
Working with sequences and intervals

Wolfgang Huber

EMBL Heidelberg, 8 June 2009

Wolfgang Huber Working with sequences and intervals

IRanges

Infrastructure to manage and manipulate large sequences and
views of their subsequences

Infrastructure for representing and computing with
annotations on sequence regions

Biostrings

Builds on IRanges infrastructure to represent and manipulate
long biological character sequences (DNA / RNA / amino
acids)

Sequence matching and pairwise alignment

BSgenome data packages

Full genomes stored in Biostrings containers

Currently 13 organisms supported (Human, Mouse, Worm,
Yeast, etc.)

Facilities for supporting further genomes (BSgenomeForge)

Wolfgang Huber Working with sequences and intervals

Sequences

In mathematics, a sequence is a function from (a subset of) Z to
an (arbitrary) set S, and can be denoted as (. . . , s0, s1, s2, . . .)

Atomic vectors in R represent finite sequences of numbers and
character strings (with indices from 1 to n). All sequence elements
have the same type.

Lists in R represent finite sequences of objects of any type.

Shortcomings:

Each element is stored explicitly: this can be wasteful for long
sequences with repetitive patterns.

Lists provide no guarantee on uniformity (e.g. of type or size)
of their elements.

Wolfgang Huber Working with sequences and intervals

Sequence containers in the IRanges package

RLE

Run length encoding

IRanges

Integer ranges (intervals)

Wolfgang Huber Working with sequences and intervals

RLE - run length encoding

> library("IRanges")

> s = cumsum(round(rnorm(n=1e6, sd=0.12)))

Wolfgang Huber Working with sequences and intervals

RLE - run length encoding

> s_rle = Rle(s)

> s_rle

'numeric' Rle instance of length 1000000 with 22 runs
Lengths: 85894 4263 14848 13060 50837 71658 72444 57675 33370 101609 ...
Values : 0 -1 -2 -1 -2 -3 -2 -1 0 -1 ...

> object.size(s)

8000040 bytes

> object.size(s_rle)

1616 bytes

Wolfgang Huber Working with sequences and intervals

RLE objects support usual operations

> s1 = Rle(c(0,0,0,0,2,2,2))

> s2 = Rle(c(0,1,1,1,1,0,0))

> s1+s2

'numeric' Rle instance of length 7 with 4 runs
Lengths: 1 3 1 2
Values : 0 1 3 2

> s1[3]

'numeric' Rle instance of length 1 with 1 run
Lengths: 1
Values : 0

> sum(s1)

[1] 6

Wolfgang Huber Working with sequences and intervals

Further sequence operations
(work also with Rle)

Sampling in regular intervals

> s1 = 1:100

> window(s1, start=5, end=45, delta=5)

[1] 5 10 15 20 25 30 35 40 45

Extracting subsequences

> seqextract(s1, start=c(10,30,50), width=3)

[1] 10 11 12 30 31 32 50 51 52

Wolfgang Huber Working with sequences and intervals

Achtung

Do not confuse the class Rle from the IRanges package with the
class rle defined in R’s base package - the latter is much less
powerful.

Wolfgang Huber Working with sequences and intervals

IRanges - integer intervals

> r = IRanges(

+ start = sample(1000000, 4),

+ width = c(20, 18))

IRanges instance:
start end width

[1] 284502 284521 20
[2] 818665 818682 18
[3] 475014 475033 20
[4] 514409 514426 18

Wolfgang Huber Working with sequences and intervals

XSequence class
Efficient computations with long sequences

The XSequence virtual class is a general container for storing an
”external sequence”. It inherits from the class Sequence, which has
a rich interface. The following classes derive from the XSequence
class:

XRaw : bytes (stored as char values at the C level).

XInteger : integer values (stored as int).

XNumeric: numeric values (stored as double).

XString : character strings — from Biostrings package.

The purpose of the X* containers is to provide a pass by reference
semantic, e. g. in order to avoid the overhead of copying the data
when doing computations on a contiguous subsequence.

Wolfgang Huber Working with sequences and intervals

XSequence class
Efficient computations with long sequences

Extracting a subsequence

> xi = XInteger(val=1:20000000)

> system.time({

+ u = subseq(xi, start=10000000, width=3000000) })

user system elapsed
0.000 0.000 0.001

> system.time({

+ v = xi[10000000:12999999] })

user system elapsed
0.320 0.012 0.332

> identical(as.integer(u), v)

[1] TRUE

Wolfgang Huber Working with sequences and intervals

Views
Views provide selection of subsequences

The *Views classes store a set of views on an arbitrary Sequence
object, called the subject (XIntegerViews, RleViews,
XStringViews.)

> Views(xi, r)

Views on a 20000000-integer XInteger subject
subject: 1 2 3 ... 2e+07 2e+07
views:

start end width
[1] 284502 284521 20 [284502 284503 ... 284520 284521]
[2] 818665 818682 18 [818665 818666 ... 818681 818682]
[3] 475014 475033 20 [475014 475015 ... 475032 475033]
[4] 514409 514426 18 [514409 514410 ... 514425 514426]

Wolfgang Huber Working with sequences and intervals

Views on subjects of class Rle

> Views(s_rle, r)

Views on a 1000000-length Rle subject

views:
start end width

[1] 284502 284521 20 [-2 -2 -2 -2 -2 -2 -2 -2 -2 ...]
[2] 818665 818682 18 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...]
[3] 475014 475033 20 [-1 -1 -1 -1 -1 -1 -1 -1 -1 ...]
[4] 514409 514426 18 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...]

Wolfgang Huber Working with sequences and intervals

What can you do with views?

[[extracts an individual object, which is given the same class
as the subject

restrict: drop the views that do not overlap with the
restriction window, and of the remaining views drop the parts
that are outside the window.

boundaries that are outside the subject are properly handled
(see also trim).

viewSums, viewMins, viewMaxs, viewWhichMins,
viewWhichMaxs: fast application of special functions on the
views

viewApply: apply any function

Wolfgang Huber Working with sequences and intervals

Slice
Creating views of the data where they are within a given range

> slice(signal, lower = 60, upper = 90)

Views on a 120-integer XInteger subject
subject: 0 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 0 0
views:

start end width
[1] 49 54 6 [65 71 76 80 85 88]
[2] 67 72 6 [88 85 80 76 71 65]

Wolfgang Huber Working with sequences and intervals

coverage

Given a set of intervals (an IRanges or Views object), computes
how many of them overlap with a given position (or interval)

> r = IRanges(start = c(30, 60, 70, 100),

+ width = c(20, 18, 20, 18))

> coverage(r, shift=-40, width=40)

'integer' Rle instance of length 40 with 5 runs
Lengths: 9 10 10 8 3
Values : 1 0 1 2 1

Typical application: r a set of en-
richment regions from a ChIP-Seq,
or of assembled transcripts from an
RNA-Seq experiment; shift and
width represent the coordinates of
a genomic feature (e. g. annotated
gene).

Wolfgang Huber Working with sequences and intervals

aggregate
combines sequence extraction (window) and looping (sapply)

Moving median

> y = rnorm(1000)

> win = 20

> smy = aggregate(y,

+ start = 1:(length(y)-win+1),

+ width = win,

+ FUN = median)

Wolfgang Huber Working with sequences and intervals

shiftApply

Looping with two sequences, with possible shift

> shiftApply

standardGeneric for "shiftApply" defined from package "IRanges"

function (SHIFT, X, Y, FUN, ..., OFFSET = 0L, simplify = TRUE,
verbose = FALSE)

standardGeneric("shiftApply")
<environment: 0x3ec3e88>
Methods may be defined for arguments: X, Y
Use showMethods("shiftApply") for currently available ones.

Wolfgang Huber Working with sequences and intervals

sessionInfo()

R version 2.10.0 Under development (unstable) (2009-06-07
r48726), x86_64-unknown-linux-gnu

Locale: LC_CTYPE=C, LC_NUMERIC=C, LC_TIME=C,
LC_COLLATE=C, LC_MONETARY=C,
LC_MESSAGES=it_IT.UTF-8, LC_PAPER=it_IT.UTF-8,
LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=it_IT.UTF-8, LC_IDENTIFICATION=C

Base packages: base, datasets, grDevices, graphics, methods,
stats, tools, utils

Other packages: IRanges 1.3.23, codetools 0.2-2, digest 0.3.1,
fortunes 1.3-6, weaver 1.11.0

Wolfgang Huber Working with sequences and intervals

