Outline	Introduction	Sequences	Ranges	Data on Ranges

IRanges Bioconductor Infrastructure for Sequence Analysis

May 30, 2009

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline	Introduction	Sequences	Ranges 000000000	Data on Ranges 0000

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

1 Introduction

2 Sequences

3 Ranges

Basics Ranges as sets Overlap

Data on Ranges

Views RangedData

Outline	Introduction	Sequences	Ranges 000000000	Data on Ranges 0000
Outline				

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

1 Introduction

2 Sequences

8 Ranges

Basics Ranges as sets Overlap

4 Data on Ranges

Views RangedData

Outline	Introduction	Sequences	Ranges 000000000	Data on Ranges 0000
IRanges				

- Supports the manipulation and analysis of:
 - Sequences (ordered collections of elements)
 - Ranges of indices into sequences
 - Data on ranges
- Forms the basis of much of the sequence analysis functionality in Bioconductor

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Emphasis on efficiency in space and time

Outline	Introduction	Sequences	Ranges 0000000000	Data on Ranges 0000
Outline				

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Introduction

2 Sequences

8 Ranges

Basics Ranges as sets Overlap

4 Data on Ranges

Views RangedData

Outline	Introduction	Sequences	Ranges 000000000	Data on Ranges 0000
Sequenc	res in IRanges			

Almost every object manipulated by *IRanges* is a sequence:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Atomic sequences (e.g. R vectors)

Б

- Lists
- Data tables (two dimensions)

Outline	Introduction	Sequences	Ranges 0000000000	Data on Ranges 0000
F 1				

Index

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Run-Length Encoding (RLE)

Our example has many repeated values:

Code
> sum(diff(s) == 0)
[1] 133

Good candidate for compression by run-length encoding:

Code					
> sRle <- Rle(s)					
> sRle					
'numeric' Rle instance of length 156 with 23 runs					
Lengths: 40 1 2 3 1 2 3 1 2 3					
Values : 0 1 2 3 4 5 6 7 8 9					

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Compression reduces size from 156 to 46.

Outline	Introduction	Sequences	Ranges 0000000000	Data on Ranges 0000
Rle ope	rations			
The <i>l</i>	R <i>le</i> object like any	other sequence/v	ector:	

Basic
> sRle > 0 rev(sRle) > 0
'logical' Rle instance of length 156 with 3 runs
Lengths: 40 76 40
Values : FALSE TRUE FALSE

Summary

> sum(sRle > 0)

[1] 66

Statistics

> cor(sRle, rev(sRle))

[1] 0.5142557

Outline	Introduction	Sequences	Ranges 000000000	Data on Ranges 0000
E X tern	al sequences			

- Sequences derived from *XSequence* are references
- · Memory not copied when containing object is modified
- Example: *XString* in *Biostrings* package, for storing biological sequences efficiently

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Outline	Introduction	Sequences	Ranges	Data on Ranges 0000
Outline				

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Introduction

2 Sequences

8 Ranges

Basics Ranges as sets Overlap

4 Data on Ranges

Views RangedData

Outline	Introduction	Sequences	Ranges ●000000000	Data on Ranges 0000
Basics				
Ranges				

- Often interested in *consecutive* subsequences
- Consider the alphabet as a sequence:
 - {A, B, C} is a consecutive subsequence
 - The vowels would not be consecutive
- Compact representation: range (start and width)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Ranges objects store a sequence of ranges

The IRanges class is a simple Ranges implementation.

Outline	Introduction	Sequences	Ranges 00●0000000	Data on Ranges 0000
Basics				
Basic R	anges manipul	ation		

Accessors
> start(ir)
[1] 1 8 14 15 19 34 40
> end(ir)
[1] 12 13 19 29 24 35 46
> width(ir)
[1] 12 6 6 15 6 2 7

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outline	Introduction

Sequences

Ranges 000●000000 Data on Ranges

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Basics

Basic Ranges manipulation

Subsetting			
> ir[1:5]			
IRanges i	nstai	nce:	
start	end	width	
[1] 1	12	12	
[2] 8	13	6	
[3] 14	19	6	
[4] 15	29	15	
[5] 19	24	6	

Outline	Introduction	Sequences	Ranges ○○○○●○○○○○	Data on Ranges 0000
Ranges as sets				
Normali	zing ranges			

- Ranges can represent a set of integers
- *NormallRanges* formalizes this, with a compact, normalized representation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

reduce normalizes ranges

Code

> reduce(ir)

Outline	Introduction	Sequences	Ranges ○○○○●○○○○○	Data on Ranges 0000
Ranges as sets				
Normalizin	g ranges			

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ●

Outline	Introduction	Sequences	Ranges ○○○○○●○○○○	Data on Ranges 0000
Ranges as sets				
Set ope	rations			

- Ranges as set of integers: intersect, union, gaps, setdiff
- Each range as integer set, in parallel: pintersect, punion, pgap, psetdiff

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Example: gaps

> gaps(ir)

Outline	Introduction	Sequences	Ranges ○○○○○●○○○○	Data on Ranges 0000
Ranges as sets				
Set ope	rations			

Outline	Introduction	Sequences	Ranges ○○○○○●○○○	Data on Ranges 0000
Overlap				
Disjoini	ng ranges			

- Disjoint ranges are non-overlapping
- disjoin returns the widest ranges where the overlapping ranges are the same

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Outline	Introduction	Sequences	Ranges ○○○○○○○●○○	Data on Ranges 0000
Overlap				
Overlap	detection			

- overlap detects overlaps between two Ranges objects
- Uses interval tree for efficiency

Code

[7,]

```
> ol <- overlap(reduce(ir), ir)</pre>
```

3

```
> as.matrix(ol)
```

 query subject

 [1,]
 1

 [2,]
 2
 1

 [3,]
 3
 1

 [4,]
 4
 1

 [5,]
 5
 1

 [6,]
 6
 2

7

Outline	Introduction	Sequences	Ranges ○○○○○○○●○	Data on Ranges 0000
Overlap				
Countin	ng overlapping	Ranges		

coverage counts number of ranges over each position

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Outline	Introduction	Sequences	Ranges ○○○○○○○○●	Data on Ranges 0000
Overlap				
Finding	nearest neight	oors		

- nearest finds the nearest neighbor ranges (overlapping is zero distance)
- precede, follow find non-overlapping nearest neighbors on specific side

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Outline	Introduction	Sequences	Ranges 000000000	Data on Ranges
Outline				

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Introduction

2 Sequences

8 Ranges

Basics Ranges as sets Overlap

④ Data on Ranges

Views RangedData

Outline	Introduction	Sequences	Ranges 000000000	Data on Ranges ●000
Views				
Views				

- Associates a Ranges object with a sequence
- Sequences can be *Rle* or (in Biostrings) *XString*
- Extends *Ranges*, so supports the same operations

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Outline	Introduction	Sequences	Ranges 000000000	Data on Ranges 0●00
Views				
Slicing a	a Sequence int	o Views		

Goal: find regions above cutoff of 3

Index

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Outline	Introduction	Sequences	Ranges 0000000000	Data on Ranges 0●00
Views				
Slicing	a Sequence int	o Views		

Goal: find regions above cutoff of 3

Using Rle				
<pre>> Views(sRle, as(sRle > 3, "IRanges"))</pre>				
Views on a 156-length Rle subject				
views:				
start end width				
[1] 47 67 21 [4 5 5 6]				
[2] 86 100 15 [5 5 5 5 5 5]				

Convenience

> sViews <- slice(sRle, 4)</pre>

Outline	Introduction	Sequences	Ranges 000000000	Data on Ranges 00●0
Views				
Summa	rizing windows			

- Could sapply over each window
- Native functions available for common tasks: viewMins, viewMaxs, viewSums, ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Code

- > viewSums(sViews)
- [1] 150 72
- > viewMaxs(sViews)

[1] 10 5

Outline	Introduction	Sequences	Ranges 000000000	Data on Ranges ○○○●
RangedData				
RangedD	Data			

- Dataset where observations are ranges
- Holds ranges on multiple sequences (e.g. chromosomes)

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

- Behaves much like data.frame
- More during *rtracklayer* talk