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Introduction

e Assistant Prof, UW Biostat

e Currently veRy busy  with
Genome-Wide Studies

e Chair, Analyis Committee, for
the CHARGE Consortium

My experience with R is as a (frequent) user — much of today’s
material is from a short course I teach with Thomas Lumley.

http://faculty.washington.edu/kenrice/sisg
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e Learning about diseases via genomics — the ‘first pass’ is to
do millions of e.g. case-control tests
e How to do this quickly? accurately? for free?
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A competitive field! ‘Findings’ are high impact...
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Serious diseases genes revealed

A major advance in
understanding the genetics
behind several of the world's
most common diseases has
been reported.
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The landmark Wellcome Trust
study analysed DMA fram the
blaod af 17,000 people to find
genetic differences.

OMA from thousands of peaple was

They found new genetic analysed

variants for depression, Crohn's disease, coronary heart
disease, hypertension, rheumatoid arthritis and type 1 and 2
diabetes.

The remarkable findings, published in Mature, have been hailed
as a new chapter in medical science.
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Clear obesity gene link "found’

Scientists say they have
identified the clearest
genetic link to obesity yet.

They found people with two
copies of a "fat" version of a
gene had a 70% higher risk of
obesity than those with none,
and weighed 3kg (6.5lb) more.

Scientists have found a clear
genetic link to abesity

The work in Science by the
Peninsula Medical School and
Cxford University studied data from about 40,000 people.

The findings suggest that although improving lifestyle is key
to reducing obesity, some people may find it harder to lose
weight because of their genes.

Half of white Europeans carry
one copy of the variant and
one in six has two copies,
experts estimate.

66 The typical message has
been that if you are
overweight it is due to sloth
and gluttony and it is your

fault
29
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Scientists find new dementia gene

Scientists say they have
discovered a new gene
linked with late-onset
Alzheimer's disease.

People with a damaged copy of
the gene, GABZ, may be at four
times increased risk of
developing dementia, Neuron
journal reports.

The scientists analyzed the DNHA of
Experts said the latest findings over 1,000 people

were some of the most significant to emerge since the
discovery of the ApoE4 Alzheimer's gene,

Late-onset Alzheimer's affects one in 10 people over 65 and
half of over 8E&s.

The researchers, from 15
institutions including the
Institute of Meurology in
London, analysed the DMa of
1,411 people and found GABZ
influenced the risk of dementia
among those with APOE4,

66 The results are some of
the most significant finds for
genetic risk factors since the
discovery of ApoE4

29

Professor Clive Ballard, director
research at the Alzheimer's
Saociety
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A competitive field! ‘Findings’ are high impact...
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Women's menstruation genes found

Scientists say they have bequn
to crack the genetic code that
helps determine when a girl
becomes a woman.

& UK-led team located two genes
on chromosomes six and nine that
appear to strongly influence the

age at which menstruation starts.

The Mature Genetics study also
provides a clue for why girls who
are sharter and fatter tend to get
their periods months earlier than classmates.

The genes were found on I
chromosomes six and nine

The genes =it right next to DMNA controlling height and weight.
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Still a competitive area...
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Gene tests ‘create undue stress’

Gene tests to predict a
person's future risk of
life-threatening disease may
be damaging to health by
causing unnecessary stress, an
expert claims.

Professor Milesh Samani, British
Heart Foundation chair of
cardiology, says the tests are too
inaccurate to help the individual. Chromosomes house our DA

Someone deemed high risk for a disease based on their gene test may
never go on to develop the condition.

1y - =



Data Cleaning

Before analysis gets started, the gigabytes of data we have must
be ‘cleaned’

e Mismatches discovered (Sex, Ancestry)

e Family structure discovered (e.g. Sibs, 'Kinship Coefficient’)

e Dumping SNPs with ‘high’ missing rates (e.g. < 99%
complete)

As we require p < 108XCiting i tests, even minor flaws cause
headaches, by the 1000. (But we have e.g. 2.5 million tests to
do)

Most of the cleaning is straightforward; compute, say the MLE
for Kinship. But, done carelessly, it can be slow.



Data Cleaning: HWE test

Does your SNP data look like this?
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Yes! Not so much
e \We don't believe Hardy-Weinberg holds exactly
e But it's v v unlikely we are miles from HWE. The HWE test
IS good at spotting mis-calls, in ancestry-specific groups
e [ he approximate test is okay. The exact test is preferred...



Data Cleaning: HWE test

The hwde package has the hwexact () function. This is okay (and
we use it, basically) but will be slow with large datasets. It uses
(smart) ennumeration of all the possible datasets for n subjects.
It can be improved by

e Stopping calculating when you’'re sure that e.g. p > 0.1. As
we're doing something like 10° tests, p > 10~% (or so) are
not worth getting out of bed for — although you'll have to
truncate plots, etc.

e If you're sure of n, construct a lookup table, and use that.

e Doing the (quick) approximate test, and only looking at p <
0.1 for the full works.

e Coding the hard stuff in C, not R



Data Cleaning: r2 for all SNPs

A brief reminder/introduction:

Data from 2 SNPs (box size indicates count)
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Data Cleaning: r2 for all SNPs

A brief reminder/introduction:

B=0.642,5=0.647, 5 =0.419

Genotype 2

Genotype 1



Data Cleaning: r2 for all SNPs

A brief reminder/introduction:

B=-0.642, p=-0.647,p =0.419

Genotype 2

Genotype 1



Data Cleaning: r2 for all SNPs

A brief reminder/introduction:

B=-0.653, p=-0.647, p =0.419

Genotype 1

Genotype 2



Data Cleaning: r2 for all SNPs

We see that;

o7 p? doesn’'t care about a/A or b/B designation — but
you probably do

e p (and p?) doesn't care about 0/1/2 vs 1/2/3 — but often
‘O’'=missing, so be careful

e p2 doesn't care if you switch the G1,G» labels

(p, formally)

2:

We'd like to check our r2 match the HapMap (roughly)

Given documentation, computing r2 for 2 SNPs' data should

not be hard. Computing it for many SNPs probably doesn’t look
hard, if you have R experience.



Data Cleaning: r2 for all SNPs

For some example data, consider LD of 9000 Chr 1 SNPs in the
AMD dataset (see the site). (92202) = 42.3 million pairs (eek!).
There are numerous very bad ways to do this job!

The challenges are;
1. To do calculations quickly (hard)

2. Not to bother with unnecessary ones (easier) — we'll drop
all SNPs with minor allele frequency < 0.05



Data Cleaning: r2 for all SNPs

600 1000

Frequency
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This filters

AMD Chr 1, all SNPs
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minor allele frequency

out 2048 SNPs, leaving 7154. (7>%)=25.6M



Data Cleaning: r2 for all SNPs

We'll go through some ‘traditional’ improvements to code; here's
a first attempt;

r2.out <- matrix(NA, 7154, 7154)

for( i in 1:7154 ){
for( j in 1:7154 ){
r2.out[i,j] <- cor(amd[i,], amd[j,]) 2
+}

. Clearly we can be smarter than this.



Data Cleaning: r2 for all SNPs

Recall that r2 didn't care if we ‘switched the axes' = only
compute rfj it i > 5

for( i in 1:7154 ){
for( j in i:7154 ){
r2.outli,j] <- cor(amd[i,], amd[j,]) "2

}}

This saves a factor of two



Data Cleaning: r2 for all SNPs

‘Note' that every SNP has r2 = 1 with itself
— don’'t compute r%- if 4 = j
for( i in 1:(7154-1) ){
for( j in (i+1):7154 ){
r2.out[i,j] <- cor(amd[i,], amd[j,])"2

T}

This is a very minor saving



Data Cleaning: r2 for all SNPs

At the moment, our code doesn’'t do anything special with NAS;

> cor( c(1,3,5,NA), c(-2,5,0,6) )
[1] NA

‘Default’ use of cor() would be a bit wasteful. There are only
6432 AMD SNPs with complete data, and the rest typically have
only a few NASs

e = we can get some useful estimate of r2 from the subjects

with data from SNP i and j
e ... afterwards, need to watch out for ‘weirdness’ due to this

decision



Data Cleaning: r2 for all SNPs

cor() can do the complete-cases analysis, if we supply option
use="complete.obs". (See the help file for details; if all missing
this gives an error)

for( i in 1:(7154-1) ){
for( j in (i+1):7154 ){
r2.outl[i,j] <- cor(amd[i,], amd[j,], use="complete.obs") 2

}}

For more general GWAS work, learn how to use tryCatch() —
Murphy’s Law applies. AlsoO e.g. system.time()



Data Cleaning: r2 for all SNPs

Let's try the code. For an estimate of runtime;

system.time ({
for( i in 1:(1000-1) ){
for( j in (i+1):1000 ){
r2.outl[i,j] <- cor(amd[i,], amd[j,], use="complete.obs")
1}
1)

This does (10200>:O.5M pairs, and takes ~ 3 minutes.



Data Cleaning: r2 for all SNPs

The full works; (took 2.5 hours on my desktop)

for( i in 1:(7154-1) ){
for( j in (i+1):7154 ){
r2.outl[i,j] <- cor(amd[i,], amd[j,], use="complete.obs")
1}
Warning messages:
1: In cor(amd[i, ], amd[j, ], use = "complete.obs")

the standard deviation is zero

Qoops. This is worrying; is it fatal?



Data Cleaning: r2 for all SNPs

. IS it fatal?

No — it's only a warning. Supplying cor() with data where e.g.
(G1 = aa for everyone leads to this warning, and NA as the output
(see the documentation)

e NA as output does make sense here

e Defaults options are sensible, so don't panic too soon

e Recall we filtered MAF<0.05. The weirdness could happen
when the missingness in G» leads to effective MAF=0 for
G1.

e Perhaps all genotypes=Aa (HWE filters would catch this)

e Catching all potential errors is really hard — really robust
code is required



Data Cleaning: r2 for all SNPs

2.5 hours (optimized!) is pretty rubbish. How to do massively
better?

e [ he cor() function calls C. If you feed it a matrix, it calls
C to give you the correlations of all pairs of columns

e This gets all the data (and for() ‘administration’) into C, not
R (and is therefore faster)

e Doing this in 10~ seconds not 103 is beneficial — multiply
by 10° to see this!



Data Cleaning: r2 for all SNPs

r2.matrix.quick <- cor( t(amd), use="pairwise.complete.obs" )~2

e 2 minutes on my desktop (1)

e The admin/data reading was the bottleneck — and we
optimized it

e This holds much more generally in GWAS (where ‘vectorized’
C code is not available for every job)

e Caveats about NAs and ‘weirdness’ still apply

e With more SNPs/people, may need to split Chromosomes
into chunks, to get everything in memory

(In a class of genetics-oriented students, none of them spotted
this trick. It is in the help files, but isn't obvious. In non-GWAS
work I'd never mention it to them)



Data Cleaning: r2 for all SNPs

To finish off, it would be nice to have a plot of r2 versus inter-
SNP distance (pos[j]-pos[i] in AMD)

A couple of ideas to help this along;

e Produce the plot in PNG format — with the png() command.
A PDF would be nice, but would have to keep track of 25.6 M

points, making it a massive file.

e Add points to the plot in groups. Making a new vector of
25.6M inter-SNP distances needlessly uses up a huge amount
of memory in your R session



Data Cleaning: r2 for all SNPs

png("r2plot.png", w=6*%600, h=4%600, pointsize=12*x600/72)
#set up the plot, with fancy axis labels;
plot (0, type="n", xlim=c(0,2.5E8), ylim=c(0,1),

xlab=expression(Delta(plain(position))), ylab=expression(r~2) )

#add the points, one SNP at a time;
for(i in 1:(7154-1)){
points( amd$pos[(i+1):7154]-amd$pos[i], r2.out[i, (i+1):7154] )
by
dev.off ()

The output is clunky-but-okay;



Data Cleaning: r2 for all SNPs

Plotting 72 against inter-SNP distance;
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Data Cleaning: r2 for all SNPs

Plotting r2 against inter-SNP distance; (zoom)
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Large data

“R is well known to be unable to handle large data sets.”

Solutions:

e Get a bigger computer: Linux computer with 16Gb memory
for < $2500

e Don’'t load all the data at once (methods from the mainframe
days).



Large data: storage formats

R has two convenient data formats for large data sets

e For ordinary large data sets, the RSQLite package provides
storage using the SQLite relational database.

e For very large ‘array-structured’ data sets such as whole-
genome SNP chips, the ncdf package provides storage using
the netCDF data format.



Large data: netCDF

. . netCDF was designed by the NSF-funded UCAR
. consortium, who also manage the National
NetCDF Center for Atmospheric Research.

Atmospheric data are often array-oriented: eg temperature,
humidity, wind speed on a regular grid of (z,y, z,t).

Need to be able to select ‘rectangles’ of data — eg range of
(z,y,z) on a particular day t.

Because the data are on a regular grid, the software can work out
where to look on disk without reading the whole file: efficient
data access.



Large data: how big are GWAS?

Array oriented data (position on genome, sample number) for
genotypes, probe intensities.

Potentially very large data sets:

2,000 people x 300,000 = tens of Gb

16,000 people x 1,000,000 SNPs = hundreds of Gb.

Even worse after imputation to 2,500,000 SNPs.

R can’t handle a matrix with more than 231 —1 ~ 2 billion entries

even if your computer has memory for it. Even data for one
chromosome may be too big.



Large data: using netCDF

With the ncdf package:

open.ncdf () opens a netCDF file and returns a connection to the
file (rather than loading the data)

get.var.ncdf () retrieves all or part of a variable.

close.ncdf () closes the connection to the file.



Large data: using netCDF

Variables can use one or more array dimensions of a file

SNP ———

Sample

Genotypes

Chromosome




Large data: example

Finding long homozygous runs (possible deletions)

library("ncdf")

nc <- open.ncdf ("hapmap.nc")

## read all of chromosome variable
chromosome <- get.var.ncdf(nc, "chr", start=1, count=-1)
## set up list for results

runs<-vector("list", nsamples)

for(i in 1:nsamples}t{
## read all genotypes for one person
genotypes <- get.var.ncdf(nc, "geno", start=c(1,i),count=c(-1,1))
## zero for htzygous, chrm number for hmzygous
hmzygous <- genotypes != 1
hmzygous <- as.vector (hmzygous*chromosome)



Large data: example

## consecutive runs of same value

r <- rle(hmzygous)

begin <- cumsum(r$lengths)

end <- cumsum(c(l, r$lengths))

long <- which ( r$lengths > 250 & r$values !=0)

runs[[i]] <- cbind(begin[long], end[long], r$lengths[long])

close.ncdf (nc)
Notes

e chr uses only the "SNP’ dimension, so start and count are
single numbers

e geno uses both SNP and sample dimensions, so start and
count have two entries.

e rle compresses runs of the same value to a single entry.



Large data: making netCDF files

Creating files is more complicated

e Define dimensions

e Define variables and specify which dimensions they use

e Create an empty file

e Write data to the file.



Large data: netCDF ‘dimensions’

Specify the name of the dimension, the units, and the allowed
values in the dim.def.ncdf function.

One dimension can be 'unlimited’, allowing expansion of the file
in the future. AN unlimited dimension is important, otherwise
the maximum variable size is 2GDb.

snpdim<-dim.def .ncdf ("position","bases", positions)

sampledim<-dim.def .ncdf ("seqnum","count",1:10, unlim=TRUE)



Large data: netCDF ‘variables’

Variables are defined by name, units, and dimensions

varChrm <- var.def.ncdf("chr","count",dim=snpdim,
missval=-1, prec="byte")

varSNP <- var.def.ncdf ("SNP","rs",dim=snpdim,
missval=-1, prec="integer")

vargeno <- var.def.ncdf("geno","base",dim=1ist(snpdim, sampledim),
missval=-1, prec="byte")

vartheta <- var.def.ncdf("theta","deg",dim=1list(snpdim, sampledim),
missval=-1, prec="double")

varr <- var.def.ncdf("r","copies",dim=1ist(snpdim, sampledim),

missval=-1, prec="double")



Large data: creating files

The file is created by specifying the file name ad a list of
variables.

genofile<-create.ncdf ("hapmap.nc", list(varChrm, varSNP, vargeno,

vartheta, varr))

The file is empty when it is created. Data can be written using
put.var.ncdf (). Because the whole data set is too large to read,
we might read raw data and save to netCDF for one person at
a time.

for(i in 1:4000){
geno<-readRawData(i) ## somehow
put.var.ncdf (genofile, "geno", genc,
start=c(1,i), count=c(-1,1))



Large data: using netCDF efficiently

Read all SNPs, one sample

SNP >

Sample

J Genotypes




Large data: using netCDF efficiently

Read all samples, one SNP

SNP >

Sample

J Genotypes

Chromosome .




Large data: using netCDF efficiently

Read some samples, some SNPs.

SNP >

Sample

J mowpes




Large data: using netCDF efficiently

Random access is not efficient: eg read probe intensities for all
mMissing genotype calls.

SNP >

Sample !
t Genotypes -

Chromosome




Large data: using netCDF efficiently

e Association testing: read all data for one SNP at a time

e Computing linkage disequilibrium near a SNP: read all data
for a contiguous range of SNPs

e (QC for aneuploidy: read all data for one individual at a time
(and parents or offspring if relevant)

e Population structure and relatedness: read all SNPs for two
individuals at a time.



Large data: using netCDF efficiently

Another example; computing IBS for pairs of a hapmap dataset
(some setup skipped)

p<-proc.time()
for(i in 2:nsamples){
genoi<-get.var.ncdf (hapmap, "genotype",
start=c(1,i),count=c(nsnps, 1)) [autosomes]
goodi<-genoi>=0
xymat [i,i]<-sum(genoi[goodi] "2)
counts [i]<-sum(genoi[goodi])
ibs[i,il<-2
missed[i]<-nauto-sum(goodi)
for(j in 1:i){
genoj<-get.var.ncdf (hapmap, "genotype",start=c(1,j),count=c(nsnps,1)) [autosom
goodj<-genoj>=0
good<-goodi & goodj
xymat [i, j]1<-sum(genoi[good] *genoj[good])
ibs[i, jl<-sum( (genoil[good]==genojlgood])*2+(genoilgood]l==1))/sum(good)
xymat [j,i]<-xymat [i, j]
ibs[j,il<-ibs[i, j]
+
if (1 (i%%10)) print(c(i,proc.time()-p))
p<-proc.time()}



Large data: using netCDF efficiently

Plotting the results; (for HapMap — use C for huge studies)

0.0 0.2 0.4 0.6 0.8 1.0



Bioconductor favorites: hexbin

GWAS (and genetics/genomics in general) tends to produce
massive datasets. On any (standard) plot of e.g. 10,000 points,
many will overlap

A simple example is the California Academic Performance Index
reported from 6194 schools (in the survey package)

> install.packages("survey")

> library(survey)

> data(api)

> plot(apiO0~api99,data=apipop) # plain plot



Bioconductor favorites: hexbin

apioo
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Bioconductor favorites: hexbin

We don’'t really care about the exact location of every single
point.

e HOw many points in one ‘vicinity’ compared to others?

e Any ‘outliers’ far from all other data points?

In one dimension, histograms answer these questions by binning
the data



Bioconductor favorites: hexbin

Binning in two dimensions;
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Bioconductor favorites: hexbin

Binning in two dimensions;




Bioconductor favorites: hexbin

Binning in two dimensions;
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Bioconductor favorites: hexbin

Binning in two dimensions;




Bioconductor favorites: hexbin

Now with hexbin: recall we download from Bioconductor, not
CRAN

> biocLite("hexbin")
> library(hexbin)
> with(apipop, plot(hexbin(api99,api00), style="centroids"))



Bioconductor favorites: hexbin

Counts
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Bioconductor favorites: snpMatrix

snpMatrix IS a Bioconductor package for GWAS analysis —
maintained by David Clayton (analysis lead on Wellcome Trust)

biocLite("snpMatrix")
library(snpMatrix)

data(for.exercise)

A ‘little’ case-control dataset (Chr 10) based on HapMap — three
objects; snp.support, subject.support and snps.10



Bioconductor favorites: snpMatrix

> summary (snp.support)
chromosome position Al A2
Min. :10 Min. : 101955 A:14019 C: 2349
1st Qu.:10 1st Qu.: 28981867 C:12166 G:12254
Median :10 Median : 67409719 G: 2316 T:13898

Mean :10 Mean : 66874497
3rd Qu.:10 3rd Qu.:101966491
Max. :10 Max. 1135323432
> summary(subject.support)
ccC stratum
Min. :0.0 CEU :494
1st Qu.:0.0 JPT+CHB:506
Median :0.5
Mean :0.5
3rd Qu.:1.0
Max. :1.0



Bioconductor favorites: snpMatrix

> show(snps.10) # show() is generic

A snp.matrix with

1000 rows and 28501 columns

Row names: jpt.869 ... ceu.464
Col names: 1rs7909677 ... rs12218790
> summary(snps.10)
$rows
Call.rate Heterozygosity
Min. :0.9879 Min. :0.0000
Median :0.9900 Median :0.3078
Mean :0.9900 Mean :0.3074
Max. :0.9919 Max. :0.3386
$cols
Calls Call.rate MAF P.AA
Min. : 975 Min. :0.975 Min. :0.0000 Min. :0.00000
Median : 990 Median :0.990 Median :0.2315 Median :0.26876
Mean : 990 Mean :0.990 Mean :0.2424 Mean :0.34617
Max. :1000 Max. :1.000 Max. :0.5000 Max. :1.00000
P.AB P.BB z .HWE
Min. :0.0000 Min. :0.00000 Min. :—21.9725
Median :0.3198 Median :0.27492 Median : -1.1910
Mean :0.3074 Mean :0.34647 Mean : -1.8610
Max. :0.5504 Max. :1.00000 Max. 3.7085
NA’s 4.0000



Bioconductor favorites: snpMatrix

e 28501 SNPs, all with Allele 1, Allele 2

e 1000 subjects, 500 controls (cc=0) and 500 cases (cc=1)

e Far too much data for a regular summary() of snps.10 — even
in this small example



Bioconductor favorites: snpMatrix

We'll use just the column summaries, and a (mildly) ‘clean’
subset;

> snpsum <- col.summary(snps.10)
> use <- with(snpsum, MAF > 0.01 & z.HWE"2 < 200)

> table(use)

use

FALSE TRUE
317 28184



Bioconductor favorites: snpMatrix

Now do single-SNP tests for each SNP, and extract the p-value
for each SNP, along with its location;

tests <- single.snp.tests(cc, data = subject.support,

+ snp.data = snps.10)

pos.use <- snp.support$position[usel]
p.use <- p.value(tests, df=1) [usel

We'd usually give a table of ‘top hits,’ but...



Bioconductor favorites: snpMatrix

plot (hexbin(pos.use, -loglO(p.use), xbin = 50))
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Bioconductor favorites: snpMatrix

qq.chisq(chi.squared(tests, df=1) [use], df=1)

QQ plot

Observed

I I I I
0 5 10 15

Expected
Expected distribution: chi-squared (1 df)



Bioconductor favorites: snpMatrix

tests2 <- single.snp.tests(cc, stratum, data = subject.support,
+ snp.data = snps.10)
qq.chisq(chi.squared(tests2, 1) [usel, 1)

QQ plot
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Expected distribution: chi-squared (1 df)



Bioconductor favorites: snpMatrix

snpMatrix makes use of clever storage of 0/1/2 data, as well as
quick implementation of the limited analysis jobs we often want

to do in GWAS

e Recently updated to permit ‘imputed dosages’, which are
€ [0, 2]

e Doesn’t do the full range of regressions we may want — 1m(),
glm(), coxph().

e Even with clever data storage, we'll run out of memory
eventually — hence, in the GWAS I work on, we use netCDF

and write our own code



Other packages — GenABEL

Yurii Aulchenko (one of my CHARGE co-authors) wrote the
GenABEL package, which is on CRAN and here;

http://mga.bionet.nsc.ru/~yurii/ABEL/

It’s very similar to snpMatrix — several CHARGE groups like it.

e Greater regression flexibility
e Comes with meta-analysis functions — which are part of life,

in GWAS

e Also code for IBS, and computing principal components of
SNP data (we use C to do this — and grad students)

e Lots of documentation/examples



Other packages — GenABEL

Some things I am not so keen on;

e Still not as much regression flexibility as I'd like! (Yurii isn't
an adopter of ‘robust’ standard errors...)

e I don't know how it treats e.g. non-convergence of coxph().
In practice, I want to know this

e ... it seems curmudgeonly, but I'm not a huge fan of
‘packaging’ basic commands stuck inside bigs loops. The
learning-curve induced by all the weird things regression can
do is very valuable — I want someone on each GWAS project
to know that stuff



Other R-centric software

Expect to run into this;

[__:5 Initiate PLINK jobs

gPLINK
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Track PLINK
jobs and results

Integrate with
Haploview

http://pngu.mgh.harvard.edu/~purcell/plink/



Other R-centric software

e PLINK (one syllable) handles the methods we've been talking
about

e L atest version accepts R code! So you can e.g. persuade it
to use coxph()

e gPLINK (two?) is a GUI interface to the command-line
version

e Also does other jobs, including imputation (though concen-
sus is that other methods are better, e.g. MACH, BIMBAM,
IMPUTE, Beagle)

Dangerously pointy-clicky for my taste! I want people to think
about e.g. patterns of missingess. No-one’s intuition is great at
p < 10~€XCiting: gre you sure of what you're getting?

Also, for some innocuous jobs, it'll do quirky things, e.g. for
Kinship coefficients there's a hidden (!) Hidden Markov Model



Other R-centric software

This is a ‘regional association plot’
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http://www.broadinstitute.org/mpg/snap/



Other R-centric software

No GWAS paper is complete without one!

e Original R code is (was?) available on Paul deBakker's
website (Harvard)

e You could hack together your own quickly —it's p-value versus
SNP location, with some funky colors/symbols (Getting the
recombination rate data would be a hassle)

e T hese days, we use the SNAP site — for identifying nearby
genes, this is fine. (For genome-wide inference you want a
QQ plot — Manhattan plots are for ‘sales pitches’)



	Introduction
	Motivation
	Examples
	Data Cleaning
	Data Cleaning: HWE test
	Data Cleaning: r2 for all SNPs
	Large data
	Large data: storage formats
	Large data: netCDF
	Large data: how big are GWAS?
	Large data: using netCDF
	Large data: example
	Large data: making netCDF files
	Large data: netCDF `dimensions'
	Large data: netCDF `variables'
	Large data: creating files
	Large data: using netCDF efficiently
	Bioconductor favorites: hexbin
	Bioconductor favorites: snpMatrix
	Other packages -- GenABEL
	Other R-centric software

