RNA sequencing

Paul Bertone

EBI is an Outstation of the European Molecular Biology Laboratory.

Solexa transcriptome sequencing

- Solexa data analysis and associated software development
 - Unbiased expression profiling
 - Tandem identification of expressed non-coding RNAs
 - MicroRNA identification and expression analysis
- Advantages over microarrays
 - Gene expression arrays don't capture unannotated transcripts
 - Tiling arrays are still expensive for large genomes (e.g. mammals)
 - Small RNAs are too short for stable hybridization
 - No fluorescence correction to account for, essentially zero background
- Current disadvantages
 - More expensive than standard expression arrays
 - More time consuming than any microarray technology
 - Some data analysis issues
 - No strand orientation information sequencing a double-stranded product
 - Computing accurate transcript models, mapping reads to splice junctions
 - Contribution of high-abundance RNAs (eg ribosomal) could dilute the remaining transcript population; sequencing depth is important

Transcriptome sequencing methods

Method 1: variant of the LongSAGE protocol

Poly-A RNA selection Double strand cDNA synthesis on beads Nlall digestion to remove 5' portion of cDNAs

Ligation to 5' adapters containing a Mmel recognition site

- Mmel digestion to remove the 3' portion of cDNA
- This generates a 17nt tag (not including CATG)
- Tags are ligated to a 3' adapter
- The construct is PCR-amplified using primers homologous to 5' and 3' adapters PCR products are purified and quantitated (e.g. with Agilent Bioanalyzer)
- Load tag-adapter hybrids into flow cell lanes and sequence
- No concatenation of SAGE tags
- One tag is amplified and sequenced per flow cell cluster
- Read (tag) alignment is performed against a library of virtual tags

SAGE sequencing output

🗯 Terminal	Shell	Edit Viev	w Window	Help				
0000					Termina	$l - ssh - 160 \times 6$	0	
I res+001>lohore: F	C6402 2.sec	Ltyt		8	atellite-A:	000		_
2lu: canibt acce			000000000000000000000000000000000000000			GGGGGGGGGGGGGGGGGG	2008 from cp	c1-cmbg9-0-0-
2:e or address	965 45	0 GTATGO	CGTCTTCTGCTTGT	FAGTATTCCGTTT	IN Microsys	AAAAAAACGGAATACTA		ric February 20
use2lu: can1t acce	s709 inter46		CGTCTTCTGATTG		TTE2ge_cf res	AAAAAAACAAGATATAC		
use2te for address	971 63		ACTAATTTTTATCO		GTHecting r	AACAAAAGACGGAATAC		
get2lu: cani1ot acce 2:e or address	:734 inte:65 400 37		EGTETTETGETTG] ACAAAAAAAAAATCO		ddding;†Per TSTanadriae	AAAAAGACGGCATACGA		123 (RSA) to t
my 210: coni1nt dece	900 37 1665 inter47		CARAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA			AGAAGAAGACGGCATAC AGAAGAAGACTGCATAC		-001-14f47h764
my 2:e or address	57 45		CGTTTTTTTTTCC			AGAAGAAGACGGCATAC		COOTCHI HIDIOT.
my 2iu: canr1ot-acce	248 inter44		AATGTT/TETCTTCC			AAAAGAAGACGGAATAC		
2:e or address	345 61	.6	АААААААААААТСО	GGATGCCGTCTTCT	1910 01> dev	AAAAGAAGACGGCATCC		
# c2iu::cahr1ot.acce	:911: inte:40		ECCTTCTCCTTL	GTATGACGTEETC	IGT 001>f sol	ACAGAAAACGTCATACG		
my 2:etion:address)8	1 7 23 g 1 : 192		сетсттстесттт		EIH 001>/ls	AAGAAGACGGCATACTA		
my 2lu: canitot acce			TATIFICTERTIENTCO		IC≣ xg_hüman	AGAAAAAGACGGAATAC		
my 2:ë or address 2iu: candot acce	"779nity"50 :\$278 inte:36		CGTCTTCTGCTTGT		196 001> dev TTT004-558	CAAAAGACGTCATACTA		
# c2:e or address s	:8278 inter36 :833erver59		CONTRACTORIES		18н0015-са. тапаать са	AAAAAAGAAGGAAAACG AAAAAGACGGCATACGA		
my 210: canitot acce	348 inter57		EGTETTETGETTG1		narroonts its Minideachians	AAGAAGACGGCATACGA		
2:e or address	659 41		CGTCTTCTGCTTGT		Idrīd-encode	AAAAAAAAGGAATACGA		auality prb.d
2iu: canr1ot_acce	3711 inter74		COCCTTCTCCTTC		HA31_PNB01	AAAAAAGAGGGCTTCCG		realign_readm
\$ir2:e or ddfress	841 24		CGTCTTCTGCTTG1	IGTTTGCCGTTTTM	94 001> cd	AAAAAAAACGGCAAACA		
2iu: canitot acce	:955 inter47		COTOTICTOCATO			AAAAAGAAGTCATTCGA		
ope2:e ior, ddfress i	706 47		CGTCTTCTGCTTGT		TanGd eland	CAAAAGACGTCTTACGA		
2lu: cani1ot acce whi2ce or address	a611`inte:54 292 51		COTOTICTOCTTC]		BHUU1> IS:	AAAAAAAAAGAATTAGA		
whi2:e or address 2:u: candat acce	292 51 370%inte:32		AATAAAGGTTTTCC AAAAAAAAAAAAATCC		GEASI_PNDOI GRTAG4 - Filso	AGCAAAAGAAGAAATAC		
oth2:e or address	582 75		AAACTTTTGTTTC		GCTeland/t	AGCAGAAGACGGCATAC		tory
2iu: canitot acce	:612 intei36		COTOTICTOCITIC		TCT001sfls	AGAAGAAGACGATACGC		
2:e ori adtressu	980 77		CGTCTTCTGCTTGT	FAGTATGACGTATIT	19-1 001> bjo	AAAAATACGTCATACTA		
te,2iu:: canitotracce	:971 inte:65	0./data ATAAA A	GGAATCAGAA TTTC	GTATECCETCTTC	TGOnfiinishe	GCAGAAGACGGCATACG		
2:e ori addressiu	588 54		CGTCTTCTGCTTT		940 01> ls	AAAAAGACGGCATTCTA		
on)2lu: cani1ot acce	:971 inter47		TACTGAGATITETCO		GCT19846464	AGCAGAAGACGGCATAC		
3 2:e or address	605 36		AAAGCTATTATTCO		dullrw-r	AAAAAAAGACGGCATAC		15 14:32 H50231
2iu: canr1ot acce	:943 inter70	1917 da tabaadqui	COTOTICICONIC	uaranatara perta	MANWXI-X.S	AAAAAAAAACAGCATACG	zoto Apr	a iz:sa brevid

Solexa transcriptome sequencing

Solexa transcriptome sequencing

CB541 G179

G166 G144 GliNS1

5 CB660 4 7 8 12 20 13 2 엳 12 6 3 0 ENST0000396148 ENST0000262662

Cdkn2c

Differential read counts allow us to discern which transcript isoforms are expressed

Features of SAGE analysis

- Complicated library construction
- Good at gene expression analysis
- Short reads (17nt), therefore low rate of unique alignments to reference genome
 - Reads are mapped to virtual tags instead
- Mostly limited to annotated genes
- Can get some information on novel transcripts (limited)

mRNA sequencing

- Similar to SAGE analysis in terms of gene expression
- Simpler library construction
- Not limited to 17nt reads
 - Utilize full read length for alignment
 - Much better genome mapping
- Results are analogous to tiling array profiling
 - Reads map to individual transcript components
 - Ascertain splice variation as well as gene expression
 - Refine existing annotation of exons and UTRs
 - Identify non-coding RNAs

mRNA–seq protocol

Nature Reviews | Genetics

Reads mapped to the human genome

12 30 12 30	h chr1:121,184,943-121,188,646 jur	p clear size 3,704 bp. configur		q31.3 1q32.1 <u>32.2</u> 1q41
			I211879000	121187580

Alignment to exon splice junctions

Alignment reference should consider mature transcripts or exon junctions

Sequencing vs. tiling array hybridization

Red: tiling array hybridization signal (log2) Black: sequencing reads (log)

- Example comparison between Solexa WTSS and tiling array hybridization data (S. pombe, Bahler lab Sanger)
- Top image = sense strand; bottom image = antisense strand
- Light blue = annotated genes; Dark blue = new non-coding transcript; Green = intron

Novel Transcribed Regions: Possibilities

- Many areas of active transcription are observed outside annotated genes
 - Rare or low-abundance protein-coding transcripts
 - Unannotated exons from alternate splice products

• Previously under-represented 3' and 5' UTRs

Noncoding RNAs

Splice variation, refinement of existing exon annotation

Detection of microRNA precursors

Protocol variations

- Fragmentation methods
 - RNA: nebulization, hydrolysis
 - cDNA: sonication, Dnase I treatment
- Depletion of highly abundant transcripts
 - e.g. RiboMinus others?
- Oligo-dT selection for poly(A)+ transcripts vs total RNA
- Coverage issues
 - What is the sequencing depth required?
- Strand specificity
 - Most RNA sequencing is not strand-specific
 - Currently working with Vladimir Benes and Lars Steinmetz on new protocols for this

Specialized RNA-seq applications

- Small RNA sequencing
 - microRNAs
 - piRNAs
 - endo-siRNAs
- Identification of RNAs associated with protein complexes (e.g. Ago2)
 - Immunoprecipitation of RNA-bound protein complexes
 - Proteinase K digestion, purification of nucleic acids for sequencing

- Growing number of non-coding RNA classes categorized by many different features (e.g. function, length, secondary structures, expression tissues, species, etc.)
- For my projects I am focusing on short regulatory non-coding RNAs..
- ...paying particular attention to the microRNA and piwiRNA classes

- miRNAs are generally shorter (~21-23nt) than piRNAs (~24-30nt)
- miRNAs are Dicer-dependent
- miRNAs are processed from a dsRNA precursor with a known secondary structure (piRNAs?)
- Expression of piRNAs is thought to be restricted to the germline
- miRNAs bind to Argonaute clade whilst piRNAs to the Piwi clade of the Argonaute protein family

Similarities

- Both show a 5'Up preference
- Both show a 2'O-methyl modification at their 3' end (plant microRNAs only)

Differences in small RNA sequencing

- Size exclusion of total RNA
 - Selected to target particular species
 - e.g. 17-23nt for microRNAs, 25-32nt for piRNAs
 - 17-32nt can encompass both populations
- Direct ligation of adapters to RNA molecules
- Transcripts are typically shorter than the reads
 - Sequence into the adapters
 - Reveals strand specificity

Adapter masking, low-complexity filtering

HWI-EAS225 30EK7AAXX:6:1:1481:96 GTATGCCGTCTTCTGCTTGAAAAAAAAAAAATTATA +HWI-EAS225_30EK7AAXX:6:1:1481:96 ^^^^^]^NNNH------9HWI-EAS225_30EK7AAXX:6:1:1668:1848 GTTAATGTATCTATGGACTTAAAAATGGCATCGTAT +HWI-EAS225_30EK7AAXX:6:1:1668:1848 ^^^^^**NNNNN** 0HWI-EAS225_30EK7AAXX:6:1:1548:1360 **GGAAATGATGAGCCAGAAGATTCAACAGCTCGTATG** HWI_EAS225_30EK7AAXX:6:1:1548:1360 AAAAAAAAAAAAAAAAAAAAAAAYFNNNNN @HWI-EAS225_30EK7AAXX:6:1:1278:1293 GTGTTCCTAGGAAAAGTTTTGGCTGTTGTATGTCGT +HWI-EAS225 30EK7AAXX:6:1:1278:1293 ^^^^^FHNN @HWI_EAS225_30EK7AAXX:6:1:177:227 +HWI-EAS225 30EK7AAXX:6:1:177:227 @HWI_EAS225_30EK7AAXX:6:1:47:1634 GAACAGATGGCTTCCCACATGTACAGTCGTATGCCG +HWI-EAS225_30EK7AAXX:6:1:47:1634 @HWI-EAS225_30EK7AAXX:6:1:1099:113 GTATGCCGTCTTCTGCTTGAAAAAAAAAAATCTGTT +HWI_EAS225_30EK7AAXX:6:1:1099:113 0HWI-EAS225_30EK7AAXX:6:1:1561:621 GAGGAAAGTAGACTCTCAGAACACAAGTCGTATGCC +HWI-EAS225_30EK7AAXX:6:1:1561:621 @HWI-EAS225 30EK7AAXX:6:1:1481:96 GTATGCCGTCTTCTGCTTGaaaaaaaaaaaaaTTATA +HWI-EAS225 30EK7AAXX:6:1:1481:96 ^^^^^]^NNNH @HWI-EAS225 30EK7AAXX:6:1:1668:1848 **GTTAATGTATCTATGGACTTAAAAATGGCANNNNN** +HWI-EAS225_30EK7AAXX:6:1:1668:1848 ^^^^^**NNNNN:::::::** @HWI-EAS225_30EK7AAXX:6:1:1548:1360 **GGAAATGATGAGCCAGAAGATTCAACAGCNNNNNN** +HWI-EAS225_30EK7AAXX:6:1:1548:1360 AAAAAAAAAAAAAAAAAAAAAAAAAYENNNN::::::::: @HWI-EAS225_30EK7AAXX:6:1:1278:1293 GTGTTCCTAGGAAAAGTTTTGGCTGTTGTATGNNNN +HWI-EAS225_30EK7AAXX:6:1:1278:1293 ^^^^FHNNN <<;;;;; @HWI-EAS225_30EK7AAXX:6:1:177:227 GTATGCCGTCTTCTGCTTGaaaaaaaaaaaaAATA +HWI-EAS225 30EK7AAXX:6:1:177:227 AAAAAAAAJJAAAAAAAAAAAAAAAAAAANNNNN @HWI-EAS225_30EK7AAXX:6:1:47:1634 GAACAGATGGCTTCCCACATGTACAGNNNNNNNNN +HWI-EAS225_30EK7AAXX:6:1:47:1634 ^^^^^N @HWI-EAS225_30EK7AAXX:6:1:1099:113 GTATGCCGTCTTCTGCTTGaaaaaaaaaaaaaTCTGTN +HWI-EAS225_30EK7AAXX:6:1:1099:113 AAAAAAAAAAAAAAAAAAAAAAAYATNSNNNN @HWI-EAS225 30EK7AAXX:6:1:1561:621 GAGGAAAGTAGACTCTCAGAACACAAGNNNNNNNN +HWI-EAS225_30EK7AAXX:6:1:1561:621 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

>128

GTATGCCGTCTTCTGCTTGaaaaaaaaaaaaaaTTATA >129 **GTTAATGTATCTATGGACTTAAAAATGGCANNNNN** >130**GGAAATGATGAGCCAGAAGATTCAACAGCNNNNNN** >131 GTGTTCCTAGGAAAAGTTTTGGCTGTTGTATGNNNN >132GTATGCCGTCTTCTGCTTGaaaaaaaaaaaaAATA >133 GAACAGATGGCTTCCCACATGTACAGNNNNNNNNN >134 GTATGCCGTCTTCTGCTTGaaaaaaaaaaaaTCTGTN >135 GAGGAAAGTAGACTCTCAGAACACAAGNNNNNNNN >136GGGGAATTTGTGGCAGAGCAAAACTTATANNNNNN >137GAGAGAAGACAGAAATCTAGCAACATCCNNNNNNN >138GAGCAGGACAATATGAGAANNNNNNNNNNNNNNNNN >139 GGGATTTGAACTCTGGACCTTCGGAAGANNNNNNN >140GTTGATAAGCAAGAGGACTTCATTCCAGCNNNNNNN >141GAACAATCGGAAGACAGAGACGATGCANNNNNNNN >142GGTTGGACTGAAACAGAAGACATTTTTAATGNNNNN >143 GAACAGGACACAGAAGGAGCTCGTTCATANNNNNN

Aligned RNA reads from RNA-seq

chr10	18519329			
chr10	18519330			
chr10	18519331		14	@agaa.ag.agga
chr10	18519332		27	@gg.ccc.gggcgg
chr10	18519333		27	@aaaagaggagaaaaaaaaaaaaaaaaa
chr10	18519334		27	@a.aaa.aa.aaaaa.aaaaaaa.a
chr10	18519335		27	@gaggaaaaaaaaaaagggagaaggag
chr10	18519336		27	@.cg.ggcgcc
chr10	18519337		27	@c.cca.aa.accc.caccac.c
chr10	18519338		27	@cacc.caaaa
chr10	18519339		27	@gegggeggegeeeeegggegaggageg
chr10	18519340		27	@caccgggggggggggggcccgcaccccac
chr10	18519341		27	@a.aacgcc.cgggaaagaaaaaa.a
chr10	18519342		27	@tatta.aaaaaattt.ttttttat
chr10	18519343		27	@.ct.ttctccc.
chr10	18519344		27	<pre>@c.ccataa.atttccctccccc.c</pre>
chr10	18519345		27	@g.ggc.cc.cggg.g.gggg.g
chr10	18519346		27	@.ggcgggggggccccg.
chr10	18519347		27	@tttt.gt.ttgggtttgttttttt
chr10	18519348		27	@
chr10	18519349		27	@999999999999999999999999999
chr10	18519350		27	@
chr10	18519351		27	@c.cccccccccccccccccccccc
chr10	18519352		27	@aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
chr10	18519353		27	@
chr10	18519354	G	27	@
chr10	18519355		27	@tttttttttttttttttttttttt
chr10	18519356	A	27	@
chr10	18519357		27	6333333333333333333333333333333
chr10	18519358	G	27	@
chr10	18519359	č	27	@ttttttttttttttttttttttttt
chr10	18519360		27	@tttttttttttttttttttttttt
chr10	18519361	Č .	27	@ttttttttttttttttttttttt
chr10	18519362	Ť	27	
chr10	18519363		27	@aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
chr10	18519364	ċ	27	63888888888888888888888888888888888888
chr10	18519365	Ă	27	G
chr10	18519366	Ä	27	ē
chr10	18519367	G	27	@aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
chr10	18519368		27	@aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
chr10	18519369	A	27	
chr10	18519370	Ť	27	@@@@@@@
chr10	18519376		33	
chr10	18519372	C	33	
	18519373	C C	33	
chr10			33	@tttttttttttttttttttttttttgggggg
chr10	18519374			«999999999999999999999999999999999999
chr10	18519375	A	33	@cc.c.
chr10	18519376		19	@aaaaaaaaaaagggggg
chr10	18519377			0.gg.g.
chr10	18519378			@.a
chr10	18519379			egaagag
chr10	18519380			egttgtg
chr10	18519381	A		@cc.c
chr10	18519382	G		eaccaca
obrd 0	18510383		6	M 00 0

Sample	KS35	KS45
Reads	3,559,384	5,861,316
Eland placement (total)	2,429,078 (68%)	4,109,776
Unique, no mismatch	1,806,384	3,445,856
Unique, 1 mismatch	418,151	440,111
Unique, 2 mismatches	204,543	223,809

6 (70%) 443,007

Read depth varies across different loci

chr10	18517461		4	ettt
chr10 chr10	18517461	A	4	
chr10	18517463	Â	4	ettt
chr10	18517464	ĉ	4	eccc
chr10	18517465		4	egggg
chr10	18517466	G	4	egggg
chr10	18517467	T	38	e
chr10	18517468		42	eggggcuuucuuuuuuuuuuuuuuuuuuuuuuuucuccuuucu
chr10	18517468	Ċ	42	
chr10	18517470		42	@ggggggggggagggggga.agggaaa @ttttg.cc.cgccc.ccg.g.cc.g
chr10	18517470	Â	74	@g.gggg.gg.gggggggg.ggggggggg
chr10	18517472	G	74	e
chr10	18517473		74	@gggggg
chr10	18517474		74	@gggggcd.ggg.gg.gg.gggggg.cg.gggggggg
chr10	18517475		74	@tttt.gggggggggggggggg.ggggggggggg.
chr10	18517476		74	<pre>@ccccgaaagaagaccaccaccaccaaagcggaacgcccccc</pre>
chr10	18517477		74	<pre>@cccc.ccccccd.gggcggcgggggcccc.g.cccgggggggg</pre>
chr10	18517478	ĉ	74	<pre>@cccc.cccccd.ggggggggggggggggggggggggggg</pre>
chr10	18517479		74	etttggggtggegecegeegeeeeggggggegtgg.g.ceeeeeeeggegegeeeegeee
chr10	18517480	ĉ	74	@ttttgaagaaa.aa.aaaaagagag.aaaaaa
chr10	18517481	C	74	@aaaa.aaa.aat.tttattatttttaaaa.taag.gtttttttt
chr10	18517482		74	@tttgtttttgttgtt
chr10	18517483	G	74	Qaaaataaaaaateecaccaccaccaaatetaaaataccccccaccca
chr10	18517484	Т	74	
chr10	18517485	ċ	74	etttt.gggtgga.aaagaagaaaaagggg.a.tggt.taaaaaaaa
chr10	18517486		74	@gggggg.ggggg.ggg.gg.gg.gggggggggg
chr10	18517487		74	eggggggggagggg.gg.gg.gggggggggggg
chr10	18517488		74	QC
chr10	18517489		74	@ccccccccccccccccccccccccccccccccccccc
chr10	18517490		74	@aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
chr10	18517491		74	Cananananananananananananananananananan
chr10	18517492		70	
chr10	18517493		70	gaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
chr10	18517494		70	<u>@aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa</u>
chr10	18517495		70	0 0
chr10	18517496		70	0
chr10	18517497		70	<u>@aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa</u>
chr10	18517498		70	
chr10	18517499		70	eccencessessessessessessessessessessessessess
chr10	18517500		70	@ccccccccccccccccccccccccccccccccccccc
chr10	18517501		70	
chr10	18517502		70	<u>@aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa</u>
chr10	18517503	Å	70	@ggggggggggggggggggggggggggggggggggggg
chr10	18517504		70	6
chr10	18517505		70	
chr10	18517506		70	@aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
chr10	18517507		70	<u>(</u>
chr10	18517508		70	Q
chr10	18517509		70	@tttttttttttttttttttttttttttttttttttt
chr10	18517510	G	70	@tttttttttttttttttttttttttttttttttttt
chr10	18517511		70	<u>@aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa</u>
chr10	18517512		36	0
chr10	18517513		32	@ttttttttttttttttttttttttttttt
chr10	18517514		32	0
chr10	18517515		32	0
chr10	18517516			
chr10	18517517			
chr10	18517518			
chr10	18517519			

Transcriptional units from RNA-seq

>MM9:10:18509523-18509567

GTAGGAAGTTATGGTATCTTTGGAAAGTCAGTTGTGTTAGCTGG MM9:10:18516039-18516083 GGTGGAGTCTTCTTTTGGTTGTCATTGGGGACCTATAGAGGGCA MM9:10:18516279-18516359 MM9:10:18516802-18516857 MM9:10:18516888-18516932 MM9:10:18516988-18517060 MM9:10:18517358-18517407 ATCTAGGCAGCATTTTTCTTATCAAGAAGAAAATCACTAATGAGAAAATG MM9:10:18517447-18517515 MM9:10:18517618-18517724 GAGCGTCTAACCTTCCTTTTCCAAGTATGCTCATTCTACGGGAGGAGAATTTATGCTTAGCTATGGCTTTACTTGGAAACATGGAAGCAAGATCCATGGAGGGTCC MM9:10:18517761-18517826 TGAGTATACTGGTTGGCGTCTCCATGACCTCCCTGAACAACAGAAAAGGTGATTCCTCACAGTTA MM9:10:18517836-18517888 TGTGTGAGATGCTTGTCCGACCTACTTGATCTTGGGGGGCCAAGGAGGAATAT MM9:10:18517895-18517964 TTTTTAATCCCTCTGACCACATTAGTATGGTCTCCAAGTATGGTTATTGAACACCCAGGATGCCACTGA MM9:10:18518002-18518149 MM9:10:18518187-18518268 MM9:10:18518350-18518399 MM9:10:18518496-18518549 MM9:10:18518610-18518711 MM9:10:18518781-18518865 TTTTAAAAAGTACATATATATATACACATACACAAGGTGCTTCTTTTTAAAAGATCCTTGGGCCAAGAGATCACAATCTATG MM9:10:18518930-18519120 CACCTTCTAGATCTTGGCTTCCTCTAAAGTGCCCTCTACAGAGTTAAATAGACATGGGTATGTGTACTTGTAGCCTCTTCTGACTCACTAGCAACGAGGGGCAGCTTGTTCATAGCATTTGCTCTAAGGCGAATGCCCAAAGTCTCCCC MM9:10:18519161-18519278 GGATGAGGTACCTGCAATGTCAGAACTGTCATGCACTCCAAAGTCCAGTTAAGGGAAATCCTGTTCCTGCCACCATCTTGTCTCACATATGATAGCAACTTTTGAGGCAGGACA MM9:10:18519282-18519327 TACATCTCTTGAGAGCCCTAAGTAAGAGCAAGACAGACCTCCAGT MM9:10:18519331-18519521 GTGCCAAAGAGTGCAATGCCACCTGACTTA MM9:10:18519523-18519641 TCAGGTCTGCTGGCCACTTTGCTTAAGCAGAGTCTCTTACTGGCCTATAGTTTCTAAGTAGATTAGGCTAGCCATCCGATGAGTCCCAGGAATACACACCTGTTGGCTCACCTTGCAC MM9:10:18519649-18519693 MM9:10:18519725-18519969

Transcriptional units from RNA-seq

- - -

chr10	18522140	G	6	@A
chr10	18522140			@Accecc
chr10				
	18522142			@Tccccc
chr10	18522143			@Cttttt
chr10	18522144			@,ttttt
chr10	18522145		13	@,gg.a.a.
chr10	18522146		13	<pre>@,cccctccc.cc</pre>
chr10	18522147		13	@Teecceaaaaaaa
chr10	18522148		13	@Gaaaaaggagaga
chr10	18522149		13	@Cgggggg.g.g
chr10	18522150		18	@Cc.c.c
chr10	18522151			@Ggg.ggg.ggggg
chr10	18522152			ecceedagagagaaaaa
chr10	18522153		17	@aaaaaccacacaccccc
chr10	18522154		17	@t.a.a.a
chr10	18522155		17	@aaaaatgggggggggggg
chr10	18522156		17	@cc.c.cccccc
chr10	18522157		12	Qaacacacaaaaa
chr10	18522158		12	@ttgtgtgttttt
chr10	18522159		12	@ta.a.a.aaaaa
chr10	18522160		12	@cccccccccccc
chr10	18522160		12	lagagagagagggg
chr10	18522162		12	@aa.a.a.aaaaa
	18522163		12	
chr10				@ggagagaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
chr10	18522164		19	@.gcgcgcgggggggaaagg
chr10	18522165		19	@g.g.gccggacc
chr10	18522166		19	@aaaaaaaaaaaaaa.a.aa
chr10	18522167	A	19	@ggggggggggggggggg
chr10	18522168			@cecececececaagggaa
chr10	18522169			@
chr10	18522170			@aaaaaaaaaaaaca
chr10	18522171		19	@aaaaaaaaaaaaaaaa
chr10	18522172		19	<pre>@.ttttttttttcca.acc</pre>
chr10	18522173			@gggggggggggggggcccgg
chr10	18522174			@ggggggggggggggg . ggg
chr10	18522175			<pre>@cccccccccccccccccccccccccccccccccccc</pre>
chr10	18522176			laaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
chr10	18522177			@ggggggggggggtta.att
chr10	18522178		19	@aaaaaaaaaaaaa.g.aa
chr10	18522179		19	@gggggggggggggcccc
chr10	18522180		19	@c.c
chr10	18522181		19	@aag.gaa
chr10	18522182		19	@atttttttttttttatatt
chr10	18522183		19	@cccccccccccccccccccc
chr10	18522184		19	@
chr10	18522185		19	ettttttttttttttttt
chr10	18522186		19	@cccccccccccccccccccc
chr10	18522187		19	@
chr10	18522187	Ŧ	19	@
chr10	18522189		19	
				@
chr10	18522190		12	@gggggggggggg
chr10	18522191		12	@gggggggggggg
chr10	18522192	A	12	@gggggggggggg
chr10	18522193		12	@
chr10	18522194		12	@aaaaaaaaaaa
chr10	18522195			@tttttt
chr10	18522196			@tttttt
chr10	18522197			@ccccccc
chr10	18522198	G	7	@tttttt

chr10	18522085	G	0	0
chr10	18522086		51	eaa.gacaaaa.aaaaa.aca.a.gaga.aa.a.acaga.aaaag
chr10	18522087		51	@cccacece.a.ca.cc.a.c.ta.a.cc.c.a.acc.caa.a
chr10	18522088		51	@aacaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
chr10	18522089		51	@aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
chr10	18522090		51	lagaggaggaggagaaaggcggaggggggagggggggggg
chr10	18522091		51	eaaagaa.aaaaaa.aag.ag.a.a.aa.aa
chr10	18522092		51	@aaa.agaaaa.ag.a.a.aaa.g.ag.gaaa.aaa.gaa.agaag
chr10	18522093		51	@ggggggggggggggggggggggggggggggggggggg
chr10	18522094		51	0g.cgggg.g.gg.t.ggcgcgg.ggcc
chr10	18522095		51	@aaccaaaaaacgcaacacccccacgaacaacacaccacacgcaaacaac
chr10	18522096			@a.taca.ta.a.aaac.aatataa.acata.tt
chr10	18522097		51	@aag.aaaaaaqa.aa.a.g.qqa.cqa.qa.aqaa.aqa.aaa.aaqqa
chr10	18522098	G	51	@cccacccccataccacacaccca.acaacacccaacacctacccaccc
chr10	18522099		51	<pre>@ggacgggggggggggggggggggggggggggggggggg</pre>
chr10	18522100		51	@gg.ggagggggggggggggg.g.gggg.gggggg.cgaggggga
chr10	18522101		51	eaa.aaga.aa.aaaaa.aat.agaaaa.aa.a.agaaa.aaaa
chr10	18522102		51	@aacaaaaaaaaaaaaaaacaccaa .aaacaaacaaaaaaaa
chr10	18522103		51	@gc.c.gccc.cc.cgcgg.caa.cacccg.cc.c.gcccc.cggc
chr10	18522104		51	@aaa.a.acaaaa.a.aaa.cagaaa.aaaa.a.aa.
chr10	18522105		51	eccggcgccccgggcggcgggggggggggggggggggg
chr10	18522106		51	@ggg.ggggggggg.a.g.cg.g.gggggggg
chr10	18522107		51	@aaggagaaaaagggagggagggggggggggggggggg
chr10	18522108		52	daaadaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
chr10	18522109		52	<pre>4999999999999999999999999999999999999</pre>
chr10	18522110		52	@ttttttttttttttttttttttttttttttttttttt
chr10	18522111		52	@ccccccccccccccccccccccccccccccccccccc
chr10	18522112		57	@ccccccccccccccccccccccccccccccccccccc
chr10	18522113		57	@ttttttttttttttttttttttttttttttttttttt
chr10	18522114		57	@aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
chr10	18522115		57	@
chr10	18522116		57	
chr10	18522117		57	@ttttttttttttttttttttttttttttttttttttt
chr10	18522118	G	57	@
chr10	18522119		57	@ttttttttttttttttttttttttttttttttttttt
chr10	18522120		57	@ttttttttttttttttttttttttttttttttttttt
chr10	18522121		57	@,aaaaa
chr10	18522122		57	@ttttttttttttttttttttttttttttttttttttt
chr10	18522123		57	@
chr10	18522124		57	G
chr10	18522125		57	Qaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
chr10	18522126		57	@ttttttttttttttttttttttttttttttttttttt
chr10	18522127		57	Q
chr10	18522128		57	@ccccccccccccccccccccccccccccccccccccc
chr10	18522129		57	@ttttttttttttttttttttttttttttttttttttt
chr10	18522130		57	0
chr10	18522131			@.qqqqq
chr10	18522132		6	6°00000
chr10	18522133		6	6
chr10	18522134		6	0.cccc
chr10	18522135		6	e,ttttt
chr10	18522136		6	@.ccccc
chr10	18522137	G	6	@.aaaaa
chr10	18522138		6	@.qqqqq
chr10	18522139		6	G
chr10	18522140	G	6	QA

Annotating small RNA-seq libraries

- Identify expressed transcripts from trace read alignments to the target genome
- Determine what small RNA components are present
 - Screen for well known structural RNAs (e.g. ribosomal RNA, tRNAs, snoRNAs, etc)
 - Align transcripts to current version of miRbase to identify expressed microRNAs
 - Align transcripts to our own piRNA database built from recently published candidate piRNA sequences
- Set remaining unknown transcript population aside, examine for potentially novel RNAs

High-ranking miRbase alignments

KS35 (Spermatocytes) KS45 (Round Spermati						
microRNA	Depth	microRNA	Depth			
mmu-miR-805	1124	mmu-miR-184	5026			
mmu-miR-191	472	mmu-miR-28	2799			
mmu-miR-298	307	mmu-miR-423-5p	2083			
mmu-miR-107	295	mmu-miR-470	494			
mmu-miR-99b	290	mmu-miR-191	462			
mmu-miR-28	255	mmu-miR-10b	411			
mmu-miR-470	247	mmu-miR-34c	342			
mmu-miR-151-3p	245	mmu-miR-182	320			
mmu-miR-423-5p	220	mmu-miR-16	302			
mmu-miR-881	220	mmu-miR-881	272			
mmu-miR-184	195	mmu-miR-195	256			
mmu-let-7d	108	mmu-miR-465c-5p	255			
mmu-miR-34c	107	mmu-miR-743b-3p	161			
mmu-miR-103	103	mmu-miR-151-3p	153			
mmu-miR-743b-3p	87	mmu-miR-298	132			
mmu-miR-202-5p	82	mmu-miR-107	130			
mmu-miR-1196	81	mmu-miR-1195	130			

KS35 (Spermatocyte	es)	KS45 (Round Spermatids)			
piRNA	Depth	piRNA	Depth		
17446352.13	1364	17446352.13	1581		
17446352.12	1322	17446352.12	1419		
17446352.11	1201	17446352.11	1313		
17446352.1	545	17446352.1	618		
17446352.14	249	17446352.14	311		
17446352.78	122	17446352.64	136		
17446352.93	110	17446352.87	125		
17446352.97	109	17446352.97	122		
17446352.91	108	17446352.94	120		
17446352.67	108	17446352.38	120		
17446352.86	107	17446352.96	119		
17446352.8	105	17446352.7	118		
17446352.54	105	17446352.8	117		
17446352.99	105	17446352.86	117		
17446352.81	104	17446352.78	117		
17446352.82	103	17446352.66	116		
17446352.72	99	17446352.89	115		

Composition of piRNA Database Total candidate sequences: 1,524,007

95%, <u>25nt</u>	Number of <u>piRNAs</u> per publication (Tot=210,576)						
PubmedID	16751777	17446352	16751776	16766680	16778019	16766679	18922463
	Aravin 2006	Aravin 2007	Girard	Grivna	Lau	Watanabe	Aravin 2008
Total/dataset	3,638	136,417	30,024	40	40,102	355	1,313,431
KS45_GeneCore_eland	167	594	1,613	4	2,940	45	12,291
KS35_GeneCore_eland	150	1,390	1,815	3	2,768	31	12,286
KS35_Gurdon_eland	0	808	1,613	0	2,940	0	20,077
KS45_Gurdon_eland	159	1,283	1,907	5	2,888	33	23,371

- Lau NC, Seto AG, Kim J, Kuramochi-Miyagawa S, Nakano T, et al. (2006) Characterization of the piRNA complex from rat testes. Science 313: 363-367. PMID 16778019. Data came from Table S4. After sorting the table and taking only the uncharacterized sequences there were <u>40,102</u> piRNA candidates.
- + Girard A, Sachidanandam R, Hannon GJ, Carmell MA (2006) A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442: 199-202. PMID 16751776. Data has been deposited into GenBank. There are <u>30,024</u> from this study.
- Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, et al. (2006) A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442: 203-207. PMID 16751777. The piRNA candidate sequences are in an Excel table. It's supposed to be one of the files in the supplementary data, but is mislabeled on the website as S3 instead of S4. Removing the known sequences left 3,638 piRNA candidates from this study.
- Watanabe T, Takeda A, Tsukiyama T, Mise K, Okuno T, et al. (2006) Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev 20: 1732-1743. PMID 16766679. Data came from Table S7 (pdf). There are 355 candidate sequences.
- ← Grivna ST, Beyret E, Wang Z, Lin H (2006) A novel class of small RNAs in mouse spermatogenic cells. Genes Dev 20: 1709-1714. PMID 16766680. Data came from Table S1 (pdf). The sequences were only <u>40</u> of them.
- Aravin AA, Sachidanandam R, Bourc'his D, Schaefer C, Pezic D, Toth KF, Bestor T, Hannon GJ (2008) A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell 31: 785-799. PMID: 18922463. Data came from GEO, accession number GSE12757. There are 1,313,431 associated sequences.

Composition of piRNA Database

Karyogram (I)

Currently annotated piRNA clusters in mouse genome

Karyogram (2)

Expressed transcripts within piRNA clusters (all levels)

Karyogram (3)

Transcript abundance at mid-range levels

Karyogram (3) Transcript abundance at high levels

Karyogram (4)

Transcript abundance at very high levels

Analysis of novel RNA transcripts

- Transcribed regions fall into several categories
 - Correlate well with annotated (coding) gene loci
 - Correlate with existing non-coding RNAs
 - Novel transcripts
- Novel RNAs
 - To further characterize these, we perform RNA secondary structure prediction on thousands of candidate sequences
 - Look for favorable energy conformations
 - RNAfold (Vienna package), Mfold (Zucker lab)
 - Visualization of putative secondary structures
 - RNAplot (Vienna), StructureLab (Shapiro lab)
 - Homology across multiple species

Prediction of RNA Secondary Structure

Prediction of RNA Secondary Structure Novel microRNA candidates conserved across species

Stable hairpin consensus structures Stem sequences are highly conserved Loop sequences are divergent (variable)

Structural features of piRNAs

- As piRNAs are such a new class of regulatory non-coding RNA, their secondary structural properties are unknown
- Precursor transcripts are processed by a quasi-random mechanism
 - Weak sequence preference near the 5' U

Structural features of piRNAs

- Some structures can be identified based on features typically associated with microRNA hairpins
- It remains to be seen whether these will be characteristic of piRNAs as well

Summary

- Wide variety of RNA sequencing applications
- Library construction protocols differ according to the source material and aims of the experiment
- Open questions about strand specificity, level of coverage required for comprehensive transcriptome analysis
- Single- versus paired-end RNA sequencing
 - As read length increases, sequencing more single-end reads may be more informative

