.character(names(x[30])),GOBPCHILDREN, ifnotfound=NA)

$`GO:0000038`
isa isa

"GO:0042760" "GO:0042761"

18

6 Using biomaRt

If you can’t find what you are looking for in the annotation packages, you
can also consider trying biomaRt. biomaRt is slower, not versioned, and
requires a greater level of knowledge to use, but sometimes there is in-
formation there that is not included in the annoation packages yet. One
thing to pay attention to is that the biomaRt ensembl database used in this
example sometimes a different source of annotations from the annotation
packages above for sequence data. We therefore recommend against mixing
and matching these two annotation sets as there might be disagreements.

Remember also when using biomaRt, that it has to talk to an external
server most of the time. So you may have to repeat some of the following
steps if the internet is not cooperating.

> ##Getting the data from biomaRt:

>

> library("biomaRt")

> ##Choose a database

> listMarts()[1:5,]

biomart version
1 ensembl ENSEMBL 53 GENES (SANGER UK)
2 snp ENSEMBL 53 VARIATION (SANGER UK)
3 vega VEGA 34 (SANGER UK)
4 msd MSD PROTOTYPE (EBI UK)
5 htgt HIGH THROUGHPUT GENE TARGETING AND TRAPPING (SANGER UK)

> ##Get the current ensembl database.

> ensembl = useMart("ensembl")

> ##List the datasets therein

> listDatasets(ensembl)[1:10,]

dataset description
1 oanatinus_gene_ensembl Ornithorhynchus anatinus genes (OANA5)
2 tguttata_gene_ensembl Taeniopygia guttata genes (ZEBRA_FINCH_1)
3 cporcellus_gene_ensembl Cavia porcellus genes (cavPor3)
4 gaculeatus_gene_ensembl Gasterosteus aculeatus genes (BROADS1)
5 lafricana_gene_ensembl Loxodonta africana genes (loxAfr2)
6 agambiae_gene_ensembl Anopheles gambiae genes (AgamP3)
7 mlucifugus_gene_ensembl Myotis lucifugus genes (MICROBAT1)
8 hsapiens_gene_ensembl Homo sapiens genes (NCBI36)

19

9 choffmanni_gene_ensembl Choloepus hoffmanni genes (SLOTH_1)
10 aaegypti_gene_ensembl Aedes aegypti genes (AaegL1)

version
1 OANA5
2 ZEBRA_FINCH_1
3 cavPor3
4 BROADS1
5 loxAfr2
6 AgamP3
7 MICROBAT1
8 NCBI36
9 SLOTH_1
10 AaegL1

> ##Then set up so that you use that for this session

> ##(we will choose the mouse one from NCBI build 37.1):

> ensembl = useDataset("mmusculus_gene_ensembl",mart=ensembl)

> ##List attributes

> attributes = listAttributes(ensembl)

> attributes[1:10,]

name description
1 ensembl_gene_id Ensembl Gene ID
2 ensembl_transcript_id Ensembl Transcript ID
3 ensembl_peptide_id Ensembl Protein ID
4 canonical_transcript_stable_id Canonical transcript stable ID(s)
5 description Description
6 chromosome_name Chromosome Name
7 start_position Gene Start (bp)
8 end_position Gene End (bp)
9 strand Strand
10 band Band

> ##And filters

> filters = listFilters(ensembl)

> filters[1:10,]

name description
1 chromosome_name Chromosome name
2 start Gene Start (bp)
3 end Gene End (bp)

20

4 band_start Band Start
5 band_end Band End
6 marker_start Marker Start
7 marker_end Marker End
8 strand Strand
9 chromosomal_region Chromosome Regions
10 with_affy_mu11ksuba with Affymetrix Microarray mu11ksuba ID(s)

> ##Some entrez gene IDs

> EGs = c("18392","18414","56513")

> ##1st a Simple example to just get some gene names:

> getBM(attributes = "external_gene_id",

+ filters = "entrezgene",

+ values = EGs,

+ mart=ensembl)

external_gene_id
1 Orc1l
2 Osmr
3 Pard6a

> ##Transcript starts and ends:

> getBM(attributes = c("entrezgene","transcript_start","transcript_end"),

+ filters = "entrezgene",

+ values = EGs,

+ mart=ensembl)

entrezgene transcript_start transcript_end
1 18392 108252066 108288633
2 18414 6763590 6824283
3 56513 108225054 108227393
4 56513 108225571 108227393
5 56513 108225571 108227262

7 Session Information

The version number of R and packages loaded for generating the vignette
were:

R version 2.10.0 Under development (unstable) (2009-04-16 r48329)
x86_64-unknown-linux-gnu

21

locale:
LC_CTYPE=en_US.UTF-8;LC_NUMERIC=C;LC_TIME=en_US.UTF-8;LC_COLLATE=en_US.UTF-8;LC_MONETARY=C;LC_MESSAGES=en_US.UTF-8;LC_PAPER=en_US.UTF-8;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=en_US.UTF-8;LC_IDENTIFICATION=C

attached base packages:
[1] stats graphics grDevices datasets utils methods base

other attached packages:
[1] biomaRt_1.99.9 GO.db_2.2.11 hgu95av2.db_2.2.11
[4] org.Hs.eg.db_2.2.11 RSQLite_0.7-1 DBI_0.2-4
[7] AnnotationDbi_1.7.0 Biobase_2.3.11

loaded via a namespace (and not attached):
[1] RCurl_0.94-1 tools_2.10.0 XML_2.3-0

22

